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Abstract: In this article, a collocation method based on Pell-Lucas polynomials is studied to numerically solve higher
order linear Fredholm-Volterra integro differential equations (FVIDE). The approximate solutions are assumed in form
of the truncated Pell-Lucas polynomial series. By using Pell-Lucas polynomials and relations of their derivatives, the
solution form and its derivatives are brought to matrix forms. By applying the collocation method based on equally
spaced collocation points, the method reduces the problem to a system of linear algebraic equations. Solution of this
system determines the coefficients of assumed solution. Error estimation is made and also a method with the help of the
obtained approximate solution is developed that finds approximate solution with better results. Then, the applications
are made on five examples to show that the method is successful. In addition, the results are supported by tables and
graphs and the comparisons are made with other methods available in the literature. All calculations in this study have
been made using codes written in Matlab.
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1. Introduction
In applied disciplines, some problems cannot be expressed with a single equation, but instead can be expressed
as a whole of integro-differential equations consisting of a linear combination of differential and integral equa-
tions containing multiple unknown functions. These types of systems of equations have been appeared in many
branches of physics, biology and engineering. For example, integro-differential equation systems have been ap-
peared in areas such as thermoelasticity [19], electromagnetic theory [3], mechanics [34], biology [12], diffraction
of waves [4].

Recently, Sezer, Doğan, Akyüz-Daşcıoğlu, and Yaslan have studied the Chebyshev collocation method
for linear and nonlinear integral equations and systems of linear FVIDEs [1, 2, 30]. Pour-Mahmoud, Rahimi-
Ardabili, Shahmorad, Hosseini have presented the Tau method for linear FVIDEs and systems of FVIDEs
[15, 16, 24, 31]. Maleknejad, Mahmoudi, Yalçınbaş and Sezer have studied on the Taylor polynomial approach
for linear and nonlinear FVIDEs [21, 33]. Also, various methods [7, 8, 20, 29, 37, 38, 40] such as compact
the finite difference method [43], the rationalized Haar functions method [22, 27], the CAS wavelet method
[5], the differential transform method [6], the improved homotopy perturbation method [35], the sine-cosine
∗Correspondence: syuzbasi@akdeniz.edu.tr
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wavelet method [18, 32], the homotopy perturbation method [11, 18], the hybrid function method [17], the sinc
method [42], the Legendre method [23, 25, 26, 28], the Bernstein method [9, 10, 36] and the combined Laplace
transform-Adomian decomposition method [41] have been studied for solving linear and nonlinear FVIDEs.

In this study, we will develope the Pell-Lucas collocation method using the matrix representation of the
Pell-Lucas polynomials to compute approximate solutions of the m-th order linear FVIDE

L[y(x)] =

m∑
k=0

Fk(x)y
(k)(x) + λf

∫ b

a

Kf (x, t)y(t)dt+ λv

∫ x

a

Kv(x, t)y(t)dt = g(x) (1.1)

under the initial-boundary conditions

m−1∑
k=0

(ajky
(k)(a) + bjky

(k)(b)) = µj , j = 0, 1, 2, ...,m− 1. (1.2)

In Table (1), the expressions in the problem (1.1)-(1.2) are described.

Table 1. Some Parameter in the problem (1.1)-(1.2)

Parameter Description
ajk, bjk, µj , λf , λv real or complex constants
y(0)(x) = y(x) unknown function
Fk(x), g(x),Kf (x, t),Kv(x, t) the defined functions on interval

a ≤ x, t ≤ b

Kf (x, t),Kv(x, t) functions that can be expanded
to the Maclaurin series

In this study, three important goals are analyzed. As a first goal, we obtain approximate solutions
depending on the Pell-Lucas polynomials of the problem (1.1)-(1.2) in the form

yN (x) =

N∑
n=0

anQn(x) (1.3)

where an(n = 0, 1, ...N) are the Pell-Lucas coefficients to be found in the method and Qn(x) are the Pell-Lucas
polynomials. Also, N is any positive integer, which is the cutting limit in the method.

As a second goal, an error estimation for error function is made with eN,M (x) are made with the help of
the residual function RN (x)

RN (x) = L[yN (x)]− g(x).

As a final goal, the improved approximate solutions yN,M (x) and the improved errors EN,M (x) are
obtained with the help of the approximate solution yN (x) and the estimated error function eN,M (x) . Also, M

is any positive integer, M ≥ N .
A brief summary of this article is as follows: In Section (2), first some basic relations related to the Pell-

Lucas polynomials are given. Then, the matrix relations of the problem (1.1)-(1.2) are given. In Section (3),
a method of solution based on collocation points is described. In Section (4), an error estimation method
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is presented with the help of residual function that finds approximate solution better than the obtained
approximate solution. In Section (5), the presented method in the previous sections is implemented on five
examples. The obtained results from these applications are shown in tables and graphs. In Section (6), the
results of this study are mentioned.

2. Some Fundamental Relations
In this section, some features of Pell-Lucas polynomials to be used in the method will be given in the Subsection
(2.1). Then, in the Subsection (2.2), basic matrix relations that will be used in the method will be given.

2.1. The Pell-Lucas polynomials Qn(x)

Some significant characteristics of Pell-Lucas polynomials are as follows [13, 14]:

• The recurrence relationship of Pell-Lucas polynomials Qn(x) is

Qn(x) = 2xQn−1(x) +Qn−2(x), n ≥ 2

and the first two Pell-Lucas polynomials are Q0(x) = 2 and Q1(x) = 2x .

• The Pell-Lucas polynomials Qn(x) have generating function in the form

W (x, t) =

∞∑
n=0

Qn+1(x)t
n = (2x+ 2t)[1− 2xt− x2]−1.

• By using the generator function, it can also be clearly expressed as

Qn(x) =

[n/2]∑
k=0

2n−2k n

n− k

(
n− k

k

)
xn−2k.

• By using standard procedures, it can also be expressed the Binet-type formula as

Qn(x) = αn(x) + βn(x)

where α(x) = x+∆(x), β(x) = x−∆(x), ∆(x) =
√

(x2 + 1). Here, α(x) and β(x) are the roots of

λ2 − 2xλ− 1 = 0

so that
α(x) + β(x) = 2x, α(x)− β(x) = 2∆(x), α(x)β(x) = −1.

• Pell-Lucas polynomials Qn(x) can also be expressed to as

Qn(x) = Pn+1(x) + Pn−1(x)

where Pn(x) , (n=0,1,2,...) are Pell polynomials.
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• The relationship of Pell-Lucas polynomials Qn(x) with Lucas polynomials Ln(x) is in the form

Qn(x/2) = Ln(x).

• Pell-Lucas polynomials Qn(x) can be expanded to

Q−n(x) = (−1)nQn(x).

including their negative subscript.

• The recurrence relation for the derivative of Pell-Lucas polynomials is

Q
′

n(x) = 2xQ
′

n−1(x) +Q
′

n−2(x) + 2Qn−1(x), n ≥ 2

where Q
′

0(x) = 0 and Q
′

1(x) = 2 .

• For Pell-Lucas polynomials, see [13, 14] for more features.

2.2. Fundamental Matrix Relations
First, for convenience, let’s write the Eq. (1.1) as

D(x) + λfI(x) + λvV (x) = g(x) (2.1)

Here, D(x) is the differential part in the form

D(x) =

m∑
k=0

Fk(x)y
(k)(x), (2.2)

I(x) is the Fredholm integral part in the form

I(x) =

∫ b

a

Kf (x, t)y(t)dt (2.3)

and V (x) is the Volterra integral part in the form

V (x) =

∫ x

a

Kv(x, t)y(t)dt. (2.4)

Now, let’s find the matrix representation of the solution y(x) , its derivatives, the parts D(x) , I(x) and
V (x) and the mixed conditions (1.2) which are also necessary for the method. We will consider them in the
following subsections.

2.2.1. Matrix relation for the differential part D(x)

In this subsection, we can first express the solution y(x) of the Eq. (1.1) in matrix form as

yN (x) = Q(x)A (2.5)

1068



YÜZBAŞI and YILDIRIM/Turk J Math

where Q(x) =
[
Q0(x) Q1(x) · · · QN (x)

]
and A =

[
a0 a1 · · · aN

]T
.

Secondly, with the help of Q
′

n(x) = 2xQ
′

n−1(x) +Q
′

n−2(x) + 2Qn−1(x) , the derivative of the expression
(2.5), it is obtained as

y
′

N (x) = Q
′
(x)A = Q(x)MA (2.6)

where if N is odd

M =



0 1 0 −3 0 5 · · · (−1)
N−1

2 N
0 0 4 0 −8 0 · · · 0

0 0 0 6 0 −10 · · · (−1)
N−3

2 2N
0 0 0 0 8 0 · · · 0

0 0 0 0 0 10 · · · (−1)
N−5

2 2N
...

...
...

...
...

... . . . 2N
0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

and if N is even

M =



0 1 0 −3 0 5 · · · 0

0 0 4 0 −8 0 · · · (−1)
N−2

2 2N
0 0 0 6 0 −10 · · · 0

0 0 0 0 8 0 · · · (−1)
N−4

2 2N
0 0 0 0 0 10 · · · 0
...

...
...

...
...

... . . . ...
0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

.

Similarly, the k − th order derivative of yN (x) , based on Pell-Lucas polynomials, becomes in the form

y
(k)
N (x) = Q(k)(x)A = Q(x)MkA. (2.7)

Finally, in this subsection, when the expression (2.7) is substituted in the expression (2.2), the following
expression is obtained

[D(x)] =

m∑
k=0

Fk(x)Q(x)MkA. (2.8)

2.2.2. Matrix relation for the Fredholm integral part I(x)

In this subsection, we will find the matrix form of the integral part I(x) . For this purpose, we will use the
truncated Maclaurin series of the kernel function Kf (x, t) . After the kernel function Kf (x, t) is expressed the
truncated Pell-Lucas series, and its relationship with the truncated Maclaurin series will be found.

Firstly, let’s express the truncated Maclaurin series of the kernel function Kf (x, t) in the form

Kf (x, t) =

N∑
m=0

N∑
n=0

kT,f
m,nx

mtn (2.9)

where

kT,f
m,n =

1

m!n!

∂m+nKf (0, 0)

∂xm∂tn
; m,n = 0, 1, ..., N.
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Similarly, let’s express the truncated Pell-Lucas series of the kernel function Kf (x, t) in the form

Kf (x, t) =

N∑
m=0

N∑
n=0

kQ,f
m,nQm(x)Qn(t). (2.10)

Here kQ,f
m,n are the coefficients of the Pell-Lucas serial form. In order to determine these coefficients, let’s

write the matrix form of expressions (2.9) and (2.10) and find the relationship between them.
The serial form of the expression (2.9) can be represented as

Kf (x, t) = X(x)KT
f X

T (t), KT
f = [kT,f

m,n] (2.11)

where
X(x) =

[
1 x x2 · · · xN

]
and the serial form of the expression (2.10) can be expressed as

Kf (x, t) = Q(x)KQ
f Q

T (t), KT
Q = [kQ,f

m,n] (2.12)

where
Q(x) =

[
Q0(x) Q1(x) Q2(x) · · · QN (x)

]
.

Secondly, from the expression (2.11) and (2.12), it can be written as follows

X(x)KT
f X

T (t) = Q(x)KQ
f Q

T (t). (2.13)

If the expression (2.13) is organized, it is obtained as

KT
f = X−1(x)Q(x)KQ

f Q
T (t)(XT )−1(t) (2.14)

or
KQ

f = Q−1(x)X(x)KT
f X

T (t)(QT )−1(t). (2.15)

Finally, in this subsection, when the expression (2.5) and the expression (2.12) is written in the expression
(2.3), the matrix form of integral part I(x) can be represented as

[I(x)] =

∫ b

a

Q(x)KQ
f Q

T (t)Q(t)Adt. (2.16)

If the expression (2.16) is organized, it becomes as follows

[I(x)] = Q(x)KQ
f

{∫ b

a

QT (t)Q(t)dt

}
A. (2.17)

When the integral
∫ b

a
QT (t)Q(t)dt is denoted by Nf , the expression (2.17) can be written as

[I(x)] = Q(x)KQ
f NfA. (2.18)
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2.2.3. Matrix relation for the Volterra integral part V (x)

In this subsection, we will find the matrix form of the integral part V (x) . For this purpose, we will use the
truncated Maclaurin series of the kernel function Kv(x, t) . And then the kernel function Kv(x, t) will be written
in the truncated Pell-Lucas series, and the matrix relation between it and the truncated Maclaurin series will
be constructed.

Now, let’s express the truncated Maclaurin series of the kernel function Kv(x, t) in the form

Kv(x, t) =

N∑
m=0

N∑
n=0

kT,v
m,nx

mtn (2.19)

where

kT,v
m,n =

1

m!n!

∂m+nKv(0, 0)

∂xm∂tn
; m,n = 0, 1, ..., N.

Similarly, we can express the truncated Pell-Lucas series of the kernel function Kv(x, t) in the form

Kv(x, t) =

N∑
m=0

N∑
n=0

kQ,v
m,nQm(x)Qn(t). (2.20)

Here kQ,v
m,n are the coefficients of the Pell-Lucas serial form. In order to determine these coefficients, let’s

write the matrix form of expressions (2.19) and (2.20) and find the relationship between them.
The serial form of the expression (2.19) can be denoted as

Kv(x, t) = X(x)KT
v X

T (t), KT
v = [kT,v

m,n] (2.21)

and the serial form of the expression (2.20) can be conceived as

Kv(x, t) = Q(x)KQ
v Q

T (t), KT
Q = [kQ,v

m,n]. (2.22)

Secondly, from the expression (2.21) and (2.22), it can be obtained as

X(x)KT
v X

T (t) = Q(x)KQ
v Q

T (t). (2.23)

After the expression (2.23) is organized, we have

KT
v = X−1(x)Q(x)KQ

v Q
T (t)(XT )−1(t) (2.24)

or
KQ

v = Q−1(x)X(x)KT
v X

T (t)(QT )−1(t). (2.25)

Finally, in this subsection, when the expression (2.5) and the expression (2.22) is written in the expression
(2.4) expression, the matrix form of integral part V (x) can be denoted as

[V (x)] =

∫ x

a

Q(x)KQ
v Q

T (t)Q(t)Adt. (2.26)
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If the expression (2.26) is organized, it becomes as follows

[V (x)] = Q(x)KQ
v

{∫ x

a

QT (t)Q(t)dt

}
A. (2.27)

When the integral
∫ x

a
QT (t)Q(t)dt is represented by Nv(x) , the expression (2.27) can be stated as

[V (x)] = Q(x)KQ
v Nv(x)A. (2.28)

2.2.4. Matrix relation for the mixed conditions (1.2)

In this subsection, we will find the matrix form of the mixed conditions (1.2). For this purpose, by substituting
a and b instead of x in the expression (2.7), the expression (1.2) can be written as

m−1∑
k=0

(
ajkQ(a)MkA+ bjkQ(b)MkA

)
= µj , j = 0, 1, 2, ...,m− 1

or
m−1∑
k=0

(
ajkQ(a) + bjkQ(b)

)
MkA = µj , j = 0, 1, 2, ...,m− 1. (2.29)

The expression (2.29) can be expressed briefly as

UA = µ or [U;µ]. (2.30)

Here,

U =


U0

U1

...
Um−1

 , Uj =

m−1∑
k=0

(
ajkQ(a) + bjkQ(b)

)
Mk, µ =


µ0

µ1

...
µm−1

 . (2.31)

3. The Collocation Method
In this section, we will first define the collocation points xi . Then, we will get a system of the matrix equations
by replacing these collocation points in the equation (1.1) where we found matrix representations in Section (2).
Finally, we create a new system of the matrix equations by replacing the obtained matrix for conditions with
any m rows of this system of the matrix equations. By solving this system, we will find the coefficient matrix
A we are looking for.

The collocation points are defined as

xi = a+
b− a

N
i, i = 0, 1, ..., N. (3.1)

Now, by replacing the matrix relations in Section (2) in the expression (2.1), we have

m∑
k=0

Fk(x)Q(x)MkA+ λfQ(x)KQ
f NfA+ λvQ(x)KQ

v Nv(x)A = g(x). (3.2)
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If the collocation points in the expression (2.30) are written instead of x in the expression (3.2), it
becomes as follows

m∑
k=0

Fk(xi)Q(xi)M
kA+ λfQ(xi)K

Q
f NfA+ λvQ(xi)K

Q
v Nv(xi)A = g(xi) (3.3)

or briefly it can be written in compact form

{
m∑

k=0

FkQMk + λfQKQ
f Nf + λvQ̄

¯
KQ

v N̄v

}
A = G. (3.4)

Here,

Fk =


Fk(x0) 0 · · · 0

0 Fk(x1) · · · 0
...

... . . . ...
0 0 · · · Fk(xN )

 , G =


g(x0)
g(x1)

...
g(xN )

 , A =


a0
a1
...

aN

 ,

Q =


Q(x0)
Q(x1)

...
Q(xN )

 =


Q0(x0) Q1(x0) Q2(x0) · · · QN (x0)
Q0(x1) Q1(x1) Q2(x1) · · · QN (x1)

...
...

... . . . ...
Q0(xN ) Q1(xN ) Q2(xN ) · · · QN (xN )

 , N̄v =


Nv(x0)
Nv(x1)

...
Nv(xN )

 ,

Q̄ =


Q(x0) 0 · · · 0

0 Q(x1) · · · 0
...

... . . . ...
0 0 · · · Q(xN )

 ,
¯

KQ
v =


KQ

v 0 · · · 0
0 KQ

v · · · 0
...

... . . . ...
0 0 · · · KQ

v

 .

The expression (3.4) can be written briefly as

WA = G or [W;G] (3.5)

where

W =

m∑
k=0

FkQMk + λfQKQ
f Nf + λvQ̄

¯
KQ

v N̄v.

Now, let’s note the dimensions of the matrices in the expression (3.4). The dimensions of the Q̄,
¯

KQ
v , N̄v

matrices are (N + 1)× (N + 1)2, (N + 1)2 × (N + 1)2 and (N + 1)2 × (N + 1) respectively.
The number of lines in the matrix [W;G] is N + 1 . The number of lines of the matrix [U;µ] is m .

Finally, any N + 1 −m line of the matrix [W;G] with the m line of the matrix [U;µ] is written as a single

matrix, and this new matrix is called [W̃; G̃] . For convenience in this study, the first N + 1 −m line of the
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matrix [W;G] is based. Hence, the new augmented matrix becomes in the form

[W̃; G̃] =



w0,0 w0,1 · · · w0,N ; g(x0)
w1,0 w1,1 · · · w1,N ; g(x1)
...

... . . . ...
...

...
wN−m,0 wN−m,1 · · · wN−m,N ; g(xN−m)
u0,0 u0,1 · · · u0,N ; µ0

u1,0 u1,1 · · · u1,N ; µ1

...
... . . . ...

...
...

um−1,0 um−1,1 · · · um−1,N ; µm−1


. (3.6)

Here, if the rank of W̃ and [W̃; G̃] matrices is equal to N + 1 , then we can find the coefficients matrix
A we are looking for in the method as

A = (W̃)−1G̃.

Hence, the determined coefficients a0, a1, ...aN in A are substituted in the expression (1.3) and the
approximate solution yN (x) is computed as depending on the Pell-Lucas polynomials in the form

yN (x) =

N∑
n=0

anQn(x). (3.7)

Note that, when |W̃| = 0 , if rank W̃ = rank [W̃; G̃] < N+1 , then it can be found a particular solution.

If rank W̃ ̸= rank [W̃; G̃] < N + 1 , then it is not a solution.

4. Error estimation and Residual Improvement
In this section, we will develop an error estimation method using the obtained approximate solution as a result
of the discussed method in Section (3). We will define the residual function for this method. Then, with the
help of the obtained approximate solution in Section (3) and this error estimation, we will get new approximate
solution that give better results than the obtained approximate solution in Section (3).

First, let’s define the residual function as

RN (x) = L[yN (x)]− g(x) (4.1)

and since the obtained approximate solution in Section (3) satisfy the problem (1.1)-(1.2), it can be
written { ∑m

k=0 Fk(x)y
(k)
N (x) + λf

∫ b

a
Kf (x, t)yN (t)dt+ λv

∫ x

a
Kv(x, t)yN (t)dt = g(x) +RN (x)∑m−1

k=0 (ajky
(k)
N (a) + bjky

(k)
N (b)) = µj , j = 0, 1, 2, ...,m− 1.

(4.2)

Thus, the error function can be expressed as

eN (x) = y(x)− yN (x) (4.3)

where y(x) is the exact solution and yN (x) is the approximate solution.
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Now, if we substract the problem (4.2) from problem (1.1)-(1.2),respectively, then we find the error
problem in the form

{ ∑m
k=0 Fk(x)e

(k)
N (x) + λf

∫ b

a
Kf (x, t)eN (t)dt+ λv

∫ x

a
Kv(x, t)eN (t)dt = −RN (x)∑m−1

k=0 (ajke
(k)
N (a) + bjke

(k)
N (b)) = 0, j = 0, 1, 2, ...,m− 1.

(4.4)

We solve the error problem (4.4) using the method in Section (3) and thus we get the following approach
for the error function eN (x)

eN,M (x) =

M∑
n=0

a∗nQn(x). (4.5)

As a result, by summing the approximate solution yN (x) obtained in Section (3) and the estimated error
function eN,M (x) in the expression (4.5), we find the improved approximate solution in the form

yN,M (x) = yN (x) + eN,M (x) (4.6)

which gives better results.
Thus, the error function for the improved approximate solution is obtained as

EN,M (x) = yN (x) + yN,M (x). (4.7)

5. Applications of the Method

In this section, five examples are applied the method presented in Section (3) and the obtained solutions are
improved by the technique in Section (4). Numerical results of these examples have been calculated through the
programs written in Matlab. Then, the results are displayed in tables and graphs. Moreover, the comparisons
are made with other methods available in the literature.

In this section, the exact solution, the approximate solution, the improved approximate solution, the
actual absolute error function, the estimated absolute error function and the improved absolute error function
are represented by y(x) , yN (x) , yN,M (x) , eN (x) , eN,M (x) and EN,M (x) , respectively.

Example 5.1 First, let’s take the 2nd order linear Fredholm-Volterra integro-differential equation

y
′′
(x) + xy

′
− xy(x)−

∫ 1

0

sin(x)e−ty(t)dt+
1

2

∫ x

0

cos(x)e−ty(t)dt = ex − sin(x) +
1

2
x cos(x) (5.1)

in interval 0 ≤ x, t ≤ 1 with the initial conditions

y(0) = 1, y
′
(0) = 1 (5.2)

The exact solution to this problem is ex . Now, let’s find the approximate solution for this problem in
the form

yN (x) =

3∑
n=0

anQn(x) (5.3)
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depending on the Pell-Lucas polynomials and taking N = 3 as described in Section (2). According to the
method in Section (3), collocation points are determined as

{
x0 = 0, x1 =

1

3
, x2 =

2

3
, x3 = 1

}
(5.4)

and m = 2 , F0 = −x , F1 = x , F2 = 1 , g(x) = ex − sin(x) + 1
2x cosx , λf = −1 , λv = 1

2 ,
Kf (x, t) = sinxe−t , Kv(x, t) = cosxe−t and thus from the expression (3.4), the basic matrix equation is
written as {

F0Q+ F1QM+ F2QM2 + λfQKQ
f Nf + λvQ̄

¯
KQ

v N̄v

}
A = G (5.5)

where

F0 =


0 0 0 0
0 −1/3 0 0
0 0 −2/3 0
0 0 0 −1

 , F1 =


0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1

 , F2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Q =


Q(0)

Q(1/3)
Q(2/3)
Q(1)

 =


2 0 2 0
2 2/3 22/9 62/27
2 4/3 34/9 172/27
2 2 6 14

 , Q̄ =


Q(0) 0 0 0
0 Q(1/3) 0 0
0 0 Q(2/3) 0
0 0 0 Q(1)

 ,

KQ
f =


0 0 0 0
27/128 −63/256 9/128 −3/256
0 0 0 0
−1/128 7/768 −1/384 1/2304

 ,KQ
v =


15/64 −35/128 5/64 −5/384
0 0 0 0

−3/64 7/128 −1/64 1/384
0 0 0 0

 ,

¯
KQ

v =


KQ

v 0 0 0
0 KQ

v 0 0
0 0 KQ

v 0
0 0 0 KQ

v

 ,Nf =


4 2 20/3 10
2 4/3 4 36/5
20/3 4 188/15 64/3
10 36/5 64/3 1412/35

 ,

Nv(x) =


4x 2x2 8x3

3 + 4x 4x4 + 6x2

2x2 4x3

3 2x2(x2 + 1) 4x3(4x2+5)
5

8x3

3 + 4x 2x2(x2 + 1) 4x(12x4+20x2+15)
15

2x2(8x4+15x2+9)
3

4x4 + 6x2 4x3(4x2+5)
5

2x2(8x4+15x2+9)
3

4x3(80x4+168x2+105)
35

 ,

M =


0 1 0 −3
0 0 4 0
0 0 0 6
0 0 0 0

 , N̄v =


Nv(0)
Nv(1/3)
Nv(2/3)
Nv(1)

 ,G =


g(0)
g(1/3)
g(2/3)
g(1)

 =


1

1145/934
1211/761
2615/1218

 .
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Thus, the augmented matrix
[
W;G

]
from (3.5) is computed as

[
W;G

]
=

[
0 0 8 0 ; 1

−28271/34992 33335/104976 7319659/944784 115504939/6613488 ; 1145/934

]
.

On the other hand, the matrix form
[
U;µ

]
for conditions from (3.1) is obtained as

[
U;µ

]
=

[
2 0 2 0 ; 1
0 2 0 6 ; 1

]

and according to the collocation method in Section (3), the new augmented matrix form [W̃; G̃] from
(3.6) is calculated as

[W̃; G̃] =


0 0 8 0 ; 1

−28271/34992 33335/104976 7319659/944784 115504939/6613488 ; 1145/934
2 0 2 0 ; 1
0 2 0 6 ; 1

 .

Hence, this system [W̃; G̃] is solved and we get the coefficient matrix A we are looking for as

A =
[
3/8 512/1199 1/8 129/5303

]T
.

Finally, by substituting the obtained coefficient matrix A in the expression (2.5), we get the approximate
solution as

y3(x) = 1 + x+ 0.5x2 + 0.194606977755395x3.

Now, let’s apply the method in Section (4) to get a better approximate solution than this approximate
solution we get. Thus, we can express the error problem from (4.4) as{

e
′′
(x) + xe

′ − xe(x)−
∫ 1

0
sin(x)e−te(t)dt+ 1

2

∫ x

0
cos(x)e−te(t)dt = −RN (x),

e(0) = 0, e
′
(0) = 0, 0 ≤ x, t ≤ 1

(5.6)

This error problem is solved for M = 5 by applying the method in Section (3) and the coefficient matrix
A∗ is obtained as

A∗ =
[
79/10594 79/5704 −158/15891 −55/10567 102/41035 19/53833

]T
.

The obtained coefficient matrix A∗ is substituted in the expression (4.5), and the approach eN,M for
(N,M) = (3, 5) is calculated as

e3,5(x) = 0.01129418899x5+0.039770932201x4−0.027521295140x3−1.0164395367e−20x−2.7105054312e−20

and thus, the improved approximate solution for (N,M) = (3, 5) from (4.6) is computed as

y3,5(x) = 0.011294188999x5 + 0.0397709322012x4 + 0.167085682615x3 + 0.5x2 + x+ 1.
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Consequently, the error function for the improved approximate solution for (N,M) = (3, 5) from (4.7) is
written as

E3,5(x) = ex − 1− x− 0.5x2 − 0.167085682615x3 − 0.0397709322012x4 − 0.011294188999x5.

In Table (2) and Figure (1), the exact solution, the obtained approximate solution by the method in
Section (3) and the obtained improved approximate solution by the method in Section (4) of the problem (5.1)-
(5.2) are compared for various N and M values. Table (3) shows comparison of the actual errors, estimated
errors, and improved errors of the problem (5.1)-(5.2) for various N and M values. In Figure (2)-(a), the actual
errors of the problem (5.1)-(5.2), in Figure (2)-(b), the actual errors and the improved errors of the problem
(5.1)-(5.2), in the Figure (3)-(a), the actual errors and the estimated errors of the problem (5.1)-(5.2), in Figure
(3)-(b), the actual, estimated and improved errors of the problem (5.1)-(5.2) are compared. According to all
these comparisons, it can be observed that the errors decrease as the N value increases, the estimated errors are
very close to the actual errors, and the improved errors have fewer errors than the actual errors. According to
these results, it can be said that the method in Section (3) and Section (4) is quite effective, and the calculations
in Matlab show that it is reliable.

Table 2. Numerical results of the exact, the approximate and the improved approximate solution for
(N,M) = (3, 5), (3, 8), (6, 7), (6, 9) of the prob. (5.1)-(5.2)

Exact solution Approximate solution Improved approximate solution
xi y(xi) = exi y3(xi) y3,5(xi) y3,8(xi)

0 1 1 1 1
0.2 1.2214027581601 1.2215568558220 1.2214039330929 1.2214027580318
0.4 1.4918246976412 1.4924548465763 1.4918272720470 1.4918246973963
0.6 1.8221188003905 1.8220351071951 1.8221230563946 1.8221188000834
0.8 2.2255409284924 2.2196387726107 2.2255389231796 2.2255409282309
1 2.7182818284590 2.6946069777553 2.7181508038152 2.7182818094869
xi y(xi) = exi y6(xi) y6,7(xi) y6,9(xi)

0 1 1 1 1
0.2 1.2214027581601 1.2214027621562 1.2214027613469 1.2214027581651
0.4 1.4918246976412 1.4918251276157 1.4918247042228 1.4918246976516
0.6 1.8221188003905 1.8221204604815 1.8221188100876 1.8221188004060
0.8 2.2255409284924 2.2255450607203 2.2255409408505 2.2255409285141
1 2.7182818284590 2.7182832021744 2.7182814283235 2.7182818277307

Example 5.2 Secondly, let’s take the 5th order linear Fredholm-Volterra integro-differential equation

y(5)(x)− xy
′′
+ xy(x)− 1

2

∫ 1

0

e2x+ty(t)dt−
∫ x

0

xety(t)dt = −e−x − 1

2
e2x − x2, 0 ≤ x, t ≤ 1 (5.7)

together with the initial conditions

y(0) = 1, y
′
(0) = −1, y

′′
(0) = 1, y(3)(0) = −1, y(4)(0) = 1. (5.8)
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Figure 1. Comparison of the exact, the approximate and the improved approximate solution at some points of the prob.
(5.1)-(5.2)

Table 3. Comparison of the absolute errors for (N,M) = (3, 5), (3, 8), (6, 7), (6, 9) of the prob. (5.1)-(5.2)

Absolute errors for the Estimated errors for the Absolute errors for the improved
approximate solution approximate solution approximate solution

xi

∣∣e3(xi)
∣∣ = ∣∣y(xi)− y3(xi)

∣∣ ∣∣e3,5(xi)
∣∣ ∣∣e3,8(xi)

∣∣ ∣∣E3,5(xi)
∣∣ ∣∣E3,8(xi)

∣∣
0 0 0 0 0 0
0.2 1.5410e-04 1.5292e-04 1.5410e-04 1.1749e-06 1.2831e-10
0.4 6.3015e-04 6.2757e-04 6.3015e-04 2.5744e-06 2.4488e-10
0.6 8.3693e-05 8.7949e-05 8.3693e-05 4.2560e-06 3.0710e-10
0.8 5.9022e-03 5.9002e-03 5.9022e-03 2.0053e-06 2.6154e-10
1 2.3675e-02 2.3544e-02 2.3675e-02 1.3102e-04 1.8972e-08
xi

∣∣e6(xi)
∣∣ = ∣∣y(xi)− y6(xi)

∣∣ ∣∣e6,7(xi)
∣∣ ∣∣e6,9(xi)

∣∣ ∣∣E6,7(xi)
∣∣ ∣∣E6,9(xi)

∣∣
0 0 0 0 0 0
0.2 3.9961e-09 8.0935e-10 3.9912e-09 3.1868e-09 4.9530e-12
0.4 4.2997e-07 4.2339e-07 4.2996e-07 6.5816e-09 1.0410e-11
0.6 1.6601e-06 1.6504e-06 1.6601e-06 9.6971e-09 1.5580e-11
0.8 4.1322e-06 4.1199e-06 4.1322e-06 1.2358e-08 2.1670e-11
1 1.3737e-06 1.7739e-06 1.3744e-06 4.0014e-07 7.2830e-10

The exact solution to this problem is e−x . Now, let’s find the approximate solution of this problem in
the form

yN (x) =

6∑
n=0

anQn(x) (5.9)

depending on the Pell-Lucas polynomials and taking N = 6 as described in Section (2). According to
the method in Section (3), collocation points are determined as

{
x0 = 0, x1 = 1

6 , x2 = 1
3 , x3 = 1

2 , x4 =
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Figure 3. Comparison of the actual, the estimated and the improved errors at some points of the prob. (5.1)-(5.2)

2
3 , x5 = 5

6 , x6 = 1
}

and m = 5 , F0 = x , F2 = −x , F5 = 1 , g(x) = −ex − 1
2e

2x − x2 , λf = − 1
2 , λv = −1 ,

Kf (x, t) = e2x+t , Kv(x, t) = xet and from the expression (3.4), the basic matrix equation becomes as follows

{
F0Q+ F2QM2 + F5QM5 + λfQKQ

f Nf + λvQ̄
¯

KQ
v N̄v

}
A = G. (5.10)

Thus, the augmented matrix
[
W;G

]
from (3.5) can be written and thus, according to the collocation
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method in Section (3), the new augmented matrix form [W̃; G̃] from (3.6) is calculated as

[W̃; G̃] =



−433/252 −40319/40320 −3404/1079 −1098/209 −3779/338 19087/5 −7148/149 ; −3/2
−1953/919 −1247/927 −403/74 −1540/181 −9903/461 45619/12 83555/11 ; −1058/673

2 0 2 0 2 0 2 ; 1
0 2 0 6 0 10 0 ; −1
0 0 8 0 32 0 72 ; 1
0 0 0 48 0 240 0 ; −1
0 0 0 0 384 0 2304 ; 1


.

Hence, this system [W̃; G̃] is solved and we get the coefficient matrix A

A =
[
867/2266 −169/384 467/4065 −5/256 102/41059 −100/384001 3/150079

]T
.

Finally, by substituting the obtained coefficient matrix A in the expression (2.5), we have the approximate
solution

y6(x) = 0.00127932503853x6 − 0.00833331173867x5 + 0.0416666666667x4 − 0.166666666667x3 + 0.5x2 − x+ 1.

Thus, it is applied the method in Section (4) for M = 7 and it can be obtained e6,7(x) , y6,7(x) and
E6,7(x) .

In Table (4) and Figure (4), the exact solution, the obtained approximate solution by the method in
Section (3) and the obtained improved approximate solution by the method in Section (4) of the problem (5.7)-
(5.8) have compared for various N and M values. Table (5) compares the actual errors, estimated errors, and
improved errors of the problem (5.7)-(5.8) for various N and M values. In Figure (5)-(a), the actual errors of
the problem (5.7)-(5.8), in Figure (5)-(b), the actual errors and the improved errors of the problem (5.7)-(5.8),
in the Figure (6)-(a), the actual errors and the estimated errors of the problem (5.7)-(5.8), in Figure (6)-(b),
the actual, estimated and improved errors of the problem (5.7)-(5.8) are compared.

Table 4. Numerical results of the exact, the approximate and the improved approximate solution for (N,M) =
(6, 7), (6, 10) of the prob. (5.7)-(5.8)

Exact solution Approximate solution Improved approximate solution
xi y(xi) = e−xi y6(xi) y6,7(xi) y6,10(xi)

0 1 1 1 1
0.2 0.818730753077982 0.818730748550379 0.818730752804608 0.818730753077949
0.4 0.670320046035639 0.670319907003154 0.670320038400105 0.670320046034900
0.6 0.548811636094026 0.548811689868198 0.548811579877258 0.548811636089891
0.8 0.449328964117222 0.449338041125705 0.449328392845722 0.449328964110598
1 0.367879441171442 0.367946013299856 0.367874755869615 0.367879441549126

Example 5.3 As the third, let’s take the first order linear Fredholm integro-differential equation

y
′
−
∫ 1

0

xy(t)dt = xex + ex − x, 0 ≤ x, t ≤ 1 (5.11)

with initial the condition
y(0) = 0. (5.12)
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Figure 4. Comparison of the exact, the approximate and the improved approximate solution at some points of the prob.
(5.7)-(5.8)

Table 5. Comparison of the absolute errors for (N,M) = (6, 7), (6, 10) of the prob. (5.7)-(5.8)

Absolute errors for the Estimated errors for the Absolute errors for the improved
approximate solution approximate solution approximate solution

xi

∣∣e6(xi)
∣∣ = ∣∣y(xi)− y6(xi)

∣∣ ∣∣e6,7(xi)
∣∣ ∣∣e6,10(xi)

∣∣ ∣∣E6,7(xi)
∣∣ ∣∣E6,10(xi)

∣∣
0 0 0 0 0 0
0.2 4.5276e-09 4.2542e-09 4.5276e-09 2.7337e-10 3.2514e-14
0.4 1.3903e-07 1.3140e-07 1.3903e-07 7.6355e-09 7.3934e-13
0.6 5.3774e-08 1.0999e-07 5.3778e-08 5.6217e-08 4.1349e-12
0.8 9.0770e-06 9.6483e-06 9.0770e-06 5.7127e-07 6.6239e-12
1 6.6572e-05 7.1257e-05 6.6572e-05 4.6853e-06 3.7768e-10

The exact solution to this problem is xex . Now, our aim is to find the approximate solution of this
problem in the form

yN (x) =

5∑
n=0

anQn(x) (5.13)

depending on the Pell-Lucas polynomials and taking N = 5 as described in Section (2). According to the method
in Section (3), collocation points are determined as

{
x0 = 0, x1 = 1

5 , x2 = 2
5 , x3 = 3

5 , x4 = 4
5 , x5 = 1

}
and m = 1 , F0 = 0 , F1 = 1 , g(x) = xex + ex − x , λf = −1 , λv = 0 , Kf (x, t) = x , Kv(x, t) = 0 and from the
expression (3.4), the basic matrix equation is written as{

F1QM+ λfQKQ
f Nf

}
A = G. (5.14)

Thus, the augmented matrix
[
W;G

]
from (3.5) can be written and thus, according to the collocation

method in Section (3), the new augmented matrix form [W̃; G̃] from (3.6) can be calculated. Hence, this system

[W̃; G̃] is solved and thus the coefficient matrix A is calculated as
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Figure 5. Comparison of the actual and the improved errors at some points of the prob. (5.7)-(5.8)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

10
-20

10
-15

10
-10

10
-5

10
0

A
b

s
o

lu
te

 e
rr

o
r

e
6
(x) with  present method

e
6,7

(x) with  present method

e
6,10

(x) with present method

(a) eN (x ) and eN,M (x )

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

10
-15

10
-10

10
-5

10
0

A
b

s
o

lu
te

 e
rr

o
r

e
10

(x) with  present method

e
10,11

(x) with  present method

E
10,11

(x) with present method

(b) eN (x ), eN,M (x ) and E N,M (x )

Figure 6. Comparison of the actual, the estimated and the improved errors at some points of the prob. (5.7)-(5.8)

A =
[
−250/1121 299/906 733/3423 437/8225 61/6873 47/22200

]T
.

Finally, by substituting the obtained coefficient matrix A in the expression (2.5), the approximate
solution is obtained as

y5(x) = 0.0677477594012x5 + 0.142004818753x4 + 0.50973034525x3 + 0.998563502239x2 + x+ 4.33680868994e− 19.

Thus, it is applied the method in Section (4) for M = 7 and it can be obtained e5,7(x) , y5,7(x) and
E5,7(x) .

In Figure (7), we compare the exact solution, the obtained approximate solution by the method in Section
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(3) and the obtained improved approximate solution by the method in Section (4) of the problem (5.11)-(5.12)
for various N and M values. In Table (7) and Figure (8), the actual errors, estimated errors, and improved
errors of the problem (5.11)-(5.12) are compared for various N and M values. In Table (6), the actual absolute
errors of the problem (5.11)-(5.12) are compared with CASW[5], IHP[35], BC[39], EM[37] and DT[6] methods.
According to these comparisons, the presented method gives better results than CASW[5], EM[37] and DT[6]
methods, while it gives close results with IHP[35] and BC[39] methods. Matrix operations in the presented
method are less and for higher order problems, it can be calculated in a short time with the help of Matlab.
These CPU times (in seconds) are shown in Table (7). According to these results, it can be said that the method
in Section (3) and Section (4) is quite effective, and the calculations in Matlab show that it is reliable.
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Figure 7. Comparison of the exact, the approximate and the improved approximate solutions at some points of the
prob. (5.11)-(5.12)

Table 6. Numerical results of the absolute errors of the problem (5.11)-(5.12)

CASWM[5] DTM[6] IHPM[35] BCM[39] EM[37] PM
xi e5(xi) E8,8(xi) e5(xi)

0.1 1.34917637e-03 1.00118319e-02 2.314814815e-06 6.8485e-06 6.3466e-004 6.8485e-06
0.2 1.15960044e-03 2.78651355e-02 9.259259259e-06 1.1282e-05 6.0386e-004 1.1282e-05
0.4 5.93105645e-02 7.55356316e-02 3.703703704e-05 7.9162e-06 6.4560e-004 7.9162e-06
0.6 4.39287720e-02 1.09551714e-01 8.333333333e-05 1.4775e-05 7.0993e-004 1.4775e-05
0.8 1.34514117e-02 6.94512700e-02 1.481481481e-04 5.4050e-06 7.9955e-004 5.4050e-06
0.9 1.32045209e-02 1.00034260e-02 1.875000000e-04 3.9206e-05 8.7135e-004 3.9206e-05

Example 5.4 Fourthly, let’s take the first order linear Volterra integro-differential equation

y
′
+

∫ x

0

y(t)dt = 1, 0 ≤ x, t ≤ 1 (5.15)

with the initial condition
y(0) = 0. (5.16)
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Figure 8. Comparison of the actual, the estimated and the improved errors at some points of the prob. (5.11)-(5.12)

Table 7. Comparison of the absolute errors for (N,M) = (5, 7), (5, 8), (8, 9), (8, 10) of the prob. (5.11)-(5.12)

Absolute errors for the Estimated errors for the Absolute errors for the corrected
approximate solution for approximate solution approximate solution

xi

∣∣e5(xi)
∣∣ = ∣∣y(xi)− y5(xi)

∣∣ ∣∣e5,7(xi)
∣∣ ∣∣e5,8(xi)

∣∣ ∣∣E5,7(xi)
∣∣ ∣∣E5,8(xi)

∣∣
0 4.3368e-19 0 1.1189e-16 4.3368e-19 1.1232e-16
0.2 1.1282e-05 1.1259e-05 1.1283e-05 2.2665e-08 8.1718e-10
0.4 7.9162e-06 7.8910e-06 7.9170e-06 2.5198e-08 8.4300e-10
0.6 1.4775e-05 1.4747e-05 1.4775e-05 2.7325e-08 8.5072e-10
0.8 5.4050e-06 5.3778e-06 5.4059e-06 2.7236e-08 8.3637e-10
1 2.3540e-04 2.3464e-04 2.3537e-04 7.6359e-07 3.2821e-08
CPU time(s) 0.2344 0.2500 0.2656 0.2969 0.3125
xi

∣∣e8(xi)
∣∣ = ∣∣y(xi)− y8(xi)

∣∣ ∣∣e8,9(xi)
∣∣ ∣∣e8,10(xi)

∣∣ ∣∣E8,9(xi)
∣∣ ∣∣E8,10(xi)

∣∣
0 2.0470e-16 2.3766e-16 3.2752e-15 3.2960e-17 3.0705e-15
0.2 8.1718e-10 8.4788e-10 8.1620e-10 3.0698e-11 9.7666e-13
0.4 8.4300e-10 8.7922e-10 8.4200e-10 3.6224e-11 1.0002e-12
0.6 8.5072e-10 8.9475e-10 8.4973e-10 4.4035e-11 9.8660e-13
0.8 8.3637e-10 8.9446e-10 8.3552e-10 5.8092e-11 8.4573e-13
1 3.2821e-08 3.1358e-08 3.2770e-08 1.4628e-09 5.1118e-11
CPU time(s) 0.3281 0.3594 0.4688 0.5156 0.5938

The exact solution to this problem is sinx . Now, let’s find the approximate solutions for this problem
in the form

yN (x) =

3∑
n=0

anQn(x) (5.17)

by taking N = 3 in Section (2). According to the method in Section (3), collocation points are computed as{
x0 = 0, x1 = 1

3 , x2 = 2
3 , x3 = 1

}
and m = 1 , F0 = 0 , F1 = 1 , g(x) = 1 , λf = 0 , λv = 1 , Kf (x, t) = 0 ,
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Kv(x, t) = 1 and from the expression (3.4), we write the basic matrix equation

{
F1QM+ λvQ̄

¯
KQ

v N̄v

}
A = G. (5.18)

Thus, the augmented matrix
[
W;G

]
from (3.5) can be written and thus according to the collocation

method in Section (3), the new augmented matrix form [W̃; G̃] from (3.6) can be calculated. We solve this

system [W̃; G̃] and so we get the coefficient matrix

A =
[
27/23992 1675/2999 −27/23992 −117/5998

]T
.

Lastly, after this coefficient matrix A in the expression (2.5), we gain the approximate solution

y3(x) = −0.156052017339x3 − 0.00450150050017x2 + x.

Applying the method in Section (4) for M = 7 and we have e3,5(x) , y3,5(x) and E3,3(x) .
The approximate solutions yN (x) , yN,M (x) and the exact solution of the problem (5.15)-(5.16) are

compared for various values of N and M in Figure (9).
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Figure 9. Comparison of the exact, the approximate and the improved approximate solutions at some points of the
prob. (5.15)-(5.16)

Table (9) and Figure (10) show comparison of the actual errors, estimated errors and improved errors of
the problem (5.15)-(5.16) for various N and M values. In Table (8), the actual absolute errors of the problem
(5.15)-(5.16) are compared with TC[33], Tau[31] and BC[39] methods. According to these comparisons, in
TC[33] and Tau[31] method, it gives good results at near zero points, but not as close to 1 . Thus, it may not be
very useful considering a wider range. But according to BC[39] and the presented method, it gives consistent
results in the given range. The fact that there are fewer matrix operations in the presented method, added
positive results to the method.

1086



YÜZBAŞI and YILDIRIM/Turk J Math

Table 8. Numerical results of the actual errors of the problem (5.15)-(5.16)

TCM[33] TM[31] BCM[39] PM
xi e5(xi) e5(xi) e5(xi)

0 0 0 0 0
0.2 2.60e-09 0.25e-8 4.0240e-007 4.0240e-07
0.4 3.24e-07 0.3244e-6 2.0574e-007 2.0574e-07
0.6 5.53e-06 0.55266e-5 3.7576e-007 3.7576e-07
0.8 4.12e-05 0.412424e-4 1.8172e-007 1.8172e-07
1 1.96e-04 0.1956819e-3 9.6665e-006 9.6665e-06
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Figure 10. Comparison of the actual, the estimated and the improved errors at some points of the prob. (5.15)-(5.16)

Example 5.5 Finally, let’s take the first order linear Fredholm integro-differential equation

y
′
−
∫ 1

0

xty(t)dt = 1− 1

3
x, 0 ≤ x, t ≤ 1 (5.19)

together with initial the condition
y(0) = 0. (5.20)

The exact solution to this problem is x . Now, let’s find the approximate solutions of this problem in the
form

yN (x) =

3∑
n=0

anQn(x) (5.21)

by selecting N = 3 as described in Section (2). The collocation points becomes as follows{
x0 = 0, x1 = 1

3 , x2 = 2
3 , x3 = 1

}
and m = 1 , F0 = 0 , F1 = 1 , g(x) = 1 − 1

3x , λf = −1 , λv = 0 ,
Kf (x, t) = xt , Kv(x, t) = 0 and from the expression (3.4), the basic matrix equation is obtained as

{
F1QM+ λfQKQ

f Nf

}
A = G. (5.22)
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Table 9. Comparison of the absolute errors for (N,M) = (5, 6), (5, 9), (8, 10), (8, 13) of the prob. (5.15)-(5.16)

Absolute errors for the Estimated errors for the Absolute errors for the corrected
approximate solution for approximate solution approximate solution

xi

∣∣e5(xi)
∣∣ = ∣∣y(xi)− y5(xi)

∣∣ ∣∣e5,6(xi)
∣∣ ∣∣e5,9(xi)

∣∣ ∣∣E5,6(xi)
∣∣ ∣∣E5,9(xi)

∣∣
0 0 0 4.4842e-43 0 4.4842e-43
0.2 4.0240e-07 4.4736e-07 4.0239e-07 4.4970e-08 7.1752e-13
0.4 2.0574e-07 2.3950e-07 2.0574e-07 3.3755e-08 7.0356e-13
0.6 3.7576e-07 4.0431e-07 3.7576e-07 2.8543e-08 6.4362e-13
0.8 1.8172e-07 1.2607e-07 1.8173e-07 5.5658e-08 6.4605e-13
1 9.6665e-06 8.7373e-06 9.6664e-06 9.2920e-07 3.8633e-11
xi

∣∣e8(xi)
∣∣ = ∣∣y(xi)− y8(xi)

∣∣ ∣∣e8,10(xi)
∣∣ ∣∣e8,13(xi)

∣∣ ∣∣E8,10(xi)
∣∣ ∣∣E8,13(xi)

∣∣
0 0 5.2549e-46 8.0575e-45 5.2549e-46 8.0575e-45
0.2 5.3200e-11 5.3251e-11 5.3200e-11 5.1078e-14 4.4013e-19
0.4 5.2356e-11 5.2405e-11 5.2356e-11 4.9697e-14 4.1374e-19
0.6 4.8571e-11 4.8615e-11 4.8571e-11 4.4475e-14 3.7321e-19
0.8 4.1821e-11 4.1852e-11 4.1821e-11 3.1134e-14 3.2667e-19
1 1.8402e-09 1.8426e-09 1.8402e-09 2.3700e-12 3.1767e-17

By following the other steps of the method, we get the coefficient matrix A

A =
[
0 1/2 0 0

]T
.

We substitute the obtained coefficient matrix A in the expression (2.5) and thus we get the approximate
solution

y3(x) = x

which is the exact solution. If the exact solution of the given equation is of the polynomial type, the obtained
approximate solution with this technique give us the exact solution. This is one of the advantages of the method.

6. Conclusions
In this article, a collocation method based on Pell-Lucas polynomials is presented to solve linear FVIEs. In
addition, by presenting the error estimation technique, the errors can be estimated in cases where there is no
exact solution to the problem. Moreover, the obtained approximate solutions are improved with the help of the
residual correction method. For all these methods, five examples are given and the results of these examples are
shown in tables and graphs, and their implementation is clearly made. According to these results, it can be said
that the errors decrease as the N value increases, the estimated errors are very close to the actual errors and
the improved errors give better results than the actual errors. An advantage of the method is that if the exact
solution of the given equation is of the polynomial type, the approximate solution obtained by the presented
method gives us the exact solution. This result is seen from Example (5.5). Additionally, the comparisons with
other methods available in the literature are also made in Table (6) and Table (8). It can be observed that
the presented method according to these data gives good results compared to most methods. All calculations
in this study can be calculated in a very short time with the help of Matlab, so the method is both reliable
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and useful. Additionally, the presented method can be developed for integro-differential equations or integral
equations.
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