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Abstract: We prove a Korovkin-type approximation theorem using abstract relative uniform filter convergence of a
net of functions with respect to another fixed filter, a particular case of which is that of all neighborhoods of a point,
belonging to the domain of the involved functions. We give some examples, in which we show that our results are strict
generalizations of the classical ones.
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1. Introduction
One of the most commonly used theorems in approximation theory, thanks to its simplicity and power, is the
Korovkin theorem (see [39]), which deals with uniform approximation of continuous functions defined on a
compact space, using sequences or nets of positive linear operators defined on the space of continuous functions.

The classical Bohman-Korovkin theorem yields uniform convergence in the space C([a, b]) of all contin-
uous real-valued functions defined on the compact subinterval [a, b] of the real line, with the only hypothesis
of convergence on the test functions 1 , x , x2 (see for instance [18, 38, 39]). Since then, the Korovkin theorem
has been extended to abstract functional spaces, such as Lp spaces (see e.g., [31, 36, 46]), Orlicz spaces (see
e.g., [41, 47]), and general modular spaces (see e.g., [10, 12]).

Korovkin-type theorems hold even when one considers some other types of test functions, for example
trigonometric functions. An abstract presentation of test functions is given by the so-called Korovkin sets (see
e.g., [2, 3]).

The Korovkin theorems are related to several tools, useful to get different applications to various branches
of Mathematics. Among them, we quote sampling-type operators, density approximation theorems, Radon
measures, Banach lattices, Banach algebras, C∗ -algebras, harmonic analysis, (locally) compact topological
groups, differential equations, Markov processes, stochastic processes, fuzzy numbers (see e.g., [1–3, 5, 43, 44]
and the references therein).

There have been also several studies on Korovkin-type theorems related to convergence associated with
summability methods, statistical and filter convergence (see e.g., [5, 8, 9, 29, 32–34, 49]).
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In [17] it is dealt with Korovkin-type theorems for operators acting on modular function spaces, with
respect to abstract convergences satisfying suitable axioms (see e.g., [10]).

In [28] some Korovkin-type theorems are proved in the setting of relative uniform convergence with
respect to scale functions, investigated in [20–22, 37], and different examples and applications are given.

In this paper we deal with Korovkin theorems in the setting of an abstract convergence, which extends the
one investigated in [28], where the set of the neighborhoods of the point at which relative uniform convergence
is considered, is replaced with a general filter of the domain of the involved functions, and the “classical”
(uniform) convergence of the functions is replaced by the (uniform) filter/ideal convergence. We also suppose
that our functions are defined on an abstract topological space, endowed with a uniform structure (see also
[10]). We give some examples, showing that our results are strict generalizations of the corresponding classical
ones. Filter/ideal convergence, whose statistical convergence is a particular case, is related, in our setting, to
convergences of sequences or nets, which are not necessarily topological structures (see also [35, 40]). Observe
that it is possible to give an axiomatic definition of filter convergence even without nets (see also [30, 35, 40]
and the references therein).

Furthermore, there are recent applications of these subjects to emergent and concrete issues as, for
example signal processes, image reconstruction, neural networks, thermography and seismic engineering (see
e.g., [4, 6, 7, 11, 13–16, 19, 23–27, 48]).

2. Preliminaries
Let Λ be any nonempty set and P(Λ) be the class of all subsets of Λ . A nonempty family F ⊂ P(Λ) is called
a filter of Λ iff ∅ /∈ F , A ∩B ∈ F whenever A , B ∈ F , and for every A ∈ F and B ⊃ A it is B ∈ F .

If Λ = (Λ,⪰) is a directed set, then for any λ ∈ Λ set Mλ = {l ∈ Λ : l ⪰ λ} . A filter F of Λ is free iff
Mλ ∈ F for all λ ∈ Λ .

Some classical examples of free filters are the filter Fcofin of all subsets of N whose complement is finite
and the filter Fd of all subsets of N whose asymptotic density is 1 . As we know, the asymptotic density of a
set A ⊆ N is defined as

δ (A) = lim
n

|{k ≤ n : k ∈ A}|
n

(2.1)

whenever the limit in (2.1) exists, where |B| denotes the cardinality of the set B ([42]). Here, (N,⪰) is meant
with respect to the usual order ≥ .

From now on, we always suppose that F is a free filter of Λ .
A family (xλ)λ∈Λ of real numbers is said to be F -convergent to x ∈ R iff for every ε > 0 there is F ∈ F

with |xλ − x| ≤ ε whenever λ ∈ F .
Let G be a locally compact Hausdorff topological space, P(G × G) be the class of all subsets of the

Cartesian product G ×G , and let Y ⊂ P(G ×G) be a uniform structure which generates the topology of G .
Let Cb(G) be the space of all real-valued continuous and bounded functions defined on G , and Cc(G) be the
subspace of Cb(G) of all functions with compact support on G .

Let ar , er , r = 0, 1, . . . ,m , be elements of Cb(G) with e0(t) = 1 for each t ∈ G . Set

Ps(t) :=

m∑
r=0

ar(s)er(t), s, t ∈ G, (2.2)
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and assume that

(P1) Ps(s) = 0 for all s ∈ G ;

(P2) for every U ∈ Y there is η > 0 such that Ps(t) ≥ η for each s , t ∈ G , (s, t) ̸∈ U .

Example 2.1 (see also [10, 12])
(a) Let I be a connected subset of the real line and G = Im be equipped with the norm ∥ · ∥2 . Let

φ : I → R be monotone and such that φ−1 is uniformly continuous. Examples of such functions are φ(t) = t

or φ(t) = et , where I = [a, b] ⊂ R .
For each t = (t1, t2, . . . , tm) ∈ G let er(t) := φ(tr) , r = 1, 2, . . . ,m , and

em+1(t) =

m∑
r=1

(φ(tr))
2.

For every s = (s1, . . . , sm) ∈ G , let

a0(s) =

m∑
r=1

(φ(sr))
2, ar(s) = −2φ(sr), r = 1, 2, . . . ,m,

and am+1(s) = 1 . It is

Ps(t) =

m+1∑
r=0

ar(s) er(t) =

m∑
r=1

(φ(sr)− φ(tr))
2.

It is not difficult to check that (P1) and (P2) hold.
(b) Let G = [a, b] be with 0 < a < b < π/2 , m = 2 , e1(t) = cos t , e2(t) = sin t , t ∈ G . Set a0(s) = 1 ,

a1(s) = − cos s , a2(s) = − sin s , s ∈ G . For any s , t ∈ G it is

Ps(t) = 1− cos s cos t− sin s sin t = 1− cos(s− t). (2.3)

It is not difficult to see that (P1) and (P2) are satisfied.

(c) Let q ∈ N be fixed, m = 2 q , G =
(

a
q ,

b
q

)q
, with 0 < a < b < π/2 , t = (t1, . . . , tq) , s =

(s1, . . . , sq) ∈ G , set e2j−1(t) = cos j tj , e2 j(t) = sin j tj , j = 1, . . . , q . Put a0(s) = q , a2j−1(s) = − cos j sj ,
a2 j(s) = − sin j sj , j = 1, . . . , r . For each s , t ∈ G it is

Ps(t) =

m∑
r=0

ar(s)er(t) = r −
r∑

j=1

cos jsj cos jtj −
r∑

j=1

sin jsj sin jtj

= r −
r∑

j=1

cos(j(sj − tj)).

It is not difficult to check that (P1) and (P2) are fulfilled.
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Definition 2.2 Let G be as above, Λ ̸= ∅ be a fixed set, σ : G → R\{0} be a function (which in the literature
is called scale function), F and H be free filters of Λ and G respectively, (fλ)λ∈Λ be a family of real-valued
functions, defined on G . We say that (fλ)λ∈Λ (F ,H)-converges with respect to σ or (F ,H, σ)-converges to a
function f : G → R iff for each ε > 0 there exist F ∈ F and H ∈ H with |fλ(t) − f(t)| ≤ ε |σ(t)| whenever
λ ∈ F and t ∈ H .

If x0 is any fixed point of G , then an example of filter of G is the set of all neighborhoods of x0 (see e.g., [28]).

Example 2.3 Let G = [0, 1] , Λ = N , H ⊂ P(G) be the set of all neighborhoods of x0 = 0, F = Fd, F ∈ F
and define gn : G → R by

gn (x) =

 2nx2, n /∈ F
nx2

3 + nx2
, n ∈ F

. (2.4)

We claim that (gn)n (Fd,H) -converges to g (x) = 0 with respect to the scale function

σ (x) =

{
1

x
, 0 < x ≤ 1

1, x = 0
. (2.5)

Indeed, let ε > 0 be given and choose δ = ε. Let n ∈ F, x ∈ [0, 1] be with |x| < δ. Then,

∣∣∣∣gn (x)σ (x)

∣∣∣∣ ≤ nx3

3 + nx2
< x < δ = ε.

However, (gn)n does not (Fd,H) -converge to g (x) = 0 ; hence, (gn)n does not Fd -converge to g (x) = 0

on [0, 1] . Indeed, for ε = 1
5 , x = 1√

n
∈ ]0, 1] with 1√

n
< δ and n ∈ F, we get nx2

3 + nx2
=

1

2
>

1

5
. However, it is

not difficult to see that the sequence (gn)n is neither uniformly nor relatively uniformly convergent to g (x) = 0

(see also [28]).

3. The main results
In this section we prove our main Korovkin-type theorem.

Theorem 3.1 Let ar , er , r = 0, 1, . . . ,m , be elements of Cc(G) , satisfying the conditions (P1)and (P2). Let
(Lλ)λ∈Λ be a family of positive linear operators acting from Cc(G) into itself and σ is the scale function (possibly
unbounded).

Then (Lλ(er))λ (F ,H, σr)-converges to er for every r = 0, 1, . . . ,m if and only if (Lλ(f))λ (F ,H, σ)-
converges to f for each f ∈ Cc(G) , where

σ(t) = max{|σr(t)| : r = 0, 1, . . . ,m}, t ∈ G. (3.1)

Proof First, we begin the “if” part. Our hypothesis is that (Lλ(f))λ , (F ,H, σ) -converges to f for each f ∈
Cc(G) , which means that: ∀f ∈ Cc (G) , ∀ε > 0, ∃ F ∈ F and H ∈ H such that |Lλ (f) (t)− f (t)| ≤ εσ (t) ,

1241



BOCCUTO et al./Turk J Math

∀λ ∈ F and t ∈ H. Since er ∈ Cc (G) , r = 0, ...,m, if we choose ε = ε∗|σr(t)|
σ(t) , then we get ∀ε∗ > 0, ∃ F ∈ F

and H ∈ H such that |Lλ (er) (t)− er (t)| ≤ ε∗|σr (t) |, r = 0, ...,m, ∀λ ∈ F and t ∈ H.

We now turn to the “only if” part. Pick arbitrarily f ∈ Cc(G) . As G is equipped with the uniformity
Y , f is uniformly continuous and bounded on G .

Choose arbitrarily ε > 0 . Without loss of generality, we can and do assume 0 < ε ≤ 1 . Thanks to the
uniform continuity of f , there is U ∈ Y such that

|f(s)− f(t)| ≤ ε

4

for each s, t ∈ G with (s, t) ∈ U . In correspondence with ε and U , let η > 0 satisfy the condition (P2). It is

|f(s)− f(t)| ≤ 2S ≤ 2S

η
Ps(t) (3.2)

for all s, t ∈ G with (s, t) ̸∈ U . Thus, for every s, t ∈ G we get

|f(s)− f(t)| ≤ ε

4
+

2S

η
Ps(t), (3.3)

that is

−ε

4
− 2S

η
Ps(t) ≤ f(s)− f(t) ≤ ε

4
+

2S

η
Ps(t). (3.4)

Let S = sup
t∈G

|f(t)| and N = sup
t∈G,r=0,1,...,m

|ar(t)| . By (F ,H, σr) -convergence to er of (Lλ(er))λ , for every

r = 0, 1, . . . ,m there are Fr ∈ F and Hr ∈ H with

|Lλ(er)(s)− f(s)| ≤ |σr(s)| ·min
{
ε,

ε

4S
,

ε η

8N S (m+ 1)

}
(3.5)

whenever λ ∈ Fr and s ∈ Hr .

Set F =

m⋂
r=0

Fr , H =

m⋂
r=0

Hr . As F and H are filters, we get that F ∈ F and H ∈ H . Pick arbitrarily

s ∈ F and λ ∈ H . Since the operators Lλ are linear and positive and Ps(s) = 0 , from (3.4) we obtain

− ε

4
Lλ(e0)(s)−

2S

η
Lλ(Ps)(s) + Ps(s) ≤

≤ Lλ(f)(s)− f(s)Lλ(e0)(s) ≤ (3.6)

≤ ε

4
Lλ(e0)(s) +

2S

η
(LλPs)(s).
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As Ps(s) =

m∑
r=0

ar(s)er(s) , from (3.6) we get

− ε

4
Lλ(e0)(s)−

2S

η

m∑
r=0

ar(s) (Lλ(er)(s)− er(s)) ≤

≤ Lλ(f)(s)− f(s) + f(s) e0(s)− f(s)Lλ(e0)(s) ≤ (3.7)

≤ ε

4
Lλ(e0)(s) +

2S

η

m∑
r=0

ar(s) (Lλ(er)(s)− er(s)).

From (3.7) we obtain

|Lλ(f)(s)− f(s)| ≤ |f(s)| |Lλ(e0)(s)− e0(s)|+
ε

4
|Lλ(e0)(s)− e0(s)|+

+
ε

4
e0(s) +

2N S

η

m∑
r=0

|Lλ(er)(s)− er(s)|. (3.8)

From (3.5) and (3.8) we deduce

|Lλ(f)(s)− f(s)|
σ(s)

≤ |f(s)| |Lλ(e0)(s)− e0(s)|
|σr(s)|

+
ε

4

|Lλ(e0)(s)− e0(s)|
|σr(s)|

+

+
ε

4
e0(s) +

2N S

η

m∑
r=0

|Lλ(er)(s)− er(s)|
|σr(s)|

≤ (3.9)

≤ S
ε

4S
+

2 ε

4
+ (m+ 1)

2N S

η

ε η

8N S (m+ 1)
= ε.

This ends the proof. 2

4. Applications
We now deal with some examples, which show that our main Korovkin type approximation theorem is stronger
than the corresponding classical ones.

Example 4.1 Let G = [0, 1] , H ⊂ P(G) be the set of all neighborhoods of x0 = 0, F = Fd, F ∈ F and
consider the following linear positive operators:

Mn (f) (x) =

∫
G

Kn (t) f (tx) dt, n ∈ N, x ∈ G,

for every f ∈ C (G) , where Kn (t) = (n+ 1) tn (see [39]). Then, using the operators Mn, we define the
sequence of positive linear operators T := (Tn)n on Cc (G) as follows:

Tn (f) (x) = (1 + gn (x))Mn (f) (x) ,

where (gn)n is the same as in (2.4). Choose σi (x) = σ (x) (i = 0, 1, 2), where σ is the same as in (2.5).
Let e0 (x) = a2 (x) = 1, e1 (x) = x, e2 (x) = a0 (x) = x2, a1 (x) = −2x. We now claim that (Tn (ei))n
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(Fd,H) -converges to ei with respect to the scale function σi, i = 0, 1, 2. Now, observe that

|Tn (e0) (x)− e0 (x)| = gn (x) ,

|Tn (e1) (x)− e1 (x)| ≤ 1 + gn (x)

n+ 2
+ gn (x) ,

|Tn (e2) (x)− e2 (x)| ≤ 2 (1 + gn (x))

n+ 3
+ gn (x) .

As we know from Example 2.3, (gn)n (Fd,H) -converges to g (x) = 0 with respect to the scale function σ.

Hence, our claim is true for i = 0, 1, 2 and from our main theorem, we get that (Tn (f))n (Fd,H) -converges
to f with respect to the scale function σ . However, (Tn (e0))n is neither uniformly nor relatively uniformly
convergent to e0. Hence, the classical and relative Korovkin theorems do not work for our sequence (Tn)n (It
is illustrated for the function f (x) = x3 + 1 in Figure 1).
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Figure 1. (Left) The operators Tn (f) (x) do not (Fd,H) -converge, and hence Tn (f) (x) do not Fd -converge on [0, 1] ,
but (Right) the operators Tn (f) (x) with the scale function σ (x) , σ (x) = 1

x
if 0 < x ≤ 1 and σ (x) = 1 if x = 0 ,

(Fd,H) -converge to the function f (x) = x3 + 1 .

Example 4.2 Let G = [0, 1]
2 , Λ = N , H ⊂ P(G) be the set of all neighborhoods of (x0, y0) = (0, 0) , F = Fd,

F ∈ F and consider the following bivariate Kantorovich-type operators, defined by

Kn (f) (x, y) = (n+ 1)
2

∑
k,j=0,k+j≤n

pn,k,j (x, y)

(k+1)/(n+1)∫
k/(n+1)

(j+1)/(n+1)∫
j/(n+1)

f (s, t) dsdt,

for every f ∈ Cc (G) , n ∈ N , where

pn,k,j (x, y) =
n!

k!j! (n− k − j)!
xkyj (1− x− y)

n−k−j
,

k, j ≥ 0, k + j ≤ n, x, y ≥ 0, x+ y ≤ 1
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(see also [45]). Then, using the operators Kn , we define the sequence of positive linear operators L := (Ln)n on
Cc (G) as follows:

Ln (f) (x, y) = (1 + gn (x, y))Kn (f) (x, y) , (4.1)

for every f ∈ Cc (G) , n ∈ N and x, y ∈ [0, 1] , where gn : G → R is defined by

gn (x, y) =

 2nx2 y2, n /∈ F
nx2y2

3 + nx2y2
, n ∈ F

. (4.2)

Choose σi (x, y) = σ (x, y) (i = 0, 1, 2, 3), where

σ (x, y) =

 1, x = 0 or y = 0
1

xy
, (x, y) ∈ ]0, 1]× ]0, 1]

. (4.3)

Let e0 (x, y) = a3 (x, y) = 1, e1 (x, y) = x, e2 (x, y) = y, e3 (x, y) = a0 (x, y) = x2 + y2, a1 (x, y) = −2x,

a2 (x, y) = −2y. We claim that the sequence (Ln (ei))n (Fd,H) -converges to ei with respect to the scale
function σi, i = 0, 1, 2, 3. From [45], we see that

Ln (e0) (x, y) = 1 + gn (x, y) ,

Ln (e1) (x, y) = (1 + gn (x, y))

(
nx

n+ 1
+

1

2 (n+ 1)

)
,

Ln (e2) (x, y) = (1 + gn (x, y))

(
n y

n+ 1
+

1

2 (n+ 1)

)
,

Ln (e3) (x, y) = (1 + gn (x, y))

(
n (n− 1)

(n+ 1)
2

(
x2 + y2

)
+

2n (x+ y)

(n+ 1)
2 +

2

3 (n+ 1)
2

)
.

Hence, we can see that ∣∣∣∣Ln (e0) (x, y)− e0 (x, y)

σ0 (x, y)

∣∣∣∣ = ∣∣∣∣gn (x, y)σ (x, y)

∣∣∣∣ .
Let 0 < ε < 1 be given and choose δ0 =

√
ε. Let n ∈ F, x, y ∈ [0, 1] be with |x| < δ0, |y| < δ0. Then,∣∣∣∣gn (x, y)σ (x, y)

∣∣∣∣ ≤ nx3 y3

3 + nx2y2
< xy < δ20 = ε.

Moreover, choose δ1 =
√

ε
2 . Let n ∈ F, x, y ∈ [0, 1] be with |x| < δ1, |y| < δ1. We have

∣∣∣∣Ln (e1) (x, y)− e1 (x, y)

σ1 (x, y)

∣∣∣∣
=

∣∣∣∣ 1

σ (x, y)

(
(1 + gn (x, y))

(
nx

n+ 1
+

1

2 (n+ 1)

)
− x

)∣∣∣∣
≤ x2y

2
+

3

2

∣∣∣∣gn (x, y)σ (x, y)

∣∣∣∣ < δ21
2

+
3δ21
2

= 2δ21 = ε.
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Similarly, choose δ2 =
√

ε
2 . Let n ∈ F, x, y ∈ [0, 1] be with |x| < δ2, |y| < δ2. We get∣∣∣∣Ln (e2) (x, y)− e2 (x, y)

σ2 (x, y)

∣∣∣∣ < 2δ22 = ε.

Finally, choose δ3 =
√

3ε
38 . Let n ∈ F, x, y ∈ [0, 1] be with |x| < δ3, |y| < δ3. Then,∣∣∣∣Ln (e3) (x, y)− e3 (x, y)

σ3 (x, y)

∣∣∣∣
=

∣∣∣∣∣ (1 + gn (x, y))

σ (x, y)

(
n (n− 1)

(n+ 1)
2

(
x2 + y2

)
+

2n (x+ y)

(n+ 1)
2 +

2

3 (n+ 1)
2

)
−
(
x2 + y2

)
σ (x, y)

∣∣∣∣∣
≤ 3

(
x3y + xy3

)
+

20

3

∣∣∣∣gn (x, y)σ (x, y)

∣∣∣∣ < 6δ23 +
20δ23
3

=
38δ23
3

= ε.

Hence our claim is true for i = 0, 1, 2, 3 and from our main theorem, we get that (Ln (f))n (Fd,H) -converges to
f with respect to the scale function σ defined in (4.3). However, the sequence (Ln (e0))n is neither uniformly
nor relatively uniformly convergent to e0. Hence, the classical and relative Korovkin theorems do not work for
our sequence (Ln)n (It is illustrated for the function f(x, y) = x3 + y3 + 1 in Figure 2)
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and Ln/σ (Bottom) for n = 50, 90 (from the left to the right).

Acknowledgments
This research was supported by Sinop University Scientific Research Coordination Unit, Project N. FEF-1901-18-
28, University of Perugia, by the G.N.A.M.P.A. (Italian National Group of Mathematical Analysis, Probability

1246



BOCCUTO et al./Turk J Math

and Applications) and by the projects “Ricerca di Base 2017” (“Metodi di Teoria dell’Approssimazione e di
Analisi Reale per problemi di approssimazione ed applicazioni”) and “Ricerca di Base 2018” (“Metodi di Teoria
dell’Approssimazione, Analisi Reale, Analisi Nonlineare e loro applicazioni”).

References

[1] Agrawal MR, Tewari UB. On existence of finite universal Korovkin in the centre of group algebras. Monatshefte für
Mathematik 1997; 123: 1-20.

[2] Altomare F. Korovkin-type theorems and approximation by positive linear operators. Surveys in Approximation
Theory 2010; 5: 92-164.

[3] Altomare F, Campiti M. Korovkin-type approximation theory and its applications. Berlin: De Gruyter Studies in
Mathematics, 1994.

[4] Altomare F, Diomede S. Contractive Korovkin subsets in weighted spaces of continuous functions. Rendiconti del
Circolo Matematico di Palermo 2001; 50 (3): 547-568.

[5] Anastassiou GA, Duman O. Towards Intelligent Modeling: Statistical Approximation Theory. Vol. 14. Berlin:
Springer, 2011.

[6] Angeloni L, Vinti G. Rate of approximation for nonlinear integral operators with application to signal processing.
Different Integral Equations 2005; 18: 855-890.

[7] Angeloni L, Vinti G. Convergence and rate of approximation for linear integral operators in BVφ -spaces in
multidimensional setting. Journal of Mathematical Analysis and Applications 2009; 349 (2): 317-334.

[8] Bardaro C, Boccuto A, Demirci K, Mantellini I, Orhan S. Triangular A -Statistical Approximation by Double
Sequences of Positive Linear Operators, Results in Mathematics 2015; 68: 271-291.

[9] Bardaro C, Boccuto A, Demirci K, Mantellini I, Orhan S. Korovkin-type theorems for modular Ψ -A -statistical
convergence. Journal of Function Spaces 2015; 2015: 11 pages, Article ID 160401.

[10] Bardaro C, Boccuto A, Dimitriou X, Mantellini I. Abstract Korovkin-type theorems in modular spaces and appli-
cations. Central European Journal of Mathematics 2013; 11 (10): 1774-1784.

[11] Bardaro C, Karsli H, Vinti G. On pointwise convergence of linear integral operators with homogeneous kernels.
Integral Transforms and Special Functions 2008; 19 (6): 429-439.

[12] Bardaro C and Mantellini I. A Korovkin theorem in multivariate modular function spaces. Journal of Function
Spaces and Applications 2009; 7 (2): 105-120.

[13] Bardaro C, Musielak J, Vinti G. Nonlinear Integral Operators and Applications. Berlin: De Gruyter Studies in
Mathematics, 2003.

[14] Boccuto A, Candeloro D, Sambucini AR. Vitali-type theorems for filter convergence related to vector lattice-valued
modulars and applications to stochastic processes. Journal of Mathematical Analysis and Applications 2014; 419
(2): 818-838.

[15] Boccuto A, Candeloro D, Sambucini AR. Lp spaces in vector lattices and applications. Mathematica Slovaca 2017;
67 (6): 1409-1426.

[16] Boccuto A, Dimitriou X. Rates of approximation for general sampling-type operators in the setting of filter
convergence. Applied Mathematics and Computation 2014; 229: 214-226.

[17] Boccuto A, Dimitriou X. Korovkin-type theorems for abstract modular convergence. Results in Mathematics 2016;
60: 477-495.

[18] Bohman H. On approximation of continuous and of analytic functions. Arkiv för Matematik 1952; 2 (3): 43-56.

[19] Campiti M. Korovkin-type approximation in spaces of vector-valued and set-valued functions. Applicable Analysis
2019; 98 (13): 2486-2496.

1247



BOCCUTO et al./Turk J Math

[20] Chittenden EW. Relatively uniform convergence of sequences of functions. Transactions of the American Mathe-
matical Society 1914; 15: 197-201.

[21] Chittenden EW. On the limit functions of sequences of continuous functions converging relatively uniformly.
Transactions of the American Mathematical Society 1919; 20: 179-184.

[22] Chittenden EW. Relatively uniform convergence and classification of functions. Transactions of the American
Mathematical Society 1922; 23: 1-15.

[23] Cluni F, Costarelli D, Minotti AM, Vinti G. Applications of sampling Kantorovich operators to thermographic
images for seismic engineering. Journal of Computational Analysis and Applications 2015; 19: 602-617.

[24] Costarelli D, Sambucini AR. Approximation results in Orlicz spaces for sequences of Kantorovich max-product
neural network operators. Results in Mathematics 2018; 73 (1): 1-15.

[25] Costarelli D, Vinti G. Approximation by nonlinear multivariate sampling Kantorovich type operators and applica-
tions to image processing. Numerical Functional Analysis and Optimization 2013; 34: 819-844.

[26] Costarelli D, Vinti G. Convergence for a family of neural network operators in Orlicz spaces. Mathematische
Nachrichten 2017; 290: 226-235.

[27] Costarelli D, Vinti G. Approximation theorems for a family of multivariate neural network operators in Orlicz-type
spaces. Ricerche di Matematica 2018; 67 (2): 387-399.

[28] Demirci K, Boccuto A, Yildiz S, Dirik F. Relative uniform convergence of a sequence of functions at a point and
Korovkin-type approximation theorems. Positivity 2020; 24: 1-11.

[29] Demirci K, Orhan S. Statistically relatively uniform convergence of positive linear operators. Results in Mathematics
2016; 69: 359-367.

[30] Dolecki S, Mynard S. Convergence foundations of topology. Hackensack, NJ, USA: World Scientific Publishing Co.,
2016.

[31] Donner K. Korovkin theorems in Lp spaces. Journal of Functional Analysis 1981; 42 (1): 12-28.

[32] Duman O, Özarslan MA, Erkuş-Duman E. Rates of ideal convergence for approximation operators. Mediterranean
Journal of Mathematics 2010; 7: 111-121.

[33] Gadjiev AD, Orhan C. Some approximation theorems via statistical convergence. The Rocky Mountain Journal of
Mathematics 2002; 32: 129-138.

[34] Karakuş S, Demirci K, Duman O. Statistical approximation by positive linear operators on modular spaces.
Positivity 2010; 14: 321-334.

[35] Katětov M. Products of filters. Commentationes Mathematicae Universitatis Carolinae 1968; 9: 173-189.

[36] Kitto W, Wulbert DE. Korovkin approximations in Lp spaces. Pacific Journal of Mathematics 1976; 63: 153-167.

[37] Klippert J, Williams G. Uniform convergence of a sequence of functions at a point. International Journal of
Mathematical Education in Science and Technology 2002; 33: 51-58.

[38] Korovkin PP. On convergence of linear positive operators in the spaces of continuous functions (Russian). Doklady
Akademii Nauk SSSR 1953; 90: 961-964.

[39] Korovkin PP. Linear operators and approximation theory. New Delhi, India: Hindustan Publishing Company, 1960.

[40] Kostyrko P, Šalát T, Wilczyński W. I -convergence. Real Analysis Exchange 2001; 26 (2): 669-685.

[41] Maligranda L. Korovkin theorem in symmetric spaces. Commentationes Mathematicae Prace Matematyczne 1987;
27: 135-140.

[42] Niven I, Zuckerman HS. An Introduction to the Theory of Numbers. 4th ed. New York, NY, USA: Wiley, 1980.

[43] Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numerica 1999; 8: 143-195.

[44] Pinkus A. Density in approximation theory. Surveys in Approximation Theory 2005; 1: 1-45.

1248



BOCCUTO et al./Turk J Math

[45] Pop OT, Farcas MD. About the bivariate operators of Kantorovich type. Acta Mathematica Universitatis Comeni-
anae 2009; Vol. LXXVIII (1): 43-52.

[46] Renaud PF. A Korovkin theorem for abstract Lebesgue spaces. Journal of Approximation Theory 2000; 102: 13-20.

[47] Soardi PM. On quantitative Korovkin’s theorem in multivariate Orlicz spaces. Mathematica Japonica 1998; 48:
205-212.

[48] Vinti G. A general approximation result for nonlinear integral operators and applications to signal processing.
Applicable Analysis 2001; 79: 217-238.

[49] Yilmaz B, Demirci K, Orhan S. Relative modular convergence of positive linear operators. Positivity 2016; 20:
565-577.

1249


	Introduction
	Preliminaries
	The main results
	Applications

