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Abstract: We consider a second-order differential equation with rapidly growing intermediate coefficients. We obtain
a solvability result in the cases that the diffusion coefficient of equation is unbounded or it tends to zero at the infinity.

Under additional conditions, we prove the L,— maximal regularity estimate for the solution of this equation.
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1. Introduction

In this paper, we consider the following equation:

—p(x) (p(2)y) + r(2)y + s(x)y = F(x), (1.1)

where © € R = (—o0,+00), all the coefficient functions are defined on R, p(z) is a positive and twice
continiously differentiable function, r(x) is a continiously differentiable function, and s(x) is a continuous
function and F' € L, := L,(R), 1 < p < 4o0.

Let Céz)(R) be the set of twice continuously differentiable functions with compact support. We define
the operator Iy on CSQ)(]R) as loy .= —p(z) (p(x)y') + r(x)y’ + s(z)y. We denote the closure of the operator
lo by [ in the space L,. By solution of the equation (1.1) we mean a function y € D(i) such that iy =F.

In this work, we study questions of the existence and uniqueness of the solutions of (1.1) and conditions,

which for a solution y(x) of (1.1) the following estimate holds:

lpCey") Nl + 17y 1o + syl < ClIFp, (1.2)

where || - ||, is the norm in L,. If the estimate (1.2) holds, then we call that the solution y(z) of (1.1) is
maximally L,-regular, and call (1.2) is an maximal L,-regularity estimate.

In the applications of well-known projection methods (e.g., Fourier or Laplace transformations) to
multidimensional differential equations and with coefficients depending on a single variable, we usually obtain
ordinary differential equations. Therefore, the investigation of solvability questions for the one-dimensional

equation (1.1) is important for the study of partial differential equations with unbounded coefficients. Since
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equation (1.1) with p(x) > § > 0 and its multidimensional generalizations are used in quantum mechanics and
stochastic analysis, they have been studied intensively (see [2] and references therein). In [3, Ch.9, Theorem 2.4],
[15, Ch.10.17], [12, Ch.7, Theorem 6], the authors considered the case that s(z) is positive, and the growth at
infinity of the absolute value of the intermediate coefficient r(x) is limited by some power of s(x). In [6-8, 10],
it is assumed that the coefficient r(x) is independent of the function s(z), but r(z) cannot grow faster than
|z|In|z| (x| > 1). The question arises whether there exists a unique solution of equation (1.1), if |r(z)| grows
more rapidly than |z|ln|z| (|| > 1) and cannot be controlled by the coefficient s(z). It is also interesting to

consider the case when the coefficient p(z) in the leading term of the equation (1.1) tends to zero as x — 400
or x — —00.

If p(z) =1 and |r(x)| does not depend on the coefficient s(x) and grows rapidly, then equation (1.1)
has unique solution and an estimate of the maximal regularity for the solution holds (see [14, Theorem 1.1]).
If coefficient s(x) does not have a lower bound and the growth of |s(z)| depends on the growth of |r(z)|,
then equation (1.1) is well-posed ([13, Lemma 2.5]. The above gives that rapid and independent growth of the
absolute value of the intermediate coefficient r(x) have close relationship with the well-posedness of equation
(1.1).

In contrast with [13, 14], in the current paper we consider the equation (1.1) with the coefficient p(x) in
the leading term. The study of (1.1) is not only of theoretical interest. It is known that an operator ! above
arises as generator of the transition semigroup of a stochastic Ornstein-Uhlenbeck process that determines a
Brownian motion with a variable covariance matrix connected with p(z). Studying (1.1) with the coefficient
p(x), we overcame new difficulties compared to [14], such as the choice and estimation of the linear functional
in Theorem 3.1, as well as the construction of the operators By and M), and the estimation of the norm B)
in Theorem 3.4. Furthermore, if p(x) tends to zero at infinity, then we may consider the degeneracy case. For

example, by Theorem 3.5, the following equation

1 1 '
C34a? <3+m2y/> +(17+32%) "y — 2Ty = f(2), wER,

is uniquely solvable in Ls. Under additional conditions on p(z) and r(x), we can obtain the maximal regularity
estimate of the solution y of the equation (1.1). We remark that the question of maximal regularity is an

important tool in the theory of nonlinear PDEs (see, e.g., [1, 5]).

2. One-weighted integral inequality

Let g(z) and h(z) # 0 be given continuous functions, and ¢ = ;7. We denote
&g,h(t) = ”g”LP(O,t) ||h71||Lq(t,+oo) (t > 0),
Bg,h('r) = ”g“LP(T,O) ||h71HLq(—oo,7—) (T < O)v

g = Sup g (1), Byn = up By n(T), Vg = max (g pn, Bygn) -
t>0 T7<0
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Lemma 2.1 If g(x) and h(z) # 0 are continuous functions with v, p < +00, then

/|g |de<0/|h o) dze, VyeCP(R).

Moreover, if C is the smallest constant for which this inequality holds, then

. 1 1 p
(min (ag 1, 8))" < C < (pP 57,1

Proof Let ye€ C’él)(R). We define

Y1 = yX[O,—i—oo)v Y2 = yX(—oo,O]a g1 = gX[0,+oo)a
92 = gX(—so0], M1 :=hXp 4o0), hei=hX ),

where X4 is the characteristic function of the set A. By [11, Theorem 2], we have that

+oo +oo
[ n@n@rda <o [ mewrd, )
0 0

and if C is the smallest constant for which this inequality holds, then
11 p
(agm)" < Cr < (PPatag m) - (2:2)

Let t > 0,7 = —t. Then Gg,(—a) hy(—2)(t) = 392(1),;12(1;)(7') < 4g.n < +00. Applying (2.1), we obtain
that

+oo +oo
[ lxcan-orae < s [ na(-zp-pas,
0 0
ie.
0 0
[ a@w@lris < ¢z [ a@@)r. (23)
If C5 is the smallest constant for which this inequality holds, then (2.2) gives that

101 p
(/8927h2)p <Cy < (pgqqﬁgg,hz) . (24)

Putting (2.1) and (2.3) together, we get

/|g |pd1:<0/|h z)[" da.

From (2.2) and (2.4), it follows that (min (g p,840))" < C < (p%q%’y%h)p. O
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3. Main results

We consider the following equation
—p(@) (p(2)y) +r(@)y’ = f(2), (3.1)

where f € L,. Let loy := —p(x) (p(x)y") + r(x)y’ for y € 052)(]1%). We denote the closure of the operator Iy
by ! in the space L,. By solution of equation (3.1) we mean a function y € D(I) such that ly = f.

Theorem 3.1 Let 1 < p < 400, and p(x) > 0 be twice continuously differentiable function, and r(xz) > 1 be

continuously differentiable function. Suppose that

P
1<z <e(Gm) (3:2)
o ()" < 400, (3.3)
and there exists £ € R such that
€
sup plz)exp | — / ;2(3) dt | § < +o0. (3.4)

Then equation (3.1) has a unique solution y for any f € L, and the following estimate holds

r 1/p )
F Py

Proof Let y € D(lp). Set z(x) :=y'(z) and Lz :=loy = —p(x)(p(x)z)’ + r(z)z. Let vy € R, v > —1. Using

integration by parts it is easy to verify that

+lyll, < CIA, -
p

H{z(x)[(p(w)Z(w))Q]Wdew = [ 2(@) [(p(2)2(2))?]""* [=p() (p(2) 2(2)) + 1 (2)2(x)) dz

R 5 3.5
= [r(2)p"(z) [2*(2)] LR (3:5)

Let y=p—2. Then v+ 1= VTJFQ, where ¢ = p%l. Applying Holder’s inequality and (3.2), we obtain that

/z(x)[(p(x)z)2]'y/2dex§ /‘f%(x)p%(x)LZ’pdm /{T%(x)p%(x)‘z(@'%}qu |

R

Q=

[ =@z Lade <
R
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From (3.5) and (3.6) it follows that

r g , r “a
— vl < () —ly 3.7
H(p2> ’ ) 31)
P P
By (3.2),
_1 1
L) () ) o
@) |2 @) @) =
and so
1
r\ 91
“lyl| <oV |y, 3.8
‘(p) Syl <, (38)
P
Applying (3.3) and Lemma 2.1, we obtain
1
T p
lyll, < Ch (/}2) Py’ (3.9)
P
Using (3.7), (3.8), and (3.9), we get that
N
) + llyll, < Callyll, - (3.10)
P

Now, we suppose that y € D(l). Then there exists a sequence {y,(z)}>2, C C((,2)(R) such that
lym —yllp = 0 and ||lyn, — lyll, = 0 (n — +00). Let W(r, p) be the completion of the linear space

+lylly < +o0

r %
Y€ Ly yllwicrp) = H (pz> Y’
p

with respect to the norm [|y[lw1 (). Hence, from (3.10) it follows that
HynHWI}(T,p) < CQHlyan, n=12 ... (3.11)

(3.11) implies that the sequence {y,},;}>5 is a Cauchy sequence. Since Wz}(r, p) is the Banach space, we deduce

that y(z) € W) (r,p) and |y, — Ylwierp) = 0 (n— +00). Letting n — +o0 in (3.11), we get

[yllwirp) < Colltyllp,

i.e. (3.10) holds for all y € D(I). Hence, the operator [ is invertible and R(l) is closed.

Next we prove that R(I) = L,. We denote the adjoint operator of ! by I*. Let R(l) # L,. Since
R() = N(I*)* = {w(x) € L, : (w,y*) =0 Vy* € N(I*)}, there exists a nonzero element v(z) € L,\R(l) such
that I*v = p(z)(p(z)v)’ + r(z)v = 0 [16, p. 205, Theorem]. Assume that zo € R and v(zg) # 0. Since the last

equation is shift invariant, we can choose x¢ = &. It is easy to verify that

p(z)(p(z)v) + r(z)v = C. (3.12)
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Hence, v(z) € C’(l)(R).

loc
Let C # 0. Since equation (3.12) is linear, without loss of generality, we can assume that C = —1 and
v(zg) > 0. Then
T !/
r(t)
vamexp/ dt | <O.
@p@ess [ 5o
Zo

Therefore,

Zo

p(x) exp —/;;;%dt v(x) > p(xo)v(zo), = < xo.

x

By (3.4), there exists K > 0 such that

o(w) > plao)olao) o, @ < .

It follows that v(z) ¢ L,,.
If C =0, then

p(x)v(x) exp/ ;2(3) dt = Cy.

Zo

It is clear that Cy # 0. Thus, for x < xg,

PO R

lv(z)] = @exp —/ r(t) dt [l

Zo

Hence, for « < ¢ the inequality |v(z)] > Cs > 0 holds, consequently v ¢ L,. This is contradiction, so we
obtain that R(l) = L,.

O

Example 3.2 Let 7(z) = (1 +22)% and p(z) = (1 +22)2 in (3.1) , k,n > 0.

/p
We check the conditions of Theorem 3.1. (;((72)) p(x) = (1+ 22)™/2 where m = "‘Tfk + k. Then

IN
)

where € > 0. Thus, supa e () = sup 3
() L

1/p (T) < +oo, if %_ l(%+6) ~ g5 2 0. The last
o2 T<0 T2) p I

o 2p
\p

inequality is equivalent to m > 1+ %. Hence, if n > 2k + p — kp, then (3.3) holds. Also, if n > 2k, then (3.2)
and (3.4) hold.
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Therefore, if k> 1 and n > 2k, or 0 <k <1 and n > 2k + p(1 — k), then the equation

C 4 n
~( a8 (a8 ) + (2R = folw)
for any fo € L, has a unique solution y(x) and the following estimate holds

[+ a5ty

P S CHfO“p'

Example 3.3 Consider the following differential equation in Lo

—po(@) (po(@)y) + (427 +3)"y' = f(2), (3.13)
where x € R, f € Ly, and

202 — +1 B
po(x) = %7 oo < x<0,
1+ 22, 0<z< +oo.

The function pg(z) is twice continuously differentiable, since lim po(z) = lim po(x) = po(0) =1, lim py(z) =
z—0— z—0+ z—0—
o _ . 1 T 17 o _
Jim po(z) = p(0) =0, and lim pg(e) = lim pf(z) = pg(0) = 2.

If ro(x) := (422 + 3)?, then in the case p = 2, po(z) and ro(z) satisfy (3.2), (3.3), and (3.4). Indeed, we
have that

(@) ((43: +§;(217+;;x+%(1 x>) , —oo<z<0,
p2(q}) z°43 2
2 (+z2)’ 0 <7< +oo.

Since (”gm) <0 for z <0 and ( (I)) >0 for z > 0, we obtain that 25 > 790 (0) = 9 for any = € R.
g (x) 5 (@) 5 (x) (0)

On the other hand, since p =2 and r¢(z) > 3, we deduce that (3.2) holds.

1/2
Notice that (;252;) po(z) = 422 + 3 is even function. From
0

1 +o0
t 2
t) <s - /
/817412+3( ) = iglg (1 +t2> / £C2 + 1 \/‘ < +OO
t

we obtain that (3.3) holds. For any £ < 0, one easily checks that

¢ 2 2 2
222 —z+1 (4t 43)(14t7)(1—1t)
SUD (A XD (‘f (“ERen) dt)

x

3

< 3 supexp < fdt)
<& T

= 3supette =2

<&

[N

i.e., (3.4) holds.

Therefore, the equation (3.13) is uniquely solvable and for its solution y(z),
C||flly holds.

(422 +3)2y/||, + llylly <
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Theorem 3.4 Let 1 < p < 400, p(z) > 0 be twice continuously differentiable function, and r(x) > 1 be

continuously differentiable function. Suppose that (3.2), (3.3), and (3.4) hold. If Grﬁ(x) < p(z) < +o0 for
p>2 and 0 >0, and there exist C > 1 and Cy > 1 such that

- p(z) —1
Cl'<==2<C, Ol 4 <0y, z,weR: |z —v| <1, (3.14)

then for the solution y(x) of the equation (3.1) the following estimate holds
I=pCoy")'ll, + Iyl < Coll£1],, - (3.15)

Proof Let A > 0. First we consider the differential operator Iy oy = —p(z) (p(z)y’) + [r(z) + Ny with
D(lxp) = CéZ)(]R). Let z =19 and Iy oy = Lxoz = —p(z) (p(x)2)" + [r(x) + A] 2. We denote the closure in L,
of the operator Ly ¢ by Ly. By Theorem 3.1 L) is invertible, and its inverse L;l is defined on whole L,. The
following inequality holds for z € D(Ly) (see (3.7)):

1 1
7’+)\>P <r+)\)q1
pz|| < —Lyz|| , 3.16
H( p? H p? p .
P P
and by (3.8)
21, < CrllLazll, - (3.17)
Let Aj:=(j—1,7+1) (j €Z), and {p,(x) ;’;’ioo be a sequence in C§°(A;) such that
“+o0
0<;(x)<1(jen), > i) =1. (3.18)
Jj=—00
We denote z;(z) = p;(z)2(x) and || [|p.a;, = - [|z,(a,), where j € Z. By (3.16) and (3.14), we have that
2
()" e
ILazill, o, > Ll a,
sup {(T(Zj)H) ! 1]
veA, p?(x) p(z)
1
95" o
> Cy sup L ||zl o, = C2 sup (rj(2) + A) |z, (3.19)
TEA; r(x)+A a1 TEA;
p?(x) p(x)
For any f € L,, we define
+o0 too
Bafi=— Y pP@)g@) Ly eif,  Mifi= Y @)Ly e;f.
j=—o00 Jj=—00

It is clear that for any x € R, the above two series have at most two nonzero terms. Hence, B) and M, are
well-defined.
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We consider the operator LyMy. Using the equality Ly(gz) = g(z)Laz — p?(2)¢'(z)z and the proper-
ties (3.18) of ¢;(z) (j € Z), we get

+o00 400
LaMyf = > La(ei Ly eif) = D (@@ IaLy o, f — p* ()@ (@) Ly s f) =(E + By f,
=0 j=eo

where F is the identity map on L,. So,

LyMy = FE+ B,). (320)
On the other hand,
+oo| 400 5 , _1 P
IBAflly = [ | X PP(@)@j(x)Ly ¢;f| da
—00 |j=—00
< ¥ 2(z) (x) L s fIP d
< ¥ Af\p ()@ (@) Ly s f| da
eroo j »
SZIZp()()Lx%fdx
k——ocAk j=—00
= % [ P@eh @I i f
k=—00 Ay »
+p( )@ ()L K @kf“‘PQ(x)‘P;chl(x)LXl(Pk—&-lﬂ dw
< Cj3 Z f|P ,\Sﬁkf| dx.
k=—oc0 A k

Using (3.19), we obtain that

Cy sup p*(z
4z€Apkp( ) C

||P <PkL>\ Sﬁkf||p7Ak = m ||<Pkf||p Ak =15 )\Hsﬁkf”p,Ak (3-21)
TEA

By properties of the function ¢ (z) (k € Z), it follows that

Z/}P A‘Pkﬂ d$*1+/\

kffooAk

Thus, |[By|| = 0 as A — oco. Therefore, there exists Ao > 0 such that |[Bx|| < 3 for A > Xg. Hence,
from (3.20) it follows that

Lyt = MA(E+ B\ [(B+ BT <2, A2 o (3.22)
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Now, we prove the estimate (3.15). According to (3.19) and (3.22), we get

1+ N2l = [+ ML F]
|

< 2|[(r + N M £}

+o0 1 D
<Cr X ||(r+ ALy ‘ijHp,Aj

j=—o00

+oo
<Cr Y sup (r(z)+ )’ ’|L;1“ij”;AJ

j=—00 TEA;
—+oo
<C sup (1(z) + N ——F—7 o fIIF A
7j:zm£EAj( () ) mlenAfj(r(z)+A) ||<ij||p,AJ
—+oo
<Cs S leiflt s
j=—00
< Goll£1I5, Vz € D(Ly).

Therefore,
I=p(p2)'ll, + I(r + Mz, < Cro [I£1l,-
Taking z(z) = y'(x), by estimate (3.17), we obtain (3.15).

For the equation (1.1), we have the following result.

Theorem 3.5 Let 1 < p < oo, and functions p(z) and r(x) satisfy the conditions of Theorem 3.4. If s(x)

is a continuous function such that s, < 400, then for any F € L,, the equation (1.1) has a unique solution

y(x), which satisfies the following inequality:
/
|=e |+t + syl < 12,

where C depends only on vs, and p.

Proof
For a > 0, we denote

§(t) = ylat), p(t) = plat), #(t)=r(at), 3(t)=s(at), F(t)=a"'Flat).

The change of variable x — at changes the equation (1.1) to the following:

—pt)(p)T) + F()F + a3t = f(t).

(3.23)

(3.24)

We denote the closure in L,, of the differential operator —p(¢)(p(t)7’)" + 7(¢)§ defined on § € C3(R) by I,. It

is easy to show that p(t) and 7(¢) satisfy the conditions of Theorem 3.4. Therefore,
=3 I, + 1I75'll, < Cu, llagll,, G € D(la)-
According to Lemma 2.1,

—1~~ — 1 1 ~~ — 1 1 ~
la='53]l, < a'pr i 751, < a7 a7, Cr, lladlll, -

(3.25)

(3.26)
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Set a = %p%q%’wala. By [9, Ch. 4, Theorem 1.16], we get that the operator I, + a~13(z)E is bounded
invertible. Using (3.24) and (3.25), we obtain that

S . 1 1 _
=55 )|, + 1791l + [[a= "53], < (Czu, + 2) 1Lagll,, -
It follows from (3.26) that
1
~ —lzp 5 —1z —1zp 7 ~
adlly < || (la + a7 5E) 3|, + [la™ "53], < [|(la +a™*3E) 7], + 5 ], -
The above two inequalities imply that
~f o~ —1l~~ 1
=2, + 175l + lla™" 53], < & | 7] -

Making the change of variable ¢ — a2, we get the desired estimate (3.23). O

Example 3.6 We consider the following equation in Lo

22 +5 2245 !
@t (<x2 T 3)23") @t 3%~ by = f(@) (3.27)
Let 7"1(:5) = (1’2 + 3)27 pl(x) = (:22%5)2 and sl(l') — — 5.

ri(e) _ (2243)° —
1) 2o = @ = L ri(z) > 1 and p = 2. Hence, (3.2) holds.
2(;

2) Since 77 (x) = 22 + 3 is even function, and

[N

1 [/ too

sup f1.r (7) = sup ay -, (t) < su (t) i / d < VT < too
7'<18 bt t>10) bt = t>§ 3+ t2 x2+3 -2 ’
t
(3.3) holds.
3) We have that
¢ £ &
r1(z) 2 +5 (2 +3)°

sup p1(x) exp —/ dt | =sup———exp| — | ——=dt | <2supexp|— [ dt ]| =2.
z<E ( ) pf(a:) <& z?+3 i (t2 + 5)2 z<§

Therefore, (3.4) holds.
4) If |z —v| < 1, then

r(z) _ [x2 +3}2 . ((y+1)2+3)2 .

v2+3| ~ v?2+3

Consequently, :1%;; > 1. Furthermore, since

2 2
pl(x) |:1 + w2+3:| z2+3

2 2
) [1 + 1/2+3i| V243

)
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we have that
v+ 3 pi(x) 2?2 +3)
22 +3) ~ pi(v) — 2243

It follows that

lg p1(x) <6
6~ pi(v)
Thus, (3.14) holds.
5) It is clear that p;(x) is a bounded function. We calculate <, ,. Notice that | — 5|z, =

| = 52| 1y (—t,0) for t >0, and (2 + 3)? is even function. Hence,

1
B t 2 “+oo 2
sup B, v, (T) = supés, r, (t) = sup (f (—5$)2d$> ( S (x%)‘*)
<0 t>0 t>0 0 t

3 +<>O d %
5 T
sompet ([ )

3 T :
2 T ks
= 53218 (1+2)2 < : 1+”2) <53

ie, Yo ,m <55,
Thus, the coefficients of equation (3.27) satisfy the conditions of Theorem 3.5. Hence, for each f € Lo

there exists a unique solution y of equation (3.27), which satisfies the following:

_:1:2+52 (2245 )\
x2 43 (z2—|—3)2y

+[(@® +3)%y[|, + I52yll2 < Cl ]2
2
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