
Turk J Math
(2020) 44: 1317 – 1329
© TÜBİTAK
doi:10.3906/mat-2004-85

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Oscillatory and asymptotic behavior of third-order nonlinear
differential equations with a superlinear neutral term

Said R. GRACE1, Irena JADLOVSKÁ2,∗, Ercan TUNÇ3
1Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Giza, Egypt

2Department of Mathematics and Theoretical Informatics,
Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Košice, Slovakia
3Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey

Received: 21.04.2020 • Accepted/Published Online: 14.05.2020 • Final Version: 08.07.2020

Abstract: Sufficient conditions are derived for all solutions of a class of third-order nonlinear differential equations with
a superlinear neutral term to be either oscillatory or convergent to zero asymptotically. Examples illustrating the results
are included and some suggestions for further research are indicated.

Key words: Oscillation, third-order, asymptotic behavior, neutral differential equation

1. Introduction
In this paper, we study the oscillatory and asymptotic behavior of the solutions of the third-order nonlinear
differential equation with a superlinear neutral term

(
r(t) (z′′(t))

α)′
+ q(t)xδ(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)xβ(τ(t)) . In the sequel, we assume that:

(C1 ) α , β , and δ are the ratios of odd positive integers with β ≥ 1 ;

(C2 ) r, p, q : [t0,∞) → R are real-valued continuous functions with r(t) > 0 , p(t) ≥ 1 , p(t) ̸≡ 1 for large t ,
q(t) ≥ 0 , and q(t) is not identically zero for large t ;

(C3 ) τ, σ : [t0,∞) → R are real-valued continuous functions such that τ(t) ≤ t , σ(t) ≤ t , τ is strictly
increasing, and limt→∞ τ(t) = limt→∞ σ(t) = ∞ ;

(C4 ) h(t) := τ−1(σ(t)) ≤ t and limt→∞ h(t) = ∞ , where τ−1 is the inverse function of τ .

We let

I1(v, u) =

∫ v

u

r−1/α(s)ds, v ≥ u ≥ t0,
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and assume that

I1(t, t0) → ∞ as t → ∞. (1.2)

By a solution of equation (1.1), we mean a function x ∈ C ([tx,∞),R) for some tx ≥ t0 with z ∈ C2 ([tx,∞),R) ,
r(z′′)α ∈ C1 ([tx,∞),R) , and which satisfies (1.1) on [tx,∞) . We only consider those solutions of (1.1) that
exist on some half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t < ∞} > 0 for any T1 ≥ tx;

moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of (1.1) is said to be
oscillatory if it has arbitrarily large zeros on [tx,∞) , i.e. for any t1 ∈ [tx,∞) there exists a t2 ≥ t1 such that
x(t2) = 0 ; otherwise, it is called nonoscillatory, i.e. if it is eventually positive or eventually negative. Equation
(1.1) is said to be oscillatory if all its solutions are oscillatory.

The qualitative analysis of neutral differential equations, i.e. equations in which the highest-order
derivative of the unknown function appears both with and without deviating arguments, is not only of theoretical
interest but also has significant practical importance. This is due to the fact that such equations find numerous
applications in natural sciences and technology. For instance, the equations of this type appear in the study of
electric networks containing lossless transmission lines (as in high-speed computers where such lines are used to
interconnect switching circuits), in the study of vibrating masses attached to an elastic bar, and in the solution
of variational problems with time delays; see [14] for additional applications.

The problem of establishing sufficient conditions for the oscillatory and asymptotic behavior of solutions
of third-order neutral differential and dynamic equations has been the subject of intensive investigations during
the past decades. We refer to the papers [2–13, 15, 18–21, 23–27, 29] as well as the references cited therein
as examples of recent results on this topic. Most of the literature, however, is focused on equations with
linear neutral term (i.e. β = 1), and very few results are available for equations with nonlinear neutral term
(i.e. β ̸= 1); see [10] for a sublinear neutral term (i.e. β < 1), and see [28] for a superlinear neutral term
(i.e. β > 1). To the best of our knowledge, there are no papers at the present time dealing with third-order
differential equations with superlinear neutral term except [28], where equation (1.1) was considered in the
case when r(t) = 1 and α = 1 . Motivated by these observations, our aim in this paper is to obtain sufficient
conditions under which every solution of equation (1.1) either oscillates or converges to zero as t → ∞ . New
oscillation criteria are established via a comparison with first-order delay differential equations whose oscillatory
characters are known as well as by using an integral criterion. We wish to point out that the results of this
paper can be applied to the case where p(t) → ∞ as t → ∞ for β > 1 , and to the cases where p(t) is a
bounded function and/or p(t) → ∞ as t → ∞ for β = 1 .

2. Main results
We begin with the following lemmas that are essential in the proofs of our theorems. For simplicity in what
follows, it will be convenient to set:

I2(t, t∗∗) =

∫ t

t∗∗

I1(s, t∗)ds for t ≥ t∗∗ ≥ t∗, where t∗ ∈ [t0,∞),
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and throughout this paper, we assume that, for every positive constants k and l ,

P1(t) :=
1

p(τ−1(t))

[
1−

(
I2(τ

−1(τ−1(t)), t∗∗)

I2(τ−1(t), t∗∗)

)1/β
k

1
β−1

p1/β(τ−1(τ−1(t)))

]
≥ 0 (2.1)

and

P2(t) :=
1

p(τ−1(t))

(
1− l

1
β−1

p1/β(τ−1(τ−1(t)))

)
≥ 0 (2.2)

for all sufficiently large t .

Remark 2.1 It is useful to note that since

P (t, t∗∗) :=
I2(τ

−1(t), t∗∗)

I2(t, t∗∗)

1

p(τ−1(t))
≥ 1

p(τ−1(t))
,

then the condition

lim
t→∞

P (t, t∗∗) = 0 for β > 1

P (t, t∗∗) < 1 for β = 1

ensures the positivity of the functions P1 and P2 .

Lemma 2.2 Let conditions (C1 )−(C3 ) and (1.2) hold and assume that x is an eventually positive solution
of equation (1.1). Then there exists a t1 ∈ [t0,∞) such that the corresponding function z satisfies one of the
following two cases:

(I) z(t) > 0 , z′(t) > 0 , z′′(t) > 0 , and
(
r(t) (z′′(t))

α)′ ≤ 0 ,

(II) z(t) > 0 , z′(t) < 0 , z′′(t) > 0 , and
(
r(t) (z′′(t))

α)′ ≤ 0 ,

for t ≥ t1 .

Proof The proof is straightforward; hence, we omit the details. 2

Lemma 2.3 Let conditions (C1 )−(C4 ) and (1.2) hold and assume that x is an eventually positive solution of
equation (1.1) with z(t) satisfying case (I) of Lemma 2.2. Then z(t) satisfies the inequality

(
r(t) (z′′(t))

α)′
+ q(t)P

δ/β
1 (σ(t))zδ/β(h(t)) ≤ 0 (2.3)

for large t .

Proof Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0 , x(τ(t)) > 0 and x(σ(t)) > 0

for t ≥ t1 for some t1 ≥ t0 . It follows from the definition of z that

xβ(τ(t)) =
1

p(t)
(z(t)− x(t)) ≤ z(t)

p(t)
,
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from which and the fact that τ(t) ≤ t is strictly increasing, it is easy to see that

x(τ−1(t)) ≤ z1/β(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))
.

Using this in the definition of z , we obtain

xβ(t) =
1

p(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]
≥ 1

p(τ−1(t))

[
z(τ−1(t))− z1/β(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))

]
.

(2.4)

Since r(t) (z′′(t))
α is nonincreasing on [t1,∞) , we see that

z′(t) = z′(t1) +

∫ t

t1

(
r(s) (z′′(s))

α)1/α
r1/α(s)

ds ≥
(
r(t) (z′′(t))

α)1/α
I1(t, t1). (2.5)

From (2.5), we have for all t ≥ t2 := t1 + 1 that

(
z′(t)

I1(t, t1)

)′

=
r−1/α(t)[r1/α(t)z′′(t)I1(t, t1)− z′(t)]

(I1(t, t1))
2 ≤ 0,

i.e. z′(t)/I1(t, t1) is nonincreasing for t ≥ t2 . Using the fact that z′(t)/I1(t, t1) is nonincreasing for t ≥ t2 , we
obtain

z(t) = z(t2) +

∫ t

t2

z′(s)

I1(s, t1)
I1(s, t1)ds ≥

z′(t)

I1(t, t1)

t∫
t2

I1(s, t1)ds =
I2(t, t2)

I1(t, t1)
z′(t) for t ≥ t2;

thus, we have for all t ≥ t3 := t2 + 1 that

(
z(t)

I2(t, t2)

)′

=
z′(t)I2(t, t2)− z(t)I1(t, t1)

(I2(t, t2))
2 ≤ 0,

i.e. z(t)/I2(t, t2) is nonincreasing for t ≥ t3 . Now, since τ(t) ≤ t and τ is strictly increasing, we see that τ−1

is increasing and t ≤ τ−1(t) . Thus,
τ−1(t) ≤ τ−1(τ−1(t)). (2.6)

Since z(t)/I2(t, t2) is nonincreasing, it follows from (2.6) that

I2(τ
−1(τ−1(t)), t2)z(τ

−1(t))

I2(τ−1(t), t2)
≥ z(τ−1(τ−1(t))).

Using this in (2.4) yields

xβ(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1−

(
I2(τ

−1(τ−1(t)), t2)

I2(τ−1(t), t2)

)1/β
z

1
β−1(τ−1(t))

p1/β(τ−1(τ−1(t)))

]
(2.7)
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for t ≥ t3 . Since z(t) is positive and increasing for t ≥ t3 , there exist a t4 ∈ [t3,∞) and a constant c > 0 such
that

z(t) ≥ c for t ≥ t4. (2.8)

From (2.7) and (2.8) we observe that

xβ(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1−

(
I2(τ

−1(τ−1(t)), t2)

I2(τ−1(t), t2)

)1/β
c

1
β−1

p1/β(τ−1(τ−1(t)))

]
= P1(t)z(τ

−1(t))

for t ≥ t4 , and so
xβ(σ(t)) ≥ P1(σ(t))z(τ

−1(σ(t))) for t ≥ t5,

where σ(t) ≥ t4 for t ≥ t5 for some t5 ≥ t4 . Using this in (1.1) gives

(
r(t) (z′′(t))

α)′ ≤ −q(t)P
δ/β
1 (σ(t))zδ/β(h(t)) for t ≥ t5, (2.9)

i.e. inequality (2.3) holds. This completes the proof of Lemma 2.3. 2

Lemma 2.4 Let conditions (C1 )−(C4 ) and (1.2) hold and assume that x is an eventually positive solution of
equation (1.1) with z(t) satisfying case (II) of Lemma 2.2. Then z(t) either satisfies the inequality

(
r(t) (z′′(t))

α)′
+ q(t)P

δ/β
2 (σ(t))zδ/β(h(t)) ≤ 0 (2.10)

for large t or limt→∞ x(t) = limt→∞ z(t) = 0 .

Proof Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0 , x(τ(t)) > 0 and x(σ(t)) > 0

for t ≥ t1 for some t1 ≥ t0 . Proceeding as in the proof of Lemma 2.3, we again see that (2.4) and (2.6) hold.
Since z′(t) < 0 , it follows from (2.6) that

z
(
τ−1(t)

)
≥ z

(
τ−1(τ−1(t))

)
.

Substituting the last inequality into (2.4) yields

xβ(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1− z

1
β−1(τ−1(t))

p1/β(τ−1(τ−1(t)))

]
. (2.11)

Since z(t) satisfies case (II) of Lemma 2.2, there exists a constant κ such that

lim
t→∞

z(t) = κ < ∞.

(i) if κ > 0 , then there exists a t2 ≥ t1 such that

z(t) ≥ κ for t ≥ t2. (2.12)

It follows from (2.12) that

z
1
β−1(t) ≤ κ

1
β−1.
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Using this in (2.11), we obtain

xβ(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1− κ

1
β−1

p1/β(τ−1(τ−1(t)))

]
= P2(t)z(τ

−1(t)).

Using this in (1.1) gives (
r(t) (z′′(t))

α)′ ≤ −q(t)P
δ/β
2 (σ(t))zδ/β(h(t)) (2.13)

for t ≥ t3 for some t3 ≥ t2 , i.e., inequality (2.10) holds.
(ii) If κ = 0 , then limt→∞ z(t) = 0 . Since 0 < x(t) ≤ z(t) on [t1,∞) , limt→∞ x(t) = 0 . This completes

the proof of the lemma. 2

Theorem 2.5 Let conditions (C1)− (C4) and (1.2) hold. If, for all sufficiently large t∗ ∈ [t0,∞) , and for
some t∗∗ ∈ (t∗,∞) , ∫ ∞

t∗∗

q(s)P
δ/β
1 (σ(s))ds = ∞, (2.14)

and ∫ ∞

t0

q(s)P
δ/β
2 (σ(s))ds = ∞, (2.15)

then every solution x(t) of equation (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0 .

Proof Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 , x(τ(t)) > 0 , and x(σ(t)) > 0 for
t ≥ t1 for some t1 ≥ t0 , and assume (2.1) and (2.2) hold for t ≥ t1 . The proof if x(t) is eventually negative
is similar, so we omit the details of that case here as well as in the remaining proofs in this paper. Then from
Lemma 2.2, z(t) satisfies either case (I) or case (II) for t ≥ t1 .

First, we consider case (I). Then from Lemma 2.3, we see that inequalities (2.8) and (2.9) hold for t ≥ t5 .
Using (2.8) in (2.9) gives (

r(t) (z′′(t))
α)′ ≤ −cδ/βq(t)P

δ/β
1 (σ(t)) for t ≥ t5. (2.16)

An integration of (2.16) from t5 to t yields

r(t) (z′′(t))
α ≤ r(t5) (z

′′(t5))
α − cδ/β

∫ t

t5

q(s)P
δ/β
1 (σ(s))ds → −∞ as t → ∞,

which contradicts the fact that r(t) (z′′(t))
α is positive.

Next, we consider case (II). Then from Lemma 2.4, we again have case (i) or case (ii). In case (i), we see
that (2.12) and (2.13) hold for t ≥ t3 . Using (2.12) in (2.13) yields

(
r(t) (z′′(t))

α)′ ≤ −κδ/βq(t)P
δ/β
2 (σ(t)) for t ≥ t3. (2.17)

An integration of (2.17) from t3 to t yields

r(t) (z′′(t))
α ≤ r(t3) (z

′′(t3))
α − κδ/β

∫ t

t3

q(s)P
δ/β
2 (σ(s))ds → −∞ as t → ∞,

1322



GRACE et al./Turk J Math

which again contradicts the fact that r(t) (z′′(t))
α is positive.

In case (ii), as in Lemma 2.4, we see that x(t) → 0 as t → ∞ . This completes the proof. 2

Next, we establish a new oscillation criterion for equation (1.1) via a comparison with first-order delay
differential equations whose oscillatory characters are known.

Theorem 2.6 Let conditions (C1)− (C4) and (1.2) be satisfied. Suppose that there exist continuous functions
η, ξ : [t0,∞) → R such that h(t) ≤ η(t) ≤ ξ(t) ≤ t for t ≥ t0 . If the first-order delay differential equations

w′(t) + q(t)P
δ/β
1 (σ(t))I

δ/β
2 (h(t), t0)w

δ/αβ(h(t)) = 0 (2.18)

and
y′(t) + q(t)P

δ/β
2 (σ(t)) [(η(t)− h(t)) I1(ξ(t), η(t))]

δ/β
yδ/αβ(ξ(t)) = 0 (2.19)

are oscillatory, then every solution x(t) of equation (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0 .

Proof Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 , x(τ(t)) > 0 , and x(σ(t)) > 0 for
t ≥ t1 for some t1 ≥ t0 , and assume (2.1) and (2.2) hold for t ≥ t1 . Then from Lemma 2.2, z(t) satisfies either
case (I) or case (II) for t ≥ t1 .

First, we consider case (I). Proceeding as in the proof of Lemma 2.3, we again arrive at (2.5) for t ≥ t1

and (2.9) for t ≥ t5 . An integration of (2.5) from t1 to t gives

z(t) ≥
(∫ t

t1

I1(s, t1)ds

)(
r(t) (z′′(t))

α)1/α
= I2(t, t1)

(
r(t) (z′′(t))

α)1/α
,

and so

z(h(t)) ≥ I2(h(t), t1)
(
r(h(t)) (z′′(h(t)))

α)1/α for t ≥ t2,

where h(t) ≥ t1 for t ≥ t2 for some t2 ≥ t1 . Using this in (2.9) and taking limt→∞ h(t) = ∞ into account, we
see that

(
r(t) (z′′(t))

α)′
+ q(t)P

δ/β
1 (σ(t))I

δ/β
2 (h(t), t1)

(
r(h(t)) (z′′(h(t)))

α)δ/αβ ≤ 0 (2.20)

for t ≥ t5 . Letting w(t) = r(t) (z′′(t))
α , we see that w is a positive solution of the first-order delay differential

inequality

w′(t) + q(t)P
δ/β
1 (σ(t))I

δ/β
2 (h(t), t1)w

δ/αβ(h(t)) ≤ 0. (2.21)

The function w(t) is decreasing on [t5,∞) , and so by [22, Theorem 1], there exists a positive solution of equation
(2.18). This contradicts the fact that equation (2.18) is oscillatory.

Next, we consider case (II). Then from Lemma 2.4, we again have case (i) or case (ii). In case (i), we
again see that (2.13) holds for t ≥ t3 . Since case (II) holds, for v ≥ u ≥ t3 , we have

z(u) = z(v) +

∫ v

u

−z′(s)ds ≥ (v − u)(−z′(v)). (2.22)
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Setting u = h(t) and v = η(t) in (2.22), we obtain

z(h(t)) ≥ (η(t)− h(t)) (−z′(η(t)) . (2.23)

Since z′(t) < 0 , and r(t)(z′′(t))α is decreasing, we have

−z′(u) ≥ z′(v)− z′(u) =

∫ v

u

r−1/α(s)
(
r1/α(s)z′′(s)

)
ds

≥ I1(v, u) [r(v)(z
′′(v))α]

1/α
;

hence,

−z′(u) ≥ I1(v, u) [r(v)(z
′′(v))α]

1/α
.

Letting u = η(t) and v = ξ(t) in the last inequality, we have

−z′(η(t)) ≥ I1(ξ(t), η(t)) [r(ξ(t))(z
′′(ξ(t)))α]

1/α
. (2.24)

Combining (2.23) and (2.24) yields

z(h(t)) ≥ (η(t)− h(t)) I1(ξ(t), η(t)) [r(ξ(t))(z
′′(ξ(t)))α]

1/α
. (2.25)

Now using (2.25) in (2.13) gives

y′(t) + q(t)P
δ/β
2 (σ(t)) [(η(t)− h(t)) I1(ξ(t), η(t))]

δ/β
yδ/αβ(ξ(t)) ≤ 0, (2.26)

where y(t) = r(t)(z′′(t))α > 0 . As in case (I), we see that there exists a positive solution of equation (2.19),
which contradicts the fact that equation (2.19) is oscillatory.

In case (ii), as in Lemma 2.4, we see that x(t) → 0 as t → ∞ . This completes the proof. 2

It is well known from [17] (see also [1, Lemma 2.2.9] that if

lim inf
t→∞

∫ t

µ(t)

W (s)ds >
1

e
, (2.27)

then the first-order delay differential equation

x′(t) +W (t)x(µ(t)) = 0 (2.28)

is oscillatory, where W,µ ∈ C([t0,∞),R) with W (t) ≥ 0 , µ(t) ≤ t , and limt→∞ µ(t) = ∞ .
Thus, from Theorem 2.6, we have the following oscillation result for equation (1.1) in the case when

δ = αβ .

Corollary 2.7 Let δ = αβ and conditions (C1)− (C4) and (1.2) hold. Assume that there exist continuous
functions η, ξ : [t0,∞) → R such that h(t) ≤ η(t) ≤ ξ(t)) ≤ t for t ≥ t0 . If

lim inf
t→∞

∫ t

h(t)

q(s)P
δ/β
1 (σ(s))I

δ/β
2 (h(s), t0)ds >

1

e
(2.29)
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and

lim inf
t→∞

∫ t

ξ(t)

q(s)P
δ/β
2 (σ(s)) [(η(s)− h(s)) I1(ξ(s), η(s))]

δ/β
ds >

1

e
, (2.30)

then every solution x(t) of equation (1.1) either oscillates or satisfies limt→∞ x(t) = 0 .

Proof In view of (2.27) and (2.28), the proof follows from (2.18), (2.19), and Theorem 2.6; we omit the details.
2

In the case when δ < αβ , by Theorem 2.6, we have the following result.

Corollary 2.8 Let δ < αβ and conditions (C1)− (C4) and (1.2) hold. Assume that there exist continuous
functions η, ξ : [t0,∞) → R such that h(t) ≤ η(t) ≤ ξ(t)) ≤ t for t ≥ t0 . If, for all sufficiently large t∗ ∈ [t0,∞) ,
and for some t∗∗ ∈ (t∗,∞) , ∫ ∞

t∗∗

q(s)P
δ/β
1 (σ(s))I

δ/β
2 (h(s), t0)ds = ∞, (2.31)

and ∫ ∞

t0

q(s)P
δ/β
2 (σ(s)) [(η(s)− h(s)) I1(ξ(s), η(s))]

δ/β
ds = ∞, (2.32)

then every solution x(t) of equation (1.1) either oscillates or satisfies limt→∞ x(t) = 0 .

Proof Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 , x(τ(t)) > 0 , and x(σ(t)) > 0 for
t ≥ t1 for some t1 ≥ t0 , and assume (2.1) and (2.2) hold for t ≥ t1 . Proceeding as in the proof of Theorem 2.6,
we again see that z(t) satisfies either case (I) or case (II) for t ≥ t1 . In case (I), we again arrive at (2.21) for
t ≥ t5 . Using the fact that w(t) = r(t) (z′′(t))

α is positive and decreasing, and noting that h(t) ≤ t , we have

w(h(t)) ≥ w(t)

Thus, inequality (2.21) can be written as

w′(t) + q(t)P
δ/β
1 (σ(t))I

δ/β
2 (h(t), t1)w

δ/αβ(t) ≤ 0,

or
w′(t)

wδ/αβ(t)
+ q(t)P

δ/β
1 (σ(t))I

δ/β
2 (h(t), t1) ≤ 0 for t ≥ t5. (2.33)

An integration of (2.33) from t5 to ∞ gives

∫ ∞

t5

q(s)P
δ/β
1 (σ(s))I

δ/β
2 (h(s), t1)ds ≤

w1− δ
αβ (t5)

1− δ
αβ

< ∞,

which contradicts (2.31). Using the similar arguments, the remainder of proof follows from inequality (2.26),
ξ(t) ≤ t and case (ii) in Theorem 2.6; we omit the details. 2

We conclude this paper with the following examples and remarks to illustrate the above results. Our first
example deals with the equation with a superlinear neutral term in the case where p(t) → ∞ as t → ∞ , and
the second example is concerned with the equation with a linear neutral term in the case where p is a constant
function.
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Example 2.9 Consider the third-order differential equation with a superlinear neutral term

(
1

t1/3
(z′′(t))

1/3
)′

+
8t

3
x3

(
t

3

)
= 0, t ≥ 2, (2.34)

with

z(t) = x(t) + 4tx3

(
t

2

)
.

Here r(t) = 1/t1/3 , p(t) = 4t , q(t) = 8t/3 , τ(t) = t/2 , σ(t) = t/3 , α = 1/3 , β = 3 , and δ = 3 . Then it is
easy to see that conditions (C1)− (C4) and (1.2) hold,

I1(t, t∗) = I1(t, t0) = I1(t, 2) = (t2 − 4)/2,

I2(τ
−1(t), t∗∗) = I2(2t, 3) = (8t3 − 24t+ 9)/6,

I2(τ
−1(τ−1(t)), t∗∗) = I2(4t, 3) = (64t3 − 48t+ 9)/6

and

P2(t) =
1

8t

[
1− l

1
3−1

(16t)1/3

]
.

Since
64t3 − 48t+ 9

128t3 − 384t+ 144
≤ 177

272
for t ≥ 3,

we have

P1(t) ≥
1

8t

[
1−

(
177

272

)1/3
k

1
3−1

t1/3

]
for t ≥ 3.

Thus, it follows from (2.14) and (2.15) that

∫ ∞

t∗∗

q(s)P
δ/β
1 (σ(s))ds ≥

∫ ∞

3

[
1−

(
177

272

)1/3
31/3

k2/3s1/3

]
ds = ∞,

and ∫ ∞

t0

q(s)P
δ/β
2 (σ(s))ds =

∫ ∞

2

(
1− 31/3

l2/3(16s)1/3

)
ds = ∞,

i.e. conditions (2.14) and (2.15) hold, respectively. Thus, by Theorem 2.5, any solution x(t) of equation (2.34)
is either oscillatory or satisfies limt→∞ x(t) = 0 .

Example 2.10 Consider the third-order differential equation with a linear neutral term

(
1

t1/5
(z′′(t))

1/5
)′

+ (1 + t2)x1/5

(
t

8

)
= 0, t ≥ 2, (2.35)
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with

z(t) = x(t) + 16x

(
t

2

)
.

Here r(t) = 1/t1/5 , p(t) = 16 , q(t) = 1 + t2 , τ(t) = t/2 , σ(t) = t/8 , α = 1/5 , β = 1 , and δ = 1/5 . Then it
is easy to see that conditions (C1)− (C4) and (1.2) hold,

I1(t, 2) = (t2 − 4)/2,

I2(h(t), 2) = (t3 − 192t+ 1024)/384,

P2(t) = 15/256

and
P1(t) ≥ 95/4352.

Letting η(t) = t/3 and ξ(t) = t/2 , we get

I1(ξ(t), η(t)) = 5t2/72.

Thus, it follows from (2.31) and (2.32) that∫ ∞

t∗∗

q(s)P
δ/β
1 (σ(s))I

δ/β
2 (h(s), t0)ds

≥
(

95

4352× 384

)1/5 ∫ ∞

3

(1 + s2)(s3 − 192s+ 1024)1/5ds = ∞

and ∫ ∞

t0

q(s)P
δ/β
2 (σ(s)) [(η(s)− h(s)) I1(ξ(s), η(s))]

δ/β
ds

=

(
75

256× 864

)1/5 ∫ ∞

2

(1 + s2)s3/5ds = ∞,

i.e. conditions (2.31) and (2.32) hold, respectively. Thus, by Corollary 2.8, any solution x(t) of equation (2.35)
either oscillates or satisfies limt→∞ x(t) = 0 .

Remark 2.11 It will be of interest to study equation (1.1) under condition

I1(t, t0) :=

∫ t

t0

r−1/α(s)ds < ∞ as t → ∞.

Remark 2.12 The results of this paper are presented in a form that can be extended to higher-order equations
of the form (

r(t)
(
z(n−1)(t)

)α)′
+ q(t)xδ(σ(t)) = 0, t ≥ t0 > 0,

where n ≥ 3 is an odd natural number, α , β , δ , r , p , q , σ , τ , and z are defined as in this paper.

Remark 2.13 It would be of interest to study equation (1.1) in the case where p(t) ≤ −1 with p(t) ̸≡ −1 for
large t .
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