Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: 1345 - 1361
© TÜBİTAK
doi:10.3906/mat-2002-7

Faber polynomial coefficients for certain subclasses of analytic and biunivalent functions

Abdel Moneim LASHIN ${ }^{1,2, *}$ (1), Fatma Z. EL-EMAM ${ }^{3}$ (D)
${ }^{1}$ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
${ }^{2}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
${ }^{3}$ Department of Basic Sciences, Delta Higher Institute for Engineering and Technology, Mansoura, Egypt

Received: 03.02.2020 • Accepted/Published Online: 19.05.2020 • Final Version: 08.07.2020

Abstract

In this paper, we introduce and investigate two new subclasses of analytic and bi-univalent functions defined in the open unit disc. We use the Faber polynomial expansions to find upper bounds for the nth ($n \geq 3$) TaylorMaclaurin coefficients $\left|a_{n}\right|$ of functions belong to these new subclasses with $a_{k}=0$ for $2 \leq k \leq n-1$, also we find non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The results, which are presented in this paper, would generalize those in related earlier works of several authors.

Key words: Faber polynomial, univalent functions, bi-univalent functions, coefficient bounds

1. Introduction

Faber polynomials, which were introduced by Faber in 1903 [22], play an important role in the theory of functions of a complex variable and in different areas of mathematics. Given a function $h(z)$ of the form

$$
h(z)=z+b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots,
$$

consider the expansion

$$
\frac{\varsigma h^{\prime}(\zeta)}{h(\zeta)-w}=\sum_{n=0}^{\infty} \Psi_{n}(w) \zeta^{-n}
$$

valid for all ζ in some neighborhood of ∞. The function $\Psi_{n}(w)=w^{n}+\sum_{k=1}^{n} a_{n k} w^{n-k}$ is a polynomial of degree n, called the nth Faber polynomial with respect to the function $h(z)$. In particular,

$$
\begin{aligned}
& \Psi_{0}(w)=1, \quad \Psi_{1}(w)=w-b_{0} \\
& \Psi_{2}(w)=w^{2}-2 b_{0} w+\left(b_{0}^{2}-2 b_{1}\right) \\
& \Psi_{3}(w)=w^{3}-3 b_{0} w^{2}+\left(3 b_{0}^{2}-3 b_{1}\right) w+\left(b_{0}^{3}+3 b_{1} b_{0}-3 b_{2}\right)
\end{aligned}
$$

Let $\Psi_{n}(0)=F_{n}\left(b_{0}, b_{1}, \ldots, b_{n}\right), n \geq 0$, see $([21$, page 118]). Let A denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

*Correspondence: aylashin@mans.edu.eg
2010 AMS Mathematics Subject Classification: 30C45; 30C50; 30C55; 30C80

LASHIN and EL-EMAM/Turk J Math

which are analytic in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}, \mathbb{C}$ being, as usual, the set of complex numbers. We also denote by S the subclass of all functions in A which are univalent in U. Recently, Airault and Ren [2, page 344] introduced the generalized Faber polynomials $F_{j}^{k}(j \geq 0, k$ is an integer $)$ associated with the univalent function f of the form (1.1), by

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{k}=1-\sum_{j=2}^{\infty} F_{j-1}^{k+j-1}\left(a_{2}, a_{3}, \ldots, a_{j}\right) z^{j-1} \tag{1.2}
\end{equation*}
$$

They showed that those Faber polynomials are linked to the coefficients in the asymptotic expansion of the function $\left(\frac{f(z)}{z}\right)^{p}$,

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{p}=1+\sum_{j=2}^{\infty} K_{j-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{j}\right) z^{j-1} \tag{1.3}
\end{equation*}
$$

Also in [1, page 184] Airault and Bouali, showed that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1-\sum_{j=2}^{\infty} F_{j-1}\left(a_{2}, a_{3}, \ldots, a_{j}\right) z^{j-1} \tag{1.4}
\end{equation*}
$$

where the first few terms of the generalized Faber polynomials $F_{j-1}^{k}\left(a_{2}, a_{3}, \ldots, a_{j}\right), j \geq 2$, are given by (e.g. see [2, page 351])

$$
\begin{align*}
F_{1}^{k}= & -k a_{2}, \quad F_{2}^{k}=\frac{k(3-k)}{2} a_{2}^{2}-k a_{3}, \\
F_{3}^{k}= & \frac{k(4-k)(k-5)}{3!} a_{2}^{3}+k(4-k) a_{2} a_{3}-k a_{4} \\
F_{4}^{k}= & \frac{k(5-k)(k-6)(k-7)}{4!} a_{2}^{4}+\frac{k(5-k)(k-6)}{2!} a_{2}^{2} a_{3}-k(5-k) a_{2} a_{4} \\
& +\frac{k(5-k)}{2} a_{3}^{2}-k a_{5} \\
F_{5}^{k}= & \frac{k(6-k)(k-7)(k-8)(k-9)}{5!} a_{2}^{5}+\frac{k(6-k)(k-7)(k-8)}{3!} a_{2}^{3} a_{3} \\
& +\frac{k(6-k)(k-7)}{2} a_{2}^{2} a_{4}+\frac{k(6-k)(k-7)}{2} a_{2} a_{3}^{2}+k(6-k) a_{3} a_{4} \\
& +k(6-k) a_{2} a_{5}-k a_{6} \tag{1.5}
\end{align*}
$$

Note that, the nth Faber polynomial $F_{n}=F_{n}^{n}$ (see [2, page 350] and [8, page 52]) and $F_{n}^{n+j}=-\left(1+\frac{n}{j}\right) K_{n}^{j}$ (see $[2$, page 352$]$), where the coefficients $K_{n}^{p}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$ are given by,

$$
\begin{align*}
K_{1}^{p}= & p a_{2}, \quad K_{2}^{p}=\frac{p(p-1)}{2} a_{2}^{2}+p a_{3}, \\
K_{3}^{p}= & p(p-1) a_{2} a_{3}+p a_{4}+\frac{p(p-1)(p-2)}{3!} a_{2}^{3} \\
K_{4}^{p}= & p(p-1) a_{2} a_{4}+p a_{5}+\frac{p(p-1)}{2} a_{3}^{2}+\frac{p(p-1)(p-2)}{2} a_{2}^{2} a_{3}+\frac{p!}{(p-4)!4!} a_{2}^{4} \\
& \vdots \\
K_{n}^{p}= & \frac{p!}{(p-n)!n!} a_{2}^{n}+\frac{p!}{(p-n+1)!(n-2)!} a_{2}^{n-2} a_{3}+\frac{p!}{(p-n+2)!(n-3)!} a_{2}^{n-3} a_{4} \\
& +\frac{p!}{(p-n+3)!(n-4)!} a_{2}^{n-4}\left[a_{5}+\frac{p-n+3}{2} a_{3}^{2}\right] \\
& +\frac{p!}{(p-n+4)!(n-5)!} a_{2}^{n-4}\left[a_{6}+(p-n+3) a_{3} a_{4}\right]+\sum_{j \geq 6}^{\infty} a_{2}^{n-j} V_{j} \tag{1.6}
\end{align*}
$$

and V_{j} is homogeneous polynomial of degree j in the variables a_{3}, \ldots, a_{n}, see ([2, page 349] and [1, pages 183 and 205]). If f and g are analytic functions in U, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function φ, which (by definition) is analytic in U with $\varphi(0)=0$ and $|\varphi(z)|<1$ for all $z \in U$, such that $f(z)=g(\varphi(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence

$$
f(z) \prec g(z)(z \in U) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

The Koebe one-quarter theorem [21, page 31] ensures the range of every function of the class S contains the disc $\left\{w:|w|<\frac{1}{4}\right\}$. Thus, every univalent function $f \in S$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(|\omega|<\frac{1}{4}\right)
$$

In fact, the coefficients of inverse function $g=f^{-1}$ are given by (see [1, page 185])

$$
\begin{aligned}
g(\omega) & =f^{-1}(\omega)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) \omega^{n} \\
& =w-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\ldots
\end{aligned}
$$

A function $f \in A$ is said to be bi-univalent in U if f and f^{-1} are univalent in U. Let σ denote the class of bi-univalent functions in U given by (1.1). In 1985 Louis de Branges [9] proved the celebrated Bieberbach Conjecture which states that, for each $f(z) \in S$ given by the Taylor-Maclaurin series expansion (1.1), the following coefficient inequality holds true:

$$
\left|a_{n}\right| \leq n \quad(n=2,3,4, \ldots)
$$

The class of analytic bi-univalent functions was first introduced and studied by Lewin [31], where it was proved that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [10] improved Lewin's result to $\left|a_{2}\right| \leq \sqrt{2}$. Brannan and Taha [12] and Taha [46] considered certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike and convex functions. They introduced bi-starlike functions and bi-convex functions and found nonsharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. For further historical account of functions in the class σ, see the work by Srivastava et al. [43] (see also $[3,4,6,11-15,19,23,24,27,29,30,32,34-37,40,42,44,45,47-49])$.

2. Coefficient estimates for the class $B_{\sigma}(p, \lambda, \tau, \varphi)$

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disc U, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(U)$ is symmetric with respect to the real axis. Such a function has a Taylor series of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots\left(B_{1}>0\right) \tag{2.1}
\end{equation*}
$$

Suppose that $u(z)$ and $v(z)$ are analytic in the unit disc U with $u(0)=v(0)=0,|u(z)|<1,|v(z)|<1$, and suppose that

$$
\begin{equation*}
u(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, \quad v(z)=c_{1} z+\sum_{n=2}^{\infty} c_{n} z^{n} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

It is well known that (see Duren [21, page 265])

$$
\begin{equation*}
\left|b_{n}\right| \leq 1,\left|c_{n}\right| \leq 1 \quad n=2,3, \ldots \tag{2.3}
\end{equation*}
$$

By a simple calculation, we have

$$
\begin{align*}
\varphi(u(z)) & =1-B_{1} \sum_{n=1}^{\infty} K_{n}^{-1}\left(b_{1}, b_{2}, \ldots, b_{n}, B_{1}, B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right) z^{n} \\
& =1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\ldots(z \in U) \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\varphi(v(\omega)) & =1-B_{1} \sum_{n=1}^{\infty} K_{n}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n}, B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right) w^{n} \\
& =1+B_{1} c_{1} \omega+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) \omega^{2}+\ldots(\omega \in U) \tag{2.5}
\end{align*}
$$

LASHIN and EL-EMAM/Turk J Math

In general (see [20, page 649]), the coefficients $K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right)$ are given by

$$
\begin{aligned}
& K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right) \\
= & \frac{p!}{(p-n)!n!} k_{1}^{n} \frac{(-1)^{n+1} B_{n}}{B_{1}}+\frac{p!}{(p-n+1)!(n-2)!} k_{1}^{n-2} k_{2} \frac{(-1)^{n} B_{n-1}}{B_{1}} \\
& +\frac{p!}{(p-n+2)!(n-3)!} k_{1}^{n-3} k_{3} \frac{(-1)^{n-1} B_{n-2}}{B_{1}} \\
& +\frac{p!}{(p-n+3)!(n-4)!} k_{1}^{n-4}\left[k_{4} \frac{(-1)^{n-2} B_{n-3}}{B_{1}}+\frac{p-n+3}{2} k_{2}^{2} k_{3} \frac{(-1)^{n-1} B_{n-2}}{B_{1}}\right] \\
& +\sum_{j \geq 5}^{\infty} k_{1}^{n-j} X_{j}
\end{aligned}
$$

where X_{j} is a homogeneous polynomial of degree j in the variables k_{2}, \ldots, k_{n}.

Definition 2.1 A function $f(z) \in A$ is said to be in the class $B(p, \lambda, \tau, \varphi)(p>0,0 \leq \lambda \leq 1, \tau \in \mathbb{C} \backslash\{0\})$ if it satisfies

$$
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{p}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{p}-1\right] \prec \varphi(z)(z \in U) .
$$

We note that:

1. The class $B(\alpha, 1,1,1+\mu z)=B(\alpha, \mu)(\alpha, \mu>0)$ was introduced and studied by Ponnusamy [38] and Yang [50];
2. the class $B(\alpha, \lambda, 1,1+\mu z)(\alpha>0)$ was studied by Ponnusamy and Rajasekaran [39], Darwish et al. [18], and Prajapat and Agarwal [41];
3. the class $B\left(\alpha, \lambda, 1, \frac{1+A z}{1+B z}\right)=B(\lambda, \alpha, A, B)(-1 \leq B \leq 1, A \neq B)$ was introduced and studied by Liu [33].
4. $B\left(\alpha, 1,1, \frac{1+z}{1-z}\right)$ is the subclass of Bazilevic functions [7];

Definition 2.2 A function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}(p, \lambda, \tau, \varphi) \quad(p>0,0 \leq \lambda \leq 1, \tau \in$ \mathbb{C}) if both f and its inverse map $g=f^{-1}$ are in $B(p, \lambda, \tau, \varphi)$.

Note that:

1. The class $B_{\sigma}(1, \lambda, 1, \varphi)=H^{\sigma}(\lambda, \varphi)$ was introduced and studied by Goyal and Kumar [25] and [51];
2. the class $B_{\sigma}\left(\alpha, \lambda, 1,\left(\frac{1+z}{1-z}\right)^{v}\right)=N_{\sigma}^{\alpha}(v, \lambda)$ was introduced and studied by Srivastava et al. [42];
3. the class $B_{\sigma}(\alpha, \lambda, 1, \varphi)=H_{\sigma}^{\alpha, \lambda}(\varphi)$ was introduced and studied by Bulut [16];
4. the class $B_{\sigma}\left(1, \lambda, 1,\left(\frac{1+z}{1-z}\right)^{v}\right)=B_{\sigma}(v, \lambda)$ was introduced and studied by Frasin and Aouf [23].

Unless otherwise mentioned, we shall assume in the remainder of this section that $p>0,0 \leq \lambda \leq 1$ and $\tau \in \mathbb{C} \backslash\{0\}$.

LASHIN and EL-EMAM/Turk J Math

Theorem 2.3 Let the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(p, \lambda, \tau, \varphi)$. If $a_{k}=0$ for $2 \leq k \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{|\tau| B_{1}}{[p+\lambda(n-1)]}, \quad n \geq 3
$$

Proof Since both functions f and its inverse map $g=f^{-1}$ are in $B(\alpha, \lambda, \varphi)$, by the definition of subordination, there are analytic functions $u, v: U \rightarrow U$ given by (2.2) such that

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{p}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{p}-1\right]=\varphi(u(z)) \quad(z \in U) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{g(w)}{w}\right)^{p}+\lambda \frac{w g^{\prime}(w)}{g(w)}\left(\frac{g(w)}{w}\right)^{p}-1\right]=\varphi(v(w)) \quad(z \in U) \tag{2.7}
\end{equation*}
$$

It follows from (1.2) and (1.3) that

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{p}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{p}-1\right] \\
= & 1+\frac{1}{\tau}\left\{(1-\lambda)\left[1+\sum_{j=2}^{\infty} K_{j-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{j}\right) z^{j-1}\right]\right. \\
& \left.+\lambda\left[1-\sum_{j=2}^{\infty} F_{j-1}^{p+j-1}\left(a_{2}, a_{3}, \ldots, a_{j}\right) z^{j-1}\right]-1\right\} \\
= & 1+\frac{1}{\tau} \sum_{j=2}^{\infty}\left[(1-\lambda) K_{j-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{j}\right)-\lambda F_{j-1}^{p+j-1}\left(a_{2}, a_{3}, \ldots, a_{j}\right)\right] z^{j-1} \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{g(w)}{w}\right)^{p}+\lambda \frac{w g^{\prime}(w)}{g(w)}\left(\frac{g(w)}{w}\right)^{p}-1\right] \\
= & 1+\frac{1}{\tau} \sum_{j=2}^{\infty}\left[(1-\lambda) K_{j-1}^{p}\left(d_{2}, d_{3}, \ldots, d_{j}\right)-\lambda F_{j-1}^{p+j-1}\left(d_{2}, d_{3}, \ldots, d_{j}\right)\right] w^{j-1} \tag{2.9}
\end{align*}
$$

where $d_{n}=\frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$. Comparing the corresponding coefficients of (2.8) and (2.4) gives

$$
\begin{align*}
& (1-\lambda) K_{n-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{n}\right)-\lambda F_{n-1}^{p+n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right) \\
= & -\tau B_{1} K_{n-1}^{-1}\left(b_{1}, b_{2}, \ldots, b_{n-1}, B_{1}, B_{2}, B_{3}, \ldots, B_{n-1}\right) \tag{2.10}
\end{align*}
$$

Similarly, comparing the corresponding coefficients of (2.9) and (2.5) yields

$$
\begin{align*}
& (1-\lambda) K_{n-1}^{p}\left(d_{2}, d_{3}, \ldots, d_{n}\right)-\lambda F_{n-1}^{p+n-1}\left(d_{2}, d_{3}, \ldots, d_{n}\right) \\
= & -\tau B_{1} K_{n-1}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n-1}, B_{1}, B_{2}, B_{3}, \ldots, B_{n-1}\right) . \tag{2.11}
\end{align*}
$$

Since $a_{k}=0$ for $2 \leq k \leq n-1$, by using $d_{n}=-a_{n}, K_{n-1}^{p}=p a_{n}$ and $F_{n-1}^{p+n-1}=-(p+n-1) a_{n}$ in (2.10) and (2.11), we have

$$
\begin{equation*}
[p+\lambda(n-1)] a_{n}=\tau B_{1} b_{n-1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
-[p+\lambda(n-1)] a_{n}=\tau B_{1} c_{n-1} \tag{2.13}
\end{equation*}
$$

By using (2.3), we conclude that

$$
\left|a_{n}\right| \leq \frac{|\tau| B_{1}}{[p+\lambda(n-1)]}
$$

this completes the proof.
To prove our next theorem, we shall need the following lemma.

Lemma 2.4 [20] Let the function $\Phi(z)=\sum_{n=1}^{\infty} \Phi_{n} z^{n}$ be a Schwarz function with $|\Phi(z)|<1, z \in U$. Then for $-\infty<\rho<\infty$.

$$
\left|\Phi_{2}+\rho \Phi_{1}^{2}\right| \leq \begin{cases}1-(1-\rho)\left|\Phi_{1}^{2}\right| & \rho>0 \\ 1-(1+\rho)\left|\Phi_{1}^{2}\right| & \rho \leq 0\end{cases}
$$

Theorem 2.5 If the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(p, \lambda, \tau, \varphi)$, then

$$
\left|a_{2}\right| \leq \begin{cases}\frac{|\tau| B_{1} \sqrt{2 B_{1}}}{\frac{|c| c \mid}{\sqrt{(p+2 \lambda)(p+1)|\tau| B_{1}^{2}+2(p+\lambda)^{2}\left(B_{1}+B_{2}\right)}}} & \left(B_{2} \leq 0, B_{1}+B_{2} \geq 0\right) \tag{2.14}\\ \frac{|\tau| B_{1} \sqrt{2 B_{1}}}{\sqrt{(p+2 \lambda)(p+1)|\tau| B_{1}^{2}+2(p+\lambda)^{2}\left(B_{1}-B_{2}\right)}} & \left(B_{2}>0, B_{1}-B_{2} \geq 0\right)\end{cases}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau| B_{1}}{(p+2 \lambda)} & \left(B_{1} \geq\left|B_{2}\right|\right) \tag{2.15}\\ \frac{\left|\tau B_{2}\right|}{(p+2 \lambda)} & \left(B_{1}<\left|B_{2}\right|\right) .\end{cases}
$$

Proof Let $f \in B_{\sigma}(p, \lambda, \tau, \varphi)$. Then there are analytic functions $u, v: U \rightarrow U$ given by (2.2) such that (2.6) and (2.7) are satisfied. Replacing $n=2$ and 3 in (2.10) and (2.11), respectively, we find that

$$
\begin{gather*}
(p+\lambda) a_{2}=\tau B_{1} b_{1}, \tag{2.16}\\
(p+2 \lambda)\left[\frac{(p-1)}{2} a_{2}^{2}+a_{3}\right]=\tau\left[B_{1} b_{2}+B_{2} b_{1}^{2}\right], \tag{2.17}\\
-(p+\lambda) a_{2}=\tau B_{1} c_{1}, \tag{2.18}\\
(p+2 \lambda)\left[\frac{(p+3)}{2} a_{2}^{2}-a_{3}\right]=\tau\left[B_{1} c_{2}+B_{2} c_{1}^{2}\right], \tag{2.19}
\end{gather*}
$$

It follows from (2.16) and (2.18) that

$$
\begin{equation*}
b_{1}=-c_{1} \tag{2.20}
\end{equation*}
$$

LASHIN and EL-EMAM/Turk J Math

Adding (2.17) to (2.19) leads to

$$
\begin{equation*}
(p+2 \lambda)(p+1) a_{2}^{2}=\tau B_{1}\left(b_{2}+c_{2}\right)+\tau B_{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{2.21}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{(p+2 \lambda)(p+1)}\left(\left|b_{2}+\frac{B_{2}}{B_{1}} b_{1}^{2}\right|+\left|c_{2}+\frac{B_{2}}{B_{1}} c_{1}^{2}\right|\right) \tag{2.22}
\end{equation*}
$$

Case 1. We suppose that $B_{2} \leq 0$, then for $\rho=\frac{B_{2}}{B_{1}} \leq 0$ and $B_{1}+B_{2} \geq 0$ applying Lemma 2.4 and (2.20), we get

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{2|\tau| B_{1}}{(p+2 \lambda)(p+1)}\left(1-\left[\frac{B_{1}+B_{2}}{B_{1}}\right]\left|b_{1}\right|^{2}\right) \tag{2.23}
\end{equation*}
$$

Thus, by considering (2.16) and (2.23), we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{2 B_{1}}}{\sqrt{(p+2 \lambda)(p+1)|\tau| B_{1}^{2}+2(p+\lambda)^{2}\left(B_{1}+B_{2}\right)}} \tag{2.24}
\end{equation*}
$$

Case 2. Let $B_{2}>0$, then for $\rho=\frac{B_{2}}{B_{1}}>0$ and $B_{1}-B_{2} \geq 0$ using Lemma 2.4 and (2.20) for (2.22), we obtain

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{2|\tau| B_{1}}{(p+2 \lambda)(p+1)}\left(1-\left[\frac{B_{1}-B_{2}}{B_{1}}\right]\left|b_{1}\right|^{2}\right) \tag{2.25}
\end{equation*}
$$

It follows from (2.25) and (2.16), that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{2 B_{1}}}{\sqrt{(p+2 \lambda)(p+1)|\tau| B_{1}^{2}+2(p+\lambda)^{2}\left(B_{1}-B_{2}\right)}} \tag{2.26}
\end{equation*}
$$

From (2.24) and (2.26) we obtain the desired estimate of $\left|a_{2}\right|$ given by (2.14). Next, from (2.17) and (2.19), we have

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{2(p+2 \lambda)}\left(\left|b_{2}+\frac{B_{2}}{B_{1}} b_{1}^{2}\right|+\left|c_{2}+\frac{B_{2}}{B_{1}} c_{1}^{2}\right|\right) \tag{2.27}
\end{equation*}
$$

If $B_{2} \leq 0$, then for $\rho=\frac{B_{2}}{B_{1}} \leq 0$ applying Lemma 2.4 we get

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{2(p+2 \lambda)}\left(\left[1-\frac{B_{1}+B_{2}}{B_{1}}\left|b_{1}\right|^{2}\right]+\left[1-\frac{B_{1}+B_{2}}{B_{1}}\left|c_{1}\right|^{2}\right]\right) \tag{2.28}
\end{equation*}
$$

If $B_{1}+B_{2} \geq 0$ then (2.28) gives

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{(p+2 \lambda)}
$$

Let $B_{1}+B_{2}<0$; thus, from (2.3) and (2.28)

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{(p+2 \lambda)}\left[1-\frac{B_{1}+B_{2}}{B_{1}}\right]=-\frac{|\tau| B_{2}}{(p+2 \lambda)}
$$

If $B_{2}>0$, then for $\rho=\frac{B_{2}}{B_{1}}>0$ applying Lemma 2.4 to (2.27) we get

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{2(p+2 \lambda)}\left(\left[1-\frac{B_{1}-B_{2}}{B_{1}}\left|b_{1}\right|^{2}\right]+\left[1-\frac{B_{1}-B_{2}}{B_{1}}\left|c_{1}\right|^{2}\right]\right) \tag{2.29}
\end{equation*}
$$

LASHIN and EL-EMAM/Turk J Math

If $B_{1}-B_{2} \geq 0$, then (2.29) gives

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{(p+2 \lambda)}
$$

If $B_{1}-B_{2}<0$, then from (2.3) and (2.29) we have

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau| B_{1}}{(p+2 \lambda)}\left[1-\frac{B_{1}-B_{2}}{B_{1}}\right]=\frac{|\tau| B_{2}}{(p+2 \lambda)}
$$

Which is the second part of assertion (2.15). This completes the proof of Theorem 2.5.
If we set

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma}=1+2 \gamma z+2 \gamma^{2} z^{2}+\ldots(0<\gamma \leq 1, z \in U)
$$

in Definition 2.2 of the bi-univalent function class $B_{\sigma}(p, \lambda, \tau, \varphi)$, we obtain a new class $B_{\sigma}(p, \lambda, \tau, \gamma)$ given by Definition 2.6 below.

Definition 2.6 Let $0<\gamma \leq 1$. A function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}(p, \lambda, \tau, \gamma)$, if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{p}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{p}-1\right] \prec\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(z \in U)
$$

and

$$
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{g(w)}{w}\right)^{p}+\lambda \frac{w g^{\prime}(w)}{g(w)}\left(\frac{g(w)}{w}\right)^{p}-1\right] \prec\left(\frac{1+\omega}{1-\omega}\right)^{\gamma} \quad(\omega \in U)
$$

where $g=f^{-1}$.
Using the parameter setting of Definition 2.6 in the Theorem 2.5, we get the following corollary.
Corollary 2.7 Let $0<\gamma \leq 1$. If the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(p, \lambda, \tau, \gamma)$, then

$$
\left|a_{2}\right| \leq \frac{2|\tau| \gamma}{\sqrt{(p+2 \lambda)(p+1)|\tau| \gamma+(p+\lambda)^{2}(1-\gamma)}}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2|\tau| \gamma}{(p+2 \lambda)}
$$

Remark 2.8 In Corollary 2.7,

1. if we take $p=1$ and $\tau=1$, then we obtain the results of Frasin and Aouf [23],
2. if we take $\tau=1$, then we have the results which were given by Caglar et al. [17].

If we set

$$
\varphi(z)=\frac{1+(1-2 v) z}{1-z}=1+2(1-v) z+2(1-v) z^{2}+\ldots(0 \leq v<1, z \in U)
$$

in Definition 2.2 of the bi-univalent function class $B_{\sigma}(p, \lambda, \tau, \varphi)$, we obtain a new class $B_{\sigma}^{v}(p, \lambda, \tau)$ given by Definition 2.9 below.

Definition 2.9 Let $0 \leq v<1$. A function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}^{v}(p, \lambda, \tau)$, if the following conditions hold true:

$$
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{p}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{p}-1\right] \prec \frac{1+(1-2 v) z}{1-z}(z \in U)
$$

and

$$
1+\frac{1}{\tau}\left[(1-\lambda)\left(\frac{g(w)}{w}\right)^{p}+\lambda \frac{w g^{\prime}(w)}{g(w)}\left(\frac{g(w)}{w}\right)^{p}-1\right] \prec \frac{1+(1-2 v) \omega}{1-\omega}(\omega \in U)
$$

where $g=f^{-1}$.
Using the parameter setting of Definition 2.9 in Theorems 2.3 and 2.5, respectively, we get the following corollaries.

Corollary 2.10 Let the function $f \in B_{\sigma}^{v}(p, \lambda, \tau)$, be given by (1.1). If $a_{k}=0$ for $2 \leq k \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{2|\tau|(1-v)}{[p+\lambda(n-1)]}, \quad n \geq 3
$$

Remark 2.11 In Corollary 2.10, if we set $\lambda=\tau=1$, then we obtain the results of Jahangiri and Hamidi [28].

Corollary 2.12 For $0 \leq v<1$, let the function $f \in B_{\sigma}^{v}(p, \lambda, \tau)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{4|\tau|(1-v)}{(p+2 \lambda)(p+1)}}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2|\tau|(1-v)}{(p+2 \lambda)}
$$

Remark 2.13 In Corollary 2.12,

1. if we take $p=1$ and $\tau=1$, then we obtain the results of Frasin and Aouf [23],
2. if we take $\tau=1$, then we have the results which were given by Caglar et al. [17],
3. if we set $\lambda=\tau=1$, then we have the results which were given by Jahangiri and Hamidi [28].

3. Coefficient estimates for the class $B_{\sigma}(\alpha, \beta, \varphi)$

Definition 3.1 A function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}(\alpha, \beta, \varphi)(\alpha, \beta \geq 0, \alpha+\beta \leq 1)$ if the following conditions are satisfied:

$$
\alpha \frac{f(z)}{z}+\beta f^{\prime}(z)+(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z) \quad(z \in U)
$$

and

$$
\alpha \frac{g(w)}{w}+\beta g^{\prime}(w)+(1-\alpha-\beta) \frac{w g^{\prime}(w)}{g(w)} \prec \varphi(w), \quad(\omega \in U)
$$

where $g=f^{-1}$.
Unless otherwise mentioned, we shall assume in the remainder of this section that $\alpha, \beta \geq 0$ and $\alpha+\beta \leq 1$.

Theorem 3.2 Let the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(\alpha, \beta, \varphi)$. If $a_{k}=0$ for $2 \leq k \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{B_{1}}{[\alpha+\beta+(1-\alpha)(n-1)]}, \quad n \geq 3
$$

Proof Let $f \in B_{\sigma}(\alpha, \beta, \varphi)$. Then there are analytic functions $u, v: U \rightarrow U$ given by (2.2) such that

$$
\begin{equation*}
\alpha \frac{f(z)}{z}+\beta f^{\prime}(z)+(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)}=\varphi(u(z)) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \frac{g(w)}{w}+\beta g^{\prime}(w)+(1-\alpha-\beta) \frac{w g^{\prime}(w)}{g(w)}=\varphi(v(\omega)) \tag{3.2}
\end{equation*}
$$

Now, from (1.4), we get that

$$
\begin{aligned}
& \alpha \frac{f(z)}{z}+\beta f^{\prime}(z)+(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)} \\
= & 1+\sum_{j=2}^{\infty}\left[(\alpha+\beta j) a_{j}-(1-\alpha-\beta) F_{j-1}\left(a_{2}, a_{3}, \ldots, a_{j}\right)\right] z^{j-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha \frac{g(w)}{w}+\beta g^{\prime}(w)+(1-\alpha-\beta) \frac{w g^{\prime}(w)}{g(w)} \\
= & 1+\sum_{j=2}^{\infty}\left[(\alpha+\beta j) d_{j}-(1-\alpha-\beta) F_{j-1}\left(d_{2}, d_{3}, \ldots, d_{j}\right)\right] w^{j-1}
\end{aligned}
$$

where $d_{n}=\frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$. It follows from (2.4), (2.5), (3.1), and (3.2) that

$$
\begin{align*}
& (\alpha+\beta n) a_{n}-(1-\alpha-\beta) F_{n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right) \\
= & -B_{1} K_{n-1}^{-1}\left(b_{1}, b_{2}, \ldots, b_{n-1}, B_{1}, B_{1}, B_{2}, B_{3}, \ldots, B_{n-1}\right) \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
& (\alpha+\beta n) d_{n}-(1-\alpha-\beta) F_{n-1}\left(d_{2}, d_{3}, \ldots, d_{n}\right) \\
= & -B_{1} K_{n-1}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n-1}, B_{1}, B_{2}, B_{3}, \ldots, B_{n-1}\right) . \tag{3.4}
\end{align*}
$$

LASHIN and EL-EMAM/Turk J Math

Since $a_{k}=0$ for $2 \leq k \leq n-1$, by using $d_{n}=-a_{n}$ and $F_{n-1}=-(n-1) a_{n}$, we have

$$
\begin{equation*}
[\alpha+\beta+(1-\alpha)(n-1)] a_{n}=B_{1} b_{n-1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
-[\alpha+\beta+(1-\alpha)(n-1)] a_{n}=B_{1} c_{n-1} \tag{3.6}
\end{equation*}
$$

By using (2.3), we conclude that

$$
\left|a_{n}\right| \leq \frac{B_{1}}{[\alpha+\beta+(1-\alpha)(n-1)]}
$$

Remark 3.3 In Theorem 3.2,

1. If we set $\alpha=\beta=0$ and $\varphi(z)=\frac{1+A z}{1+B z}=1+(A-B) z-B(A-B) z^{2}+\ldots(-1 \leq B<A \leq 1)$, then we obtain the results of Hamidi and Jahangiri [26].
2. If we take $\alpha+\beta=1$, then we have the results which were given by Zireh et al. [51] when $\varphi(z)=1$.
3. If we take $\alpha+\beta=1$ and $\varphi(z)=\frac{1+z}{1-z}$, then we obtain the results of Altınkaya and Yalcin [5] when $p=1$.

Theorem 3.4 If the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(\alpha, \beta, \varphi)$, then

$$
\left|a_{2}\right| \leq \begin{cases}\frac{B_{1} \sqrt{B_{1}}}{\frac{D_{1}}{\sqrt{(1+2 \beta) B_{1}^{2}+(1+\beta)^{2}\left(B_{1}+B_{2}\right)}}} & \left(B_{2} \leq 0, B_{1}+B_{2} \geq 0\right) \tag{3.7}\\ \frac{B_{1} \sqrt{B_{1}}}{\sqrt{(1+2 \beta) B_{1}^{2}+(1+\beta)^{2}\left(B_{1}-B_{2}\right)}} & \left(B_{2}>0, B_{1}-B_{2} \geq 0\right)\end{cases}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{(2-\alpha+\beta)} & \left(B_{1} \geq\left|B_{2}\right|\right) \tag{3.8}\\ \frac{\left|B_{2}\right|}{(2-\alpha+\beta)} & \left(B_{1}<\left|B_{2}\right|\right)\end{cases}
$$

Proof Letting $n=2$ and 3 in (3.3) and (3.4), respectively, we find that

$$
\begin{gather*}
(1+\beta) a_{2}=B_{1} b_{1} \tag{3.9}\\
{\left[(2-\alpha+\beta) a_{3}-(1-\alpha-\beta) a_{2}^{2}\right]=B_{1} b_{2}+B_{2} b_{1}^{2}} \tag{3.10}\\
-(1+\beta) a_{2}=B_{1} c_{1} \tag{3.11}\\
{\left[(2-\alpha+\beta)\left(2 a_{2}^{2}-a_{3}\right)-(1-\alpha-\beta) a_{2}^{2}\right]=B_{1} c_{2}+B_{2} c_{1}^{2}} \tag{3.12}
\end{gather*}
$$

Eqs. (3.9) and (3.11) lead to

$$
\begin{equation*}
b_{1}=-c_{1} \tag{3.13}
\end{equation*}
$$

Adding (3.10) and (3.12) yields

$$
\begin{equation*}
2(1+2 \beta) a_{2}^{2}=B_{1}\left(b_{2}+c_{2}\right)+B_{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{3.14}
\end{equation*}
$$

or

$$
\left|a_{2}^{2}\right| \leq \frac{B_{1}}{2(1+2 \beta)}\left(\left|b_{2}+\frac{B_{2}}{B_{1}} b_{1}^{2}\right|+\left|c_{2}+\frac{B_{2}}{B_{1}} c_{1}^{2}\right|\right)
$$

First, let $B_{2} \leq 0 \quad\left(\rho=\frac{B_{2}}{B_{1}} \leq 0, B_{1}+B_{2} \geq 0\right)$. Applying Lemma 2.4 and (3.13), we get

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{B_{1}}{(1+2 \beta)}\left(1-\left[\frac{B_{1}+B_{2}}{B_{1}}\right]\left|b_{1}^{2}\right|\right) \tag{3.15}
\end{equation*}
$$

From (3.9) and (3.15) it follows that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{(1+2 \beta) B_{1}^{2}+(1+\beta)^{2}\left(B_{1}+B_{2}\right)}} \tag{3.16}
\end{equation*}
$$

Similarly, for $B_{2}>0\left(\rho=\frac{B_{2}}{B_{1}}>0, B_{1}-B_{2} \geq 0\right)$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{(1+2 \beta) B_{1}^{2}+(1+\beta)^{2}\left(B_{1}-B_{2}\right)}} \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17) we obtain the desired estimate of $\left|a_{2}\right|$ given by (3.7). Next, in order to find the bound on $\left|a_{3}-a_{2}^{2}\right|$, by subtracting (3.12) from (3.10), we have

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{2(2-\alpha+\beta)}\left(\left|b_{2}+\frac{B_{2}}{B_{1}} b_{1}^{2}\right|+\left|c_{2}+\frac{B_{2}}{B_{1}} c_{1}^{2}\right|\right) \tag{3.18}
\end{equation*}
$$

If $B_{2} \leq 0$, let $\rho=\frac{B_{2}}{B_{1}} \leq 0$ in Lemma 2.4 we get

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{2(2-\alpha+\beta)}\left(\left[1-\frac{B_{1}+B_{2}}{B_{1}}\left|b_{1}\right|^{2}\right]+\left[1-\frac{B_{1}+B_{2}}{B_{1}}\left|c_{1}\right|^{2}\right]\right) \tag{3.19}
\end{equation*}
$$

If $B_{1}+B_{2} \geq 0$ then (3.19) gives $\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{(2-\alpha+\beta)}$. Let $B_{1}+B_{2}<0$; thus, (2.3) and (3.19) give

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{(2-\alpha+\beta)}\left[1-\frac{B_{1}+B_{2}}{B_{1}}\right]=-\frac{B_{2}}{(2-\alpha+\beta)}
$$

If $B_{2}>0$, let $\rho=\frac{B_{2}}{B_{1}}>0$ in Lemma 2.4, then (3.18) gives

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{2(2-\alpha+\beta)}\left(\left[1-\frac{B_{1}-B_{2}}{B_{1}}\left|b_{1}\right|^{2}\right]+\left[1-\frac{B_{1}-B_{2}}{B_{1}}\left|c_{1}\right|^{2}\right]\right) \tag{3.20}
\end{equation*}
$$

If $B_{1}-B_{2} \geq 0$, then (3.20) gives

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{(2-\alpha+\beta)}
$$

If $B_{1}-B_{2}<0$, then from (2.3) and (3.20) we get

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{(2-\alpha+\beta)}\left[1-\frac{B_{1}-B_{2}}{B_{1}}\right]=\frac{B_{2}}{(2-\alpha+\beta)}
$$

This completes the proof of Theorem 3.4.

LASHIN and EL-EMAM/Turk J Math

Remark 3.5 In Theorem 3.4, if we set $\alpha=\beta=0$ and $\varphi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$, then we obtain the results of Hamidi and Jahangiri [26].

If we set $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma}(0<\gamma \leq 1, z \in U)$ in Definition 3.1 of the bi-univalent function class $B_{\sigma}(\alpha, \beta, \varphi)$, we obtain a new class $B_{\sigma}(\alpha, \beta, \gamma)$ given by Definition 3.6 below.

Definition 3.6 Let $0<\gamma \leq 1$. A function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}(\alpha, \beta, \gamma)$ if the following subordinations hold:

$$
\alpha \frac{f(z)}{z}+\beta f^{\prime}(z)+(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(z \in U)
$$

and

$$
\alpha \frac{g(w)}{w}+\beta g^{\prime}(w)+\frac{w g^{\prime}(w)}{g(w)} \prec\left(\frac{1+\omega}{1-\omega}\right)^{\gamma} \quad(\omega \in U)
$$

where $g=f^{-1}$.
Using the parameter setting of Definition 3.6 in the Theorem 3.4, we get the following corollary.

Corollary 3.7 Let $0<\gamma \leq 1$. If the function $f \in \sigma$ given by (1.1) be in the class $B_{\sigma}(\alpha, \beta, \gamma)$, then

$$
\left|a_{2}\right| \leq \frac{2 \gamma}{\sqrt{2 \gamma(1+2 \beta)+(1+\beta)^{2}(1-\gamma)}}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 \gamma}{(2-\alpha+\beta)}
$$

If we set $\varphi(z)=\frac{1+(1-2 v) z}{1-z}(0 \leq v<1, z \in U)$ in Definition 3.1 of the bi-univalent function class $B_{\sigma}(\alpha, \beta, \varphi)$, we obtain a new class $B_{\sigma}^{v}(\alpha, \beta)$ given by Definition 3.8 below.

Definition 3.8 For $0 \leq v<1$, a function $f \in \sigma$ given by (1.1) is said to be in the class $B_{\sigma}^{v}(\alpha, \beta)$, if the following conditions are satisfied:

$$
\alpha \frac{f(z)}{z}+\beta f^{\prime}(z)+(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+(1-2 v) z}{1-z}(z \in U)
$$

and

$$
\alpha \frac{g(w)}{w}+\beta g^{\prime}(w)+(1-\alpha-\beta) \frac{w g^{\prime}(w)}{g(w)} \prec \frac{1+(1-2 v) \omega}{1-z}(\omega \in U)
$$

where $g=f^{-1}$.
Using the parameter setting of Definition 3.8 in the Theorem 3.4, we get the following corollary.

LASHIN and EL-EMAM/Turk J Math

Corollary 3.9 For $0 \leq v<1$, let the function $f \in B_{\sigma}^{v}(\alpha, \beta)$ be of the form (1.1). Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-v)}{(1+2 \beta)}}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2(1-v)}{(2-\alpha+\beta)}
$$

Remark 3.10 1. If we take $\alpha+\beta=1$ in Corollaries 3.7 and 3.9, respectively, then we have the results which were given by Frasin and Aouf [23].
2. If we take $\alpha+\beta=1$ in Corollary 3.9, we obtain that the bounds on $\left|a_{3}-a_{2}^{2}\right|$ given by Altinkaya and Yalcin, [5].

Acknowledgment

The authors are grateful to the reviewers of this article, who gave valuable remarks, comments, and advice in order to revise and improve the results of the paper.

References

[1] Airault H, Bouali A. Differential calculus on the Faber polynomials. Bulletin des Sciences Mathématiques 2006; 130: 179-222.
[2] Airault H, Ren J. An algebra of differential operators and generating functions on the set of univalent functions. Bulletin des Sciences Mathématiques 2002; 126: 343-367.
[3] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters 2012; 25: 344-351.
[4] Altınkaya S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. Turkish Journal of Mathematics 2020; 44 (2): 553-560.
[5] Altınkaya S, Yalcın S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Mathematique 2015; 353 (12): 1075-1080.
[6] Aouf MK, El-Ashwah RM, Abd-Eltawab AM. New subclasses of bi-univalent functions involving Dziok-Srivastava operator. ISRN Mathematical Analysis 2013; Article ID 387178: 5 p.
[7] Bazilevic IE. On a case of integrability in quadratures of the Loewner-Kufarev equation. Matematicheskii Sbornik 1955; 37 (79): 471-476.
[8] Bouali A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bulletin des Sciences Mathématiques 2006; 130: 49-70.
[9] De Branges L. A proof of the Bieberbach conjecture. Acta Mathematica 1985; 154: 137-152.
[10] Brannan DA, Clunie JG (Eds). Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[11] Brannan DA, Clunie J, Kirwan WE. Coefficient estimates for a class of starlike functions. Canadian Journal of Mathematics 1970; 22: 476-485.
[12] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica 1986; 31 (2): 70-77.
[13] Bulut S. Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator. Scientific World Journal 2013; Article ID 171039: 6 p.
[14] Bulut S. Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator. Journal of Function Spaces and Applications 2013; Article ID 181932: 7 p.
[15] Bulut S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad Journal of Mathematics 2013; 43 (2): 59-65.
[16] Bulut S. Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product. Journal of Complex Analysis 2014; 2014 Article ID 302019: 7 p.
[17] Caglar M, Orhan H, Yagmur N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27 (7): 1165-1171.
[18] Darwish HE, Lashin AY, Soileh SM. On Certain Subclasses of Starlike p-valent Functions. Kyungpook Mathematical Journal 2016; 56: 867-876.
[19] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. Journal of Classical Analysis 2013; 2(1): 49-60.
[20] Deniz E, Jahangiri JM, Hamidi SG, Kina SK. Faber polynomial coefficients for generalized bi-subordinate functions of complex order. Journal of Mathematical Inequalities 2018; 12 (3): 645-653.
[21] Duren PL. Univalent Functions. Grundlehren der mathematischen Wissenschaften, Band 259. New York, NY, USA: Springer-Verlag, 1983.
[22] Faber G. Uber polynomische Entwicklungen. Mathematische Annalen 1903; 57: 385-408.
[23] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Applied Mathematics Letters 2011; 24: 1569-1573.
[24] Goyal SP, Goswami P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives. Journal of the Egyptian Mathematical Society 2012; 20: 179-182.
[25] Goyal SP, Kumar R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions. Mathematica Slovaca 2015; 65 (3): 533-544.
[26] Hamidi SG, Jahangiri JM. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Mathematique 2016; 354 (4): 365-370.
[27] Hayami T, Owa S. Coefficient bounds for bi-univalent functions. Pan-American Mathematical Journal 2012; 22 (4): 15-26.
[28] Jahangiri JM, Hamidi SG. Faber polynomial coefficient estimates for analytic bi-bazilevic functions. Matematicki Vesnik 2015; 67 (2): 123-129.
[29] Lashin AY. On certain subclasses of analytic and bi-univalent functions. Journal of the Egyptian Mathematical Society 2016; 24 (2): 220-225.
[30] Lashin AY. Coefficient estimates for two subclasses of analytic and bi-univalent functions. Ukrainian Mathematical Journal 2019; 70 (9): 1484-1492.
[31] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18: 63-68.
[32] Li X-F, Wang A-P. Two new subclasses of bi-univalent functions. International Mathematical Forum 2012; 7: 14951504.
[33] Liu M. On certain subclass of p-valent functions. Soochow Journal of Mathematics 2000; 26 (2): 163-171.
[34] Magesh N, Rosy T, Varma S. Coefficient estimate problem for a new subclass of bi-univalent functions. Journal of Complex Analysis 2013; 2013 Article ID 474231: 3p.
[35] Magesh N, Yamini J. Coefficient bounds for certain subclasses of bi-univalent functions. International Mathematical Forum 2013; 8: 1337-1344.
[36] Murugusundaramoorthy G, Magesh N, Prameela V. Coefficient bounds for certain subclasses of bi-univalent function. Abstract and Applied Analysis 2013; Article ID 573017: 3 p.
[37] Peng Z-G, Han Q-Q. On the coefficients of several classes of bi-univalent functions. Acta Mathematica Sinica, English Series 2014; 34: 228-240.
[38] Ponnusamy S. Polya-Schoenberg conjecture by Caratheodory functions. Journal of the London Mathematical Society 1995; 51 (2): 93-104.
[39] Ponnusamy S, Rajasekaran S. New sufficient conditions for starlike and univalent functions. Soochow Journal of Mathematics 1995; 21 (2): 193-201.
[40] Porwal S, Darus M. On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society 2013; 21 (3): 190-193.
[41] Prajapat JK, Agarwal R. Some results on certain class of analytic functions based on differential subordination. Bulletin of the Korean Mathematical Society 2013; 50 (1): 1-10.
[42] Srivastava HM, Bulut S, Caglar M, Yagmur N. Coefficient estimates for a general subclass of analytic and biunivalent functions. Filomat 2013; 27 (5): 831-842.
[43] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23: 1188-1192.
[44] Srivastava HM, Murugusundaramoorthy G, Magesh N. Certain subclasses of bi-univalent functions associated with the Hohlov operator. Global Journal of Mathematical Analysis 2013; 1 (2): 67-73.
[45] Srivastava HM, Murugusundaramoorthy G, Vijaya K. Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator. Journal of Classical Analysis 2013; 2: 167-181.
[46] Taha TS. Topics in univalent function theory. PhD, University of London, London, UK, 1981.
[47] Tang H, Deng G-T, Li S-H. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. Journal of Inequalities and Applications 2013; 2013 Article ID 317: 10 p.
[48] Xu Q-H, Gui Y-C, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters 2012; 25: 990-994.
[49] Xu Q-H, Xiao H-G, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation 2012; 218 (23): 11461-11465.
[50] Yang D. Some multivalent starlikeness conditions for analytic functions. Bulletin of the Institute of Mathematics Academia Sinica 2005; 33 (1): 55-67.
[51] Zireh A, Adegani EA, Bidkham M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Mathematica Slovaca 2018; 68 (2): 369-378.

