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Abstract: In this paper, we introduce and investigate two new subclasses of analytic and bi-univalent functions defined
in the open unit disc. We use the Faber polynomial expansions to find upper bounds for the nth (n ≥ 3) Taylor-
Maclaurin coefficients |an| of functions belong to these new subclasses with ak = 0 for 2 ≤ k ≤ n − 1 , also we find
non-sharp estimates on the first two coefficients |a2| and |a3| . The results, which are presented in this paper, would
generalize those in related earlier works of several authors.
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1. Introduction
Faber polynomials, which were introduced by Faber in 1903 [22], play an important role in the theory of functions
of a complex variable and in different areas of mathematics. Given a function h(z) of the form

h(z) = z + b0 + b1z
−1 + b2z

−2 + . . . ,

consider the expansion
ςh

′
(ζ)

h(ζ)− w
=

∞∑
n=0

Ψn(w)ζ
−n,

valid for all ζ in some neighborhood of ∞. The function Ψn(w) = wn +
n∑

k=1

ankw
n−k is a polynomial of degree

n, called the nth Faber polynomial with respect to the function h(z) . In particular,

Ψ0(w) = 1, Ψ1(w) = w − b0,

Ψ2(w) = w2 − 2b0w + (b20 − 2b1),

Ψ3(w) = w3 − 3b0w
2 + (3b20 − 3b1)w + (b30 + 3b1b0 − 3b2).

Let Ψn(0) = Fn(b0, b1, . . . , bn), n ≥ 0, see ([21, page 118]). Let A denote the class of all functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} , C being, as usual, the set of complex
numbers. We also denote by S the subclass of all functions in A which are univalent in U . Recently, Airault
and Ren [2, page 344] introduced the generalized Faber polynomials F k

j (j ≥ 0, k is an integer) associated
with the univalent function f of the form (1.1) , by

zf
′
(z)

f(z)

(
f(z)

z

)k

= 1−
∞∑
j=2

F k+j−1
j−1 (a2, a3, ..., aj)z

j−1. (1.2)

They showed that those Faber polynomials are linked to the coefficients in the asymptotic expansion of the

function
(

f(z)
z

)p

,

(
f(z)

z

)p

= 1 +

∞∑
j=2

Kp
j−1(a2, a3, ..., aj)z

j−1. (1.3)

Also in [1, page 184] Airault and Bouali, showed that

zf
′
(z)

f(z)
= 1−

∞∑
j=2

Fj−1(a2, a3, ..., aj)z
j−1, (1.4)

where the first few terms of the generalized Faber polynomials F k
j−1(a2, a3, ..., aj) , j ≥ 2, are given by (e.g.

see [2, page 351] )

F k
1 = −ka2, F k

2 =
k(3− k)

2
a22 − ka3,

F k
3 =

k(4− k)(k − 5)

3!
a32 + k(4− k)a2a3 − ka4,

F k
4 =

k(5− k)(k − 6)(k − 7)

4!
a42 +

k(5− k)(k − 6)

2!
a22a3 − k(5− k)a2a4

+
k(5− k)

2
a23 − ka5

F k
5 =

k(6− k)(k − 7)(k − 8)(k − 9)

5!
a52 +

k(6− k)(k − 7)(k − 8)

3!
a32a3

+
k(6− k)(k − 7)

2
a22a4 +

k(6− k)(k − 7)

2
a2a

2
3 + k(6− k)a3a4

+k(6− k)a2a5 − ka6. (1.5)
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Note that, the nth Faber polynomial Fn = Fn
n (see [2, page 350] and [8, page 52]) and Fn+j

n = −
(
1 + n

j

)
Kj

n

(see [2, page 352]), where the coefficients Kp
n(a2, a3, ..., an) are given by,

Kp
1 = pa2, Kp

2 =
p(p− 1)

2
a22 + pa3,

Kp
3 = p(p− 1)a2a3 + pa4 +

p(p− 1)(p− 2)

3!
a32,

Kp
4 = p(p− 1)a2a4 + pa5 +

p(p− 1)

2
a23 +

p(p− 1)(p− 2)

2
a22a3 +

p!

(p− 4)!4!
a42,

...

Kp
n =

p!

(p− n)!n!
an2 +

p!

(p− n+ 1)!(n− 2)!
an−2
2 a3 +

p!

(p− n+ 2)!(n− 3)!
an−3
2 a4

+
p!

(p− n+ 3)!(n− 4)!
an−4
2

[
a5 +

p− n+ 3

2
a23

]

+
p!

(p− n+ 4)!(n− 5)!
an−4
2 [a6 + (p− n+ 3)a3a4] +

∞∑
j≥6

an−j
2 Vj (1.6)

and Vj is homogeneous polynomial of degree j in the variables a3, ..., an, see ([2, page 349] and [1, pages 183
and 205]). If f and g are analytic functions in U , we say that f is subordinate to g , written f(z) ≺ g(z)

if there exists a Schwarz function φ , which (by definition) is analytic in U with φ(0) = 0 and |φ(z)| < 1 for
all z ∈ U, such that f(z) = g(φ(z)), z ∈ U. Furthermore, if the function g is univalent in U, then we have the
following equivalence

f(z) ≺ g(z)(z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

The Koebe one-quarter theorem [21, page 31] ensures the range of every function of the class S contains the
disc {w : |w| < 1

4} . Thus, every univalent function f ∈ S has an inverse f−1, which is defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(ω)) = ω (|ω| < 1

4
).

In fact, the coefficients of inverse function g = f−1 are given by (see [1, page 185])

g(ω) = f−1(ω) = w +

∞∑
n=2

1

n
K−n

n−1(a2, a3, ..., an)ω
n

= w − a2ω
2 + (2a22 − a3)ω

3 − (5a22 − 5a2a3 + a4)ω
4 + ... .

A function f ∈ A is said to be bi-univalent in U if f and f−1 are univalent in U . Let σ denote the class
of bi-univalent functions in U given by (1.1). In 1985 Louis de Branges [9] proved the celebrated Bieberbach
Conjecture which states that, for each f(z) ∈ S given by the Taylor–Maclaurin series expansion (1.1), the
following coefficient inequality holds true:

|an| ≤ n (n = 2, 3, 4, . . .).
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The class of analytic bi-univalent functions was first introduced and studied by Lewin [31], where it was proved
that |a2| < 1.51 . Subsequently, Brannan and Clunie [10] improved Lewin’s result to |a2| ≤

√
2 . Brannan and

Taha [12] and Taha [46] considered certain subclasses of bi-univalent functions, similar to the familiar subclasses
of univalent functions consisting of strongly starlike and convex functions. They introduced bi-starlike functions
and bi-convex functions and found nonsharp estimates on the first two Taylor–Maclaurin coefficients |a2| and
|a3| . For further historical account of functions in the class σ , see the work by Srivastava et al. [43] (see also
[3, 4, 6, 11–15, 19, 23, 24, 27, 29, 30, 32, 34–37, 40, 42, 44, 45, 47–49]).

2. Coefficient estimates for the class Bσ(p, λ, τ, φ)

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disc U , satisfying
φ(0) = 1, φ

′
(0) > 0, and φ(U) is symmetric with respect to the real axis. Such a function has a Taylor series

of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (B1 > 0). (2.1)

Suppose that u(z) and v(z) are analytic in the unit disc U with u(0) = v(0) = 0 , |u(z)| < 1 , |v(z)| < 1, and
suppose that

u(z) = b1z +

∞∑
n=2

bnz
n, v(z) = c1z +

∞∑
n=2

cnz
n (z ∈ U). (2.2)

It is well known that (see Duren [21, page 265])

|bn| ≤ 1, |cn| ≤ 1 n = 2, 3, . . . . (2.3)

By a simple calculation, we have

φ(u(z)) = 1−B1

∞∑
n=1

K−1
n (b1, b2, ..., bn, B1, B1, B2, B3, ..., Bn)z

n

= 1 +B1b1z + (B1b2 +B2b
2
1)z

2 + ... (z ∈ U), (2.4)

and

φ(v(ω)) = 1−B1

∞∑
n=1

K−1
n (c1, c2, ..., cn, B1, B2, B3, ..., Bn)w

n

= 1 +B1c1ω + (B1c2 +B2c
2
1)ω

2 + ... (ω ∈ U). (2.5)
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In general (see [20, page 649]), the coefficients Kp
n(k1, k2, ..., kn, B1, B2, B3, ..., Bn) are given by

Kp
n(k1, k2, ..., kn, B1, B2, B3, ..., Bn)

=
p!

(p− n)!n!
kn1

(−1)n+1Bn

B1
+

p!

(p− n+ 1)!(n− 2)!
kn−2
1 k2

(−1)nBn−1

B1

+
p!

(p− n+ 2)!(n− 3)!
kn−3
1 k3

(−1)n−1Bn−2

B1

+
p!

(p− n+ 3)!(n− 4)!
kn−4
1 [k4

(−1)n−2Bn−3

B1
+

p− n+ 3

2
k22k3

(−1)n−1Bn−2

B1
]

+

∞∑
j≥5

kn−j
1 Xj ,

where Xj is a homogeneous polynomial of degree j in the variables k2, ..., kn.

Definition 2.1 A function f(z) ∈ A is said to be in the class B(p, λ, τ, φ) (p > 0, 0 ≤ λ ≤ 1, τ ∈ C\{0}) if it
satisfies

1 +
1

τ
[(1− λ)(

f(z)

z
)p + λ

zf
′
(z)

f(z)
(
f(z)

z
)p − 1] ≺ φ(z) (z ∈ U).

We note that:

1. The class B(α, 1, 1, 1 + µz) = B(α, µ) (α, µ > 0) was introduced and studied by Ponnusamy [38] and Yang [50];

2. the class B(α, λ, 1, 1 + µz) (α > 0) was studied by Ponnusamy and Rajasekaran [39], Darwish et al. [18], and
Prajapat and Agarwal [41];

3. the class B(α, λ, 1, 1+Az
1+Bz ) = B(λ, α,A,B) (−1 ≤ B ≤ 1, A ̸= B) was introduced and studied by Liu [33].

4. B(α, 1, 1, 1+z
1−z ) is the subclass of Bazilevic functions [7];

Definition 2.2 A function f ∈ σ given by (1.1) is said to be in the class Bσ(p, λ, τ, φ) (p > 0, 0 ≤ λ ≤ 1, τ ∈
C) if both f and its inverse map g = f−1 are in B(p, λ, τ, φ).

Note that:

1. The class Bσ(1, λ, 1, φ) = Hσ(λ, φ) was introduced and studied by Goyal and Kumar [25] and [51];

2. the class Bσ(α, λ, 1,
(

1+z
1−z

)υ

) = N
α

σ
(υ, λ) was introduced and studied by Srivastava et al. [42];

3. the class Bσ(α, λ, 1, φ) = Hα,λ
σ (φ) was introduced and studied by Bulut [16];

4. the class Bσ(1, λ, 1,
(

1+z
1−z

)υ

) = Bσ(υ, λ) was introduced and studied by Frasin and Aouf [23].

Unless otherwise mentioned, we shall assume in the remainder of this section that p > 0, 0 ≤ λ ≤ 1 and
τ ∈ C\{0}.
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Theorem 2.3 Let the function f ∈ σ given by (1.1) be in the class Bσ(p, λ, τ, φ). If ak = 0 for 2 ≤ k ≤ n−1,

then

|an| ≤
|τ |B1

[p+ λ(n− 1)]
, n ≥ 3.

Proof Since both functions f and its inverse map g = f−1 are in B(α, λ, φ), by the definition of subordination,
there are analytic functions u, v : U → U given by (2.2) such that

1 +
1

τ
[(1− λ)(

f(z)

z
)p + λ

zf
′
(z)

f(z)
(
f(z)

z
)p − 1] = φ(u(z)) (z ∈ U) (2.6)

and

1 +
1

τ
[(1− λ)(

g(w)

w
)p + λ

wg
′
(w)

g(w)
(
g(w)

w
)p − 1] = φ(v(w)) (z ∈ U). (2.7)

It follows from (1.2) and (1.3) that

1 +
1

τ
[(1− λ)(

f(z)

z
)p + λ

zf
′
(z)

f(z)
(
f(z)

z
)p − 1]

= 1 +
1

τ
{(1− λ)[1 +

∞∑
j=2

Kp
j−1(a2, a3, ..., aj)z

j−1]

+λ[1−
∞∑
j=2

F p+j−1
j−1 (a2, a3, ..., aj)z

j−1]− 1}

= 1 +
1

τ

∞∑
j=2

[(1− λ)Kp
j−1(a2, a3, ..., aj)− λF p+j−1

j−1 (a2, a3, ..., aj)]z
j−1 (2.8)

and

1 +
1

τ
[(1− λ)(

g(w)

w
)p + λ

wg
′
(w)

g(w)
(
g(w)

w
)p − 1]

= 1 +
1

τ

∞∑
j=2

[(1− λ)Kp
j−1(d2, d3, ..., dj)− λF p+j−1

j−1 (d2, d3, ..., dj)]w
j−1, (2.9)

where dn = 1
nK

−n
n−1(a2, a3, ..., an). Comparing the corresponding coefficients of (2.8) and (2.4) gives

(1− λ)Kp
n−1(a2, a3, ..., an)− λF p+n−1

n−1 (a2, a3, ..., an)

= −τB1K
−1
n−1(b1, b2, ..., bn−1, B1, B2, B3, ..., Bn−1) (2.10)

Similarly, comparing the corresponding coefficients of (2.9) and (2.5) yields

(1− λ)Kp
n−1(d2, d3, ..., dn)− λF p+n−1

n−1 (d2, d3, ..., dn)

= −τB1K
−1
n−1(c1, c2, ..., cn−1, B1, B2, B3, ..., Bn−1). (2.11)
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Since ak = 0 for 2 ≤ k ≤ n− 1, by using dn = −an , Kp
n−1 = pan and F p+n−1

n−1 = −(p+ n− 1)an in (2.10) and
(2.11), we have

[p+ λ(n− 1)]an = τB1bn−1 (2.12)

and
−[p+ λ(n− 1)]an = τB1cn−1. (2.13)

By using (2.3), we conclude that

|an| ≤
|τ |B1

[p+ λ(n− 1)]
,

this completes the proof. 2

To prove our next theorem, we shall need the following lemma.

Lemma 2.4 [20] Let the function Φ(z) =
∞∑

n=1
Φnz

n be a Schwarz function with |Φ(z)| < 1 , z ∈ U . Then for

−∞ < ρ < ∞.

∣∣Φ2 + ρΦ2
1

∣∣ ≤
 1− (1− ρ)

∣∣Φ2
1

∣∣ ρ > 0

1− (1 + ρ)
∣∣Φ2

1

∣∣ ρ ≤ 0

Theorem 2.5 If the function f ∈ σ given by (1.1) be in the class Bσ(p, λ, τ, φ), then

|a2| ≤


|τ |B1

√
2B1√

(p+2λ)(p+1)|τ |B2
1+2(p+λ)2(B1+B2)

(B2 ≤ 0, B1 +B2 ≥ 0)

|τ |B1

√
2B1√

(p+2λ)(p+1)|τ |B2
1+2(p+λ)2(B1−B2)

(B2 > 0, B1 −B2 ≥ 0)
(2.14)

and ∣∣a3 − a22
∣∣ ≤ { |τ |B1

(p+2λ) (B1 ≥ |B2|)
|τB2|
(p+2λ) (B1 < |B2|).

(2.15)

Proof Let f ∈ Bσ(p, λ, τ, φ) . Then there are analytic functions u, v : U → U given by (2.2) such that (2.6)
and (2.7) are satisfied. Replacing n = 2 and 3 in (2.10) and (2.11), respectively, we find that

(p+ λ)a2 = τB1b1, (2.16)

(p+ 2λ)[
(p− 1)

2
a22 + a3] = τ [B1b2 +B2b

2
1], (2.17)

−(p+ λ)a2 = τB1c1, (2.18)

(p+ 2λ)[
(p+ 3)

2
a22 − a3] = τ [B1c2 +B2c

2
1], (2.19)

It follows from (2.16) and (2.18) that
b1 = −c1. (2.20)
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Adding (2.17) to (2.19) leads to

(p+ 2λ)(p+ 1)a22 = τB1(b2 + c2) + τB2

(
b21 + c21

)
(2.21)

or ∣∣a22∣∣ ≤ |τ |B1

(p+ 2λ)(p+ 1)

(∣∣∣∣b2 + B2

B1
b21

∣∣∣∣+ ∣∣∣∣c2 + B2

B1
c21

∣∣∣∣) . (2.22)

Case 1. We suppose that B2 ≤ 0, then for ρ = B2

B1
≤ 0 and B1 + B2 ≥ 0 applying Lemma 2.4 and (2.20), we

get ∣∣a22∣∣ ≤ 2 |τ |B1

(p+ 2λ)(p+ 1)

(
1− [

B1 +B2

B1
] |b1|2

)
. (2.23)

Thus, by considering (2.16) and (2.23), we obtain

|a2| ≤
|τ |B1

√
2B1√

(p+ 2λ)(p+ 1) |τ |B2
1 + 2(p+ λ)2(B1 +B2)

. (2.24)

Case 2. Let B2 > 0, then for ρ = B2

B1
> 0 and B1 −B2 ≥ 0 using Lemma 2.4 and (2.20) for (2.22), we obtain

∣∣a22∣∣ ≤ 2 |τ |B1

(p+ 2λ)(p+ 1)

(
1− [

B1 −B2

B1
] |b1|2

)
. (2.25)

It follows from (2.25) and (2.16), that

|a2| ≤
|τ |B1

√
2B1√

(p+ 2λ)(p+ 1) |τ |B2
1 + 2(p+ λ)2(B1 −B2)

. (2.26)

From (2.24) and (2.26) we obtain the desired estimate of |a2| given by (2.14). Next, from (2.17) and (2.19), we
have ∣∣a3 − a22

∣∣ ≤ |τ |B1

2(p+ 2λ)

(∣∣∣∣b2 + B2

B1
b21

∣∣∣∣+ ∣∣∣∣c2 + B2

B1
c21

∣∣∣∣) . (2.27)

If B2 ≤ 0 , then for ρ = B2

B1
≤ 0 applying Lemma 2.4 we get

∣∣a3 − a22
∣∣ ≤ |τ |B1

2(p+ 2λ)

([
1− B1 +B2

B1
|b1|2

]
+

[
1− B1 +B2

B1
|c1|2

])
. (2.28)

If B1 +B2 ≥ 0 then (2.28) gives ∣∣a3 − a22
∣∣ ≤ |τ |B1

(p+ 2λ)
.

Let B1 +B2 < 0 ; thus, from (2.3) and (2.28)

∣∣a3 − a22
∣∣ ≤ |τ |B1

(p+ 2λ)

[
1− B1 +B2

B1

]
= − |τ |B2

(p+ 2λ)
.

If B2 > 0 , then for ρ = B2

B1
> 0 applying Lemma 2.4 to (2.27) we get

∣∣a3 − a22
∣∣ ≤ |τ |B1

2(p+ 2λ)

([
1− B1 −B2

B1
|b1|2

]
+

[
1− B1 −B2

B1
|c1|2

])
. (2.29)
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If B1 −B2 ≥ 0, then (2.29) gives ∣∣a3 − a22
∣∣ ≤ |τ |B1

(p+ 2λ)
.

If B1 −B2 < 0 , then from (2.3) and (2.29) we have

∣∣a3 − a22
∣∣ ≤ |τ |B1

(p+ 2λ)

[
1− B1 −B2

B1

]
=

|τ |B2

(p+ 2λ)
.

Which is the second part of assertion (2.15). This completes the proof of Theorem 2.5. 2

If we set

φ(z) =

(
1 + z

1− z

)γ

= 1 + 2γz + 2γ2z2 + ...(0 < γ ≤ 1, z ∈ U)

in Definition 2.2 of the bi-univalent function class Bσ(p, λ, τ, φ), we obtain a new class Bσ(p, λ, τ, γ) given by
Definition 2.6 below.

Definition 2.6 Let 0 < γ ≤ 1. A function f ∈ σ given by (1.1) is said to be in the class Bσ(p, λ, τ, γ), if the
following conditions are satisfied:

1 +
1

τ
[(1− λ)(

f(z)

z
)p + λ

zf
′
(z)

f(z)
(
f(z)

z
)p − 1] ≺

(
1 + z

1− z

)γ

(z ∈ U)

and

1 +
1

τ
[(1− λ)(

g(w)

w
)p + λ

wg
′
(w)

g(w)
(
g(w)

w
)p − 1] ≺

(
1 + ω

1− ω

)γ

(ω ∈ U),

where g = f−1.

Using the parameter setting of Definition 2.6 in the Theorem 2.5, we get the following corollary.

Corollary 2.7 Let 0 < γ ≤ 1. If the function f ∈ σ given by (1.1) be in the class Bσ(p, λ, τ, γ) , then

|a2| ≤
2 |τ | γ√

(p+ 2λ)(p+ 1) |τ | γ + (p+ λ)2(1− γ)

and ∣∣a3 − a22
∣∣ ≤ 2 |τ | γ

(p+ 2λ)
.

Remark 2.8 In Corollary 2.7,

1. if we take p = 1 and τ = 1 , then we obtain the results of Frasin and Aouf [23],

2. if we take τ = 1, then we have the results which were given by Caglar et al. [17].

If we set

φ(z) =
1 + (1− 2υ)z

1− z
= 1 + 2(1− υ)z + 2(1− υ)z2 + ...(0 ≤ υ < 1, z ∈ U)

in Definition 2.2 of the bi-univalent function class Bσ(p, λ, τ, φ), we obtain a new class Bυ
σ(p, λ, τ) given by

Definition 2.9 below.
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Definition 2.9 Let 0 ≤ υ < 1. A function f ∈ σ given by (1.1) is said to be in the class Bυ
σ(p, λ, τ), if the

following conditions hold true:

1 +
1

τ
[(1− λ)(

f(z)

z
)p + λ

zf
′
(z)

f(z)
(
f(z)

z
)p − 1] ≺ 1 + (1− 2υ)z

1− z
(z ∈ U)

and

1 +
1

τ
[(1− λ)(

g(w)

w
)p + λ

wg
′
(w)

g(w)
(
g(w)

w
)p − 1] ≺ 1 + (1− 2υ)ω

1− ω
(ω ∈ U),

where g = f−1.

Using the parameter setting of Definition 2.9 in Theorems 2.3 and 2.5, respectively, we get the following
corollaries.

Corollary 2.10 Let the function f ∈ Bυ
σ(p, λ, τ), be given by (1.1). If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
2 |τ | (1− υ)

[p+ λ(n− 1)]
, n ≥ 3.

Remark 2.11 In Corollary 2.10, if we set λ = τ = 1, then we obtain the results of Jahangiri and Hamidi
[28].

Corollary 2.12 For 0 ≤ υ < 1, let the function f ∈ Bυ
σ(p, λ, τ) be given by (1.1). Then

|a2| ≤

√
4 |τ | (1− υ)

(p+ 2λ)(p+ 1)

and ∣∣a3 − a22
∣∣ ≤ 2 |τ | (1− υ)

(p+ 2λ)
.

Remark 2.13 In Corollary 2.12,

1. if we take p = 1 and τ = 1 , then we obtain the results of Frasin and Aouf [23],

2. if we take τ = 1, then we have the results which were given by Caglar et al. [17],

3. if we set λ = τ = 1, then we have the results which were given by Jahangiri and Hamidi [28].

3. Coefficient estimates for the class Bσ(α, β, φ)

Definition 3.1 A function f ∈ σ given by (1.1) is said to be in the class Bσ(α, β, φ)(α, β ≥ 0, α + β ≤ 1) if
the following conditions are satisfied:

α
f(z)

z
+ βf

′
(z) + (1− α− β)

zf
′
(z)

f(z)
≺ φ(z) (z ∈ U)
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and

α
g(w)

w
+ βg

′
(w) + (1− α− β)

wg
′
(w)

g(w)
≺ φ(w), (ω ∈ U),

where g = f−1.

Unless otherwise mentioned, we shall assume in the remainder of this section that α, β ≥ 0 and α+ β ≤ 1.

Theorem 3.2 Let the function f ∈ σ given by (1.1) be in the class Bσ(α, β, φ). If ak = 0 for 2 ≤ k ≤ n− 1,

then

|an| ≤
B1

[α+ β + (1− α)(n− 1)]
, n ≥ 3.

Proof Let f ∈ Bσ(α, β, φ) . Then there are analytic functions u, v : U → U given by (2.2) such that

α
f(z)

z
+ βf

′
(z) + (1− α− β)

zf
′
(z)

f(z)
= φ(u(z)) (3.1)

and

α
g(w)

w
+ βg

′
(w) + (1− α− β)

wg
′
(w)

g(w)
= φ(v(ω)). (3.2)

Now, from (1.4), we get that

α
f(z)

z
+ βf

′
(z) + (1− α− β)

zf
′
(z)

f(z)

= 1 +

∞∑
j=2

[(α+ βj) aj − (1− α− β)Fj−1(a2, a3, ..., aj)]z
j−1,

and

α
g(w)

w
+ βg

′
(w) + (1− α− β)

wg
′
(w)

g(w)

= 1 +

∞∑
j=2

[(α+ βj) dj − (1− α− β)Fj−1(d2, d3, ..., dj)]w
j−1,

where dn = 1
nK

−n
n−1(a2, a3, ..., an). It follows from (2.4), (2.5), (3.1), and (3.2) that

(α+ βn) an − (1− α− β)Fn−1(a2, a3, ..., an)

= −B1K
−1
n−1(b1, b2, ..., bn−1, B1, B1, B2, B3, ..., Bn−1) (3.3)

and

(α+ βn) dn − (1− α− β)Fn−1(d2, d3, ..., dn)

= −B1K
−1
n−1(c1, c2, ..., cn−1, B1, B2, B3, ..., Bn−1). (3.4)
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Since ak = 0 for 2 ≤ k ≤ n− 1, by using dn = −an and Fn−1 = −(n− 1)an , we have

[α+ β + (1− α)(n− 1)]an = B1bn−1 (3.5)

and
−[α+ β + (1− α)(n− 1)]an = B1cn−1. (3.6)

By using (2.3), we conclude that

|an| ≤
B1

[α+ β + (1− α)(n− 1)]
.

2

Remark 3.3 In Theorem 3.2,

1. If we set α = β = 0 and φ(z) = 1+Az
1+Bz = 1 + (A− B)z − B(A− B)z2 + . . . (−1 ≤ B < A ≤ 1), then we

obtain the results of Hamidi and Jahangiri [26].

2. If we take α+ β = 1, then we have the results which were given by Zireh et al. [51] when φ(z) = 1.

3. If we take α+ β = 1 and φ(z) = 1+z
1−z , then we obtain the results of Altınkaya and Yalcın [5] when p=1.

Theorem 3.4 If the function f ∈ σ given by (1.1) be in the class Bσ(α, β, φ), then

|a2| ≤


B1

√
B1√

(1+2β)B2
1+(1+β)2(B1+B2)

(B2 ≤ 0, B1 +B2 ≥ 0)

B1

√
B1√

(1+2β)B2
1+(1+β)2(B1−B2)

(B2 > 0, B1 −B2 ≥ 0)
, (3.7)

and ∣∣a3 − a22
∣∣ ≤ {

B1

(2−α+β) (B1 ≥ |B2|)
|B2|

(2−α+β) (B1 < |B2|).
(3.8)

Proof Letting n = 2 and 3 in (3.3) and (3.4), respectively, we find that

(1 + β)a2 = B1b1, (3.9)

[
(2− α+ β)a3 − (1− α− β)a22

]
= B1b2 +B2b

2
1, (3.10)

−(1 + β)a2 = B1c1, (3.11)

[
(2− α+ β)

(
2a22 − a3

)
− (1− α− β)a22

]
= B1c2 +B2c

2
1. (3.12)

Eqs. (3.9) and (3.11) lead to
b1 = −c1. (3.13)

Adding (3.10) and (3.12) yields

2(1 + 2β)a22 = B1(b2 + c2) +B2

(
b21 + c21

)
(3.14)
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or ∣∣a22∣∣ ≤ B1

2(1 + 2β)

(∣∣∣∣b2 + B2

B1
b21

∣∣∣∣+ ∣∣∣∣c2 + B2

B1
c21

∣∣∣∣) .

First, let B2 ≤ 0 (ρ = B2

B1
≤ 0, B1 +B2 ≥ 0) . Applying Lemma 2.4 and (3.13), we get

∣∣a22∣∣ ≤ B1

(1 + 2β)

(
1− [

B1 +B2

B1
]
∣∣b21∣∣) . (3.15)

From (3.9) and (3.15) it follows that

|a2| ≤
B1

√
B1√

(1 + 2β)B2
1 + (1 + β)2(B1 +B2)

. (3.16)

Similarly, for B2 > 0 (ρ = B2

B1
> 0, B1 −B2 ≥ 0) , we have

|a2| ≤
B1

√
B1√

(1 + 2β)B2
1 + (1 + β)2(B1 −B2)

. (3.17)

From (3.16) and (3.17) we obtain the desired estimate of |a2| given by (3.7). Next, in order to find the bound
on

∣∣a3 − a22
∣∣ , by subtracting (3.12) from (3.10), we have

∣∣a3 − a22
∣∣ ≤ B1

2(2− α+ β)

(∣∣∣∣b2 + B2

B1
b21

∣∣∣∣+ ∣∣∣∣c2 + B2

B1
c21

∣∣∣∣) . (3.18)

If B2 ≤ 0 , let ρ = B2

B1
≤ 0 in Lemma 2.4 we get

∣∣a3 − a22
∣∣ ≤ B1

2(2− α+ β)

([
1− B1 +B2

B1
|b1|2

]
+

[
1− B1 +B2

B1
|c1|2

])
. (3.19)

If B1 +B2 ≥ 0 then (3.19) gives
∣∣a3 − a22

∣∣ ≤ B1

(2−α+β) . Let B1 +B2 < 0 ; thus, (2.3) and (3.19) give

∣∣a3 − a22
∣∣ ≤ B1

(2− α+ β)

[
1− B1 +B2

B1

]
= − B2

(2− α+ β)
.

If B2 > 0 , let ρ = B2

B1
> 0 in Lemma 2.4, then (3.18) gives

∣∣a3 − a22
∣∣ ≤ B1

2(2− α+ β)

([
1− B1 −B2

B1
|b1|2

]
+

[
1− B1 −B2

B1
|c1|2

])
. (3.20)

If B1 −B2 ≥ 0, then (3.20) gives ∣∣a3 − a22
∣∣ ≤ B1

(2− α+ β)
.

If B1 −B2 < 0 , then from (2.3) and (3.20) we get

∣∣a3 − a22
∣∣ ≤ B1

(2− α+ β)

[
1− B1 −B2

B1

]
=

B2

(2− α+ β)
.

This completes the proof of Theorem 3.4. 2
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Remark 3.5 In Theorem 3.4, if we set α = β = 0 and φ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), then we obtain the

results of Hamidi and Jahangiri [26].

If we set φ(z) =
(

1+z
1−z

)γ

(0 < γ ≤ 1, z ∈ U) in Definition 3.1 of the bi-univalent function class Bσ(α, β, φ), we

obtain a new class Bσ(α, β, γ) given by Definition 3.6 below.

Definition 3.6 Let 0 < γ ≤ 1. A function f ∈ σ given by (1.1) is said to be in the class Bσ(α, β, γ) if the
following subordinations hold:

α
f(z)

z
+ βf

′
(z) + (1− α− β)

zf
′
(z)

f(z)
≺

(
1 + z

1− z

)γ

(z ∈ U)

and

α
g(w)

w
+ βg

′
(w) +

wg
′
(w)

g(w)
≺

(
1 + ω

1− ω

)γ

(ω ∈ U),

where g = f−1.

Using the parameter setting of Definition 3.6 in the Theorem 3.4, we get the following corollary.

Corollary 3.7 Let 0 < γ ≤ 1. If the function f ∈ σ given by (1.1) be in the class Bσ(α, β, γ), then

|a2| ≤
2γ√

2γ(1 + 2β) + (1 + β)2(1− γ)

and ∣∣a3 − a22
∣∣ ≤ 2γ

(2− α+ β)
.

If we set φ(z) = 1+(1−2υ)z
1−z (0 ≤ υ < 1, z ∈ U) in Definition 3.1 of the bi-univalent function class Bσ(α, β, φ),

we obtain a new class Bυ
σ(α, β) given by Definition 3.8 below.

Definition 3.8 For 0 ≤ υ < 1, a function f ∈ σ given by (1.1) is said to be in the class Bυ
σ(α, β), if the

following conditions are satisfied:

α
f(z)

z
+ βf

′
(z) + (1− α− β)

zf
′
(z)

f(z)
≺ 1 + (1− 2υ)z

1− z
(z ∈ U)

and

α
g(w)

w
+ βg

′
(w) + (1− α− β)

wg
′
(w)

g(w)
≺ 1 + (1− 2υ)ω

1− z
(ω ∈ U),

where g = f−1.

Using the parameter setting of Definition 3.8 in the Theorem 3.4, we get the following corollary.
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Corollary 3.9 For 0 ≤ υ < 1, let the function f ∈ Bυ
σ(α, β) be of the form (1.1). Then

|a2| ≤

√
2(1− υ)

(1 + 2β)

and ∣∣a3 − a22
∣∣ ≤ 2(1− υ)

(2− α+ β)
.

Remark 3.10 1. If we take α + β = 1 in Corollaries 3.7 and 3.9, respectively, then we have the results
which were given by Frasin and Aouf [23].

2. If we take α + β = 1 in Corollary 3.9, we obtain that the bounds on
∣∣a3 − a22

∣∣ given by Altınkaya and
Yalcın, [5].
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