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Abstract: In this paper, we study the inverse nodal problem and the eigenvalue gap for the one-dimensional sloshing
problem with the p -Laplacian operator. By applying the Prüfer substitution, we first derive the reconstruction formula
of the depth function by using the information of the nodal data. Furthermore, we employ the Tikhonov regularization
method to consider how to reconstruct the depth function using only zeros of one eigenfunction. Finally, we investigate
the eigenvalue gap under the restriction of symmetric single-well depth functions. We show the gap attains its minimum
when the depth function is constant.
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1. Introduction
Liquid sloshing problems appear in many circumstances, such as the storage and transportation of fuel tanks,
the design of ship hulls, and the motion of liquid fuel in aircraft and spacecraft (see [4, 16, 25–28] and the
references therein). The planar fluid motion in a shallow container is described by the following differential
system:

∇2φ = 0 in the interior of the container V,
∂φ
∂n = 0 on the container wall,
∂φ
∂n = λφ on the horizontal free surface S,

where φ is the velocity potential, λ = ω2/g is the eigenvalue, ω is the circular frequency, and g is the
acceleration due to gravity. If we consider the fluid sloshing motion in the half-container, the corresponding
eigenvalue problem can be rewritten as{

(h (x)u′)′ + λu = 0, x ∈ (0, 1),
h(0)u′(0) = 0, h(1)u′(1) = 0,

where h(x) ∈ C[0, 1] with h(x) > 0 is the container depth. The p -Laplacian operator △pu = div(|∇u|p−2∇u)

has attracted considerable attention and arises in various fields, such as non-Newtonian fluids and nonlinear
diffusion problems. The quantity p is a characteristic of the fluid medium. Media with p > 2 are called dilatant
fluids and those with p < 2 are called pseudoplastics. If p = 2 , they are Newtonian fluids. For more on these
topics, the reader can refer to [12, 13, 17, 18, 21, 24] and their bibliographies.
∗Correspondence: yhcheng@tea.ntue.edu.tw
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When considering the two topics related to fluid dynamics mentioned above, it is intuitive to generalize
the situation. In this paper we consider the one-dimensional liquid sloshing problem with the p -Laplacian:{

(h (x) |u′|p−2
u′)′ + (p− 1)λ |u|p−2

u = 0, x ∈ (0, 1),
u′(0) = u′(1) = 0,

(1.1)

where p > 1 . In 1979, Elbert [14] showed that the function Sp(x) defined by the integral

x =

∫ Sp

0

dt

(1− tp)
1/p

is a solution of the initial value problem

(|u′|p−2
u′)′ + (p− 1) |u|p−2

u = 0, u(0) = 0, u′(0) = 1.

He also showed that πp ≡ 2
∫ Sp

0
(1− tp)

−1/p
dt = 2π/ (p sin(π/p)) is the first zero of the function Sp on (0,∞)

and that the function Sp has the following properties:

(a) |Sp(x)|p +
∣∣S′

p(x)
∣∣p = 1 for x ∈ R .

(b)
∣∣S′

p(x)
∣∣p−2

S′′
p (x) = − |Sp(x)|p−2

Sp(x) for x ∈ R .

(c) Let Tp(x) = Sp(x)/S
′
p(x) . Then T ′

p(x) = 1 + |Tp(x)|p for x ∈ R .

Note that the function Sp is called the generalized sine function and it is crucial to our analysis. In this paper,
we study the inverse nodal problem and the eigenvalue gaps in the sloshing problem (1.1). The inverse nodal
problem is the problem of determining the unknown function in the system from the information contained in
the zeros of solutions. One can refer to [6, 9, 15, 20, 23, 29, 30] for the classical Sturm-Liouville equation and
[5, 10] for the Sturm-Liouville equation with the p -Laplacian operator. Applying the Prüfer substitution (see
[1, 3, 7]), it can be shown that the sloshing problem (1.1) has countably infinitely many eigenpairs (un, λn)n≥0 ,

and un has n zeros {x(n)
k : 1 ≤ k ≤ n} in (0, 1) . In particular, λ0 = 0 , the corresponding eigenfunction u0 is

constant, and the nodal set {x(n)
k : 1 ≤ k ≤ n;n = 1, 2, ...} is dense in (0, 1) .

Our first issue is related to the inverse nodal problems in the sloshing problem (1.1). In Theorem 1.1,
we reconstruct the depth function h(x) from the information of the nodal data. The convergence is almost
everywhere (a.e.) for x ∈ (0, 1) and in the L1(0, 1) sense. This also implies that one set of nodal points can
uniquely determine the depth function h(x) . This is parallel to the previous consideration; see, for example,
[9, 10, 15, 20, 23, 29, 30]. Note that more recently Chen et al.[5, 6] employed an original and ingenious
idea towards solving a related problem. They applied the Tikhonov regularization method to reconstruct the
potential function using only zeros of one eigenfunction and provided a process to find the optimal function
coinciding with the finitely given nodal points. By virtue of their idea, we intend to utilize this method on (1.1)
(cf. Theorem 1.2).

Now say we have a set of n− 1 nodal points of the n -th eigenfunction and denote

X(n) :=
{
(x1, x2, ..., xn−1) ∈ Rn−1|0 < x1 < · · · < xn−1 < 1

}
and
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Q :=

{
h ∈ W 1,r ((0, 1)) |

∫ 1

0

h(x)dx = 1

}
, r ∈ (1,∞) .

For x ∈ X(n) , ε > 0 and r > 1 , we define the Tikhonov functional E by

E(n, ε,x;h) := ∥x− z(n, h)∥rr + ε

∫ 1

0

|h′(x)|r dx for h ∈ Q, (1.2)

where z(n, h) is the nth nodal set associated with the depth function h and ∥x− z(n, h)∥r is the ℓr -norm
in Rn−1 . We apply the Tikhonov regularization method on (1.1) to show the existence of the optimal depth
function. In particular, we calculate the first variation of E(n, ε,x;h) in h to derive Euler-Lagrange equations
so that we can find an optimal depth function h(x) for finite nodal data by solving the Euler-Lagrange equations.
The following result is related to the inverse nodal problem.

Theorem 1.1 Let {x(n)
k } be a nodal set of the one-dimensional sloshing problem (1.1). For x ∈ (0, 1) , define

jn ≡ jn(x) = max
{
k : x ≤ x

(n)
k

}
. Then the depth h(x) can be reconstructed from the nodal set by

h
1

1−p (x) = lim
n→∞

1

(p− 1)

{
1 + (p− 1)

∫ 1

0
h

1
1−p (x) dx

(n− 1) ℓ
(n)
jn

− 1

}
. (1.3)

The convergence is a.e. in x ∈ (0, 1) and in the L1(0, 1) sense.

Theorem 1.2 Let ε > 0 , n ∈ N , r > 1 and x ∈ X(n) be given. If hε is a minimizer of E(n, ε,x;h) , then
(z, u, hε) is a solution of the following system

(hε (x) |u′|p−2
u′)′ + (p− 1)λ |u|p−2

u = 0
u(0) = 1, u′(0) = 0, {z1, z2, ..., zn−1} = {x ∈ [0, 1] : u(x) = 0} ,(
|h′

ε|
r−2

h′
ε

)′
= |u′|p

n−1∑
i=0

akχ[zi,zi+1], z0 = 0, zn = 1

h′
ε(0) = h′

ε(1) = 0,

(1.4)

where (λ, u) is the n th eigenpair of (1.1), z is the nodal set of u , and

a0 =
1

ε

n−1∑
i=1

|zi − xi|r−2
(zi − xi)

(p− 1)hε(zi) |u′(zi)|p

∫ 1

zi
|u|p∫ 1

0
|u|p

, ak = a0 +
1

ε

k∑
i=1

|zi − xi|r−2
(zi − xi)

(p− 1)hε(zi) |u′(zi)|p
for k = 1, 2, ..., n− 1.

In the Figure, we give a numerical simulation for the reconstruction formulas (1.3) and (1.4) from the
true nodal data with n = 21 and p = 3 . By the definition in (1.3), the reconstruction is constant in each nodal

interval (x
(n)
k , x

(n)
k+1) and hence, the reconstruction obtained from (1.3) is a step function. On the other hand,

(1.4) can be solved numerically by a finite difference method, and one can reasonably assume that the solution
is quite smooth. Thus, the reconstruction obtained by solving (1.4) is presented as a smooth curve.

On the other hand, the eigenvalue gap/ratio is more of a concern. Consider

−(|y′|p−2
y′)′ = (p− 1) (λρ(x)− q(x)) |y|p−2

y on (0, πp). (1.5)
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Figure 1. Comparison of the reconstruction with n = 21 and p = 3 : (i) the blue curve is the true depth function
h ; (ii) the step function is a reconstruction using (1.3) from the nodal set z(n, h) ; (iii) the red curve is the numerical
approximation obtained using an iterative technique for finding the minimizer hε in (1.4) with ε = n−3 .

We say a function f is ”single-well” with transition point a if f is decreasing on (0, a) and increasing on
(a, πp) ; f is ”single-barrier” if −f is single-well. Based on the generalized Prüfer transformation and comparison
theorem, researchers have investigated the eigenvalue ratios of (1.5). In 2010, Bognár and Dosly [2] showed
that the Dirichlet eigenvalues for (1.5) with ρ ≡ 1 and nonnegative single-well q(x) satisfy µn/µm ≤ np/mp .
In 2013, Chen, Law, Lian and Wang [8] showed the Dirichlet eigenvalues for (1.5) with ρ ≡ 1 and nonnegative
continuous q(x) satisfy µn/µ1 ≤ np . In 2015, Li [19] studied the problem

−(|h(x)y′|p−2
h(x)y′)′ = (p− 1) (λρ(x)− q(x))|y|p−2y

coupled with the separated boundary conditions{
y(0)S′

p(γ) + h(0)y′(0)Sp(γ) = 0,
y(1)S′

p(δ)− h(1)y′(1)Sp(δ) = 0,

where 0 ≤ γ, δ < πp and found the upper bound and lower bound of the eigenvalue ratio λm/λn when
0 < k ≤ hρ ≤ K and q ≥ 0 . On the other hand, by investigating the properties of the generalized
trigonometric functions, the authors in [11] studied the first two Dirichlet eigenvalues for (1.5) and showed
that (i) µ2 − µ1 ≥ 2p − 1 if ρ ≡ 1 and q(x) is single-well with transition point at πp/2 ; (ii) µ2/µ1 ≥ 2p if
q(x) ≡ 0 and ρ(x) is single-barrier with transition point at πp/2 .

In the final theorem, we study the eigenvalue gap λ2 − λ1 for the symmetric single-well h . We give an
optimal lower bound and show that the minimum is attained when h(x) ≡ 1

Theorem 1.3 Consider the one-dimensional sloshing problem (1.1) with symmetric single-well depth h(x) ≥ 1 .
Then the eigenvalue gap λ2 − λ1 ≥ (2p − 1)πp

p . The equality holds only for h(x) ≡ 1 .

The paper is organized as follows. In Section 2, we apply the modified Prüfer substitution to derive
the asymptotic expansion for eigenvalues and nodal points. Then using the information of the nodal data, we
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give a reconstruction formula of the depth function h(x) . In section 3, we show the minimizer of E exists.
Furthermore, we derive Euler-Lagrange equations for the Tikhonov functional and prove Theorem 1.2. In section
4, we use the homotopy method to prove that λ2 − λ1 attains its minimum when h is a constant function, and
then give a proof of Theorem 1.3.

2. Reconstruction from a set of nodal data
Consider the Prüfer substitution

u(x) = r(x)Sp

(
λ

1
p θ(x)

)
, h

1
p−1 (x)u′(x) = r(x)λ

1
pS′

p

(
λ

1
p θ(x)

)
.

We can find

θ′(x) = h
1

1−p (x)
∣∣∣S′

p

(
λ

1
p θ(x)

)∣∣∣p + ∣∣∣Sp

(
λ

1
p θ(x)

)∣∣∣p . (2.1)

Applying some standard arguments (see [1, 3, 7]), it can be shown that (1.1) has countably many eigenpairs

{un, λn}n≥0 and un has n zeros
{
x
(n)
k

}
in (0, 1) . Note that θ(0, λn) =

1
2πpλ

− 1
p

n , θ(1, λn) = (n+ 1/2)πpλ
− 1

p
n

and θ(x
(n)
k , λn) = kπpλ

− 1
p

n for k = 0, 1, 2, ..., n . Moreover, by integrating (2.1) from 0 to 1 , we find that

nπpλ
− 1

p
n =

∫ 1

0

θ′n(x)dx

=
1

p
+

p− 1

p

∫ 1

0

h
1

1−p (x) dx+

∫ 1

0

(
1− h

1
1−p (x)

)(∣∣∣∣S′
p

(
λ

1
p
n θ(x)

)∣∣∣∣p − 1

p

)
dx.

This implies that λ
1/p
n = O (n) . Hence, by λ

1/p
n = O (n) , (2.1) and the general Riemann-Lebesgue Lemma (see

[10, Lemma 3.1]) , we can obtain

λ
1
p
n =

p (n− 1)πp

1 + (p− 1)
∫ 1

0
h

1
1−p (x) dx

+ o(n). (2.2)

Similarly, by integrating (2.1) from x
(n)
k to x

(n)
k+1 and letting ℓ

(n)
k = x

(n)
k+1 − x

(n)
k , we find that

πpλ
− 1

p
n =

∫ x
(n)
k+1

x
(n)
k

θ′n(x)dx

=
ℓ
(n)
k

p
+

p− 1

p

∫ x
(n)
k+1

x
(n)
k

h
1

1−p (x) dx+

∫ x
(n)
k+1

x
(n)
k

(
1− h

1
1−p (x)

)(∣∣∣∣S′
p

(
λ

1
p
n θ(x)

)∣∣∣∣p − 1

p

)
dx.

Hence,

ℓ
(n)
k = pπpλ

− 1
p

n − (p− 1)

∫ x
(n)
k+1

x
(n)
k

h
1

1−p (x) dx+ o(
1

n
).

Now, we are prepared to prove Theorem 1.1.

Proof [Proof of Theorem 1.1]
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For x ∈ (0, 1) , let jn ≡ jn(x) = max
{
k : x ≤ x

(n)
k

}
for convenience . Since the nodal set is dense in

[0, 1] , we find that the sequence of intervals
{[

x
(n)
jn

, x
(n)
jn+1

)
: n is sufficiently large

}
shrinks to x nicely (cf.

Rudin [22, p.140]). Hence, we can obtain

1

ℓ
(n)
jn

∫ x
(n)
jn+1

x
(n)
jn

h
1

1−p (t) dt → h
1

1−p (x) a.e. for x ∈ (0, 1).

In particular, by the Lebesgue dominated convergence theorem, we find

1

ℓ
(n)
jn

∫ x
(n)
jn+1

x
(n)
jn

h
1

1−p (t) dt → h
1

1−p (x) in L1(0, 1).

Hence, we can find

h
1

1−p (x) = lim
n→∞

1

(p− 1)

 pπp

λ
1
p
n ℓ

(n)
jn

− 1


a.e. for x ∈ (0, 1) and in L1(0, 1) . Finally, by the eigenvalue asymptotic expansion (2.2), we can conclude that

h
1

1−p (x) = lim
n→∞

1

(p− 1)

{
1 + (p− 1)

∫ 1

0
h

1
1−p (t) dt

(n− 1) ℓ
(n)
jn

− 1

}

a.e. for x ∈ (0, 1) and in L1(0, 1) . 2

3. Tikhonov regularization for the inverse nodal problem
In this section, we apply the Tikhonov regularization method to study the minimization problem for the sloshing
problem (1.1). We will reconstruct an optimal depth function by using finite nodal data. To do this, we first
show that E(n, ε,x; ·) has a minimizer in Q .

Theorem 3.1 Given n ∈ N , ε > 0 and x ∈ X(n) , E(n, ε,x; ·) has at least one minimizer in Q .

Proof For r > 1 , since E(n, ε,x; ·) is a nonnegative well-defined functional on Q , we find that there is a
sequence {hi}∞i=1 ⊂ Q such that

lim
i→∞

E(n, ε,x;hi) = inf
h∈Q

E(n, ε,x;h).

This implies that {hi} is a bounded family in W 1,r ([0, 1]) . Hence, by applying the weak compactness argument
on Q , there exists a subsequence of {hi} , also called {hi} , such that

hi → hε ∈ Q weakly in W 1,r ([0, 1]) and uniformly in C ([0, 1]) .

Furthermore, by the weak lower semicontinuity of the functional
∫ 1

0
|h′|r , we have

∫ 1

0

|h′
ε(x)|

r
dx ≤ lim inf

i→∞

∫ 1

0

|h′
i(x)|

r
dx.
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In particular, we also have

E(n, ε,x;hε) ≤ lim inf
i→∞

E(n, ε,x;hi) = inf
h∈Q

E(n, ε,x;h).

This concludes that hε is a minimizer of E(n, ε,x; ·) in Q .
2

In the following, we derive the Euler-Lagrange equation for the sloshing problem (1.1). We will show the
minimization problem can be formulated as shown in Theorem 1.2. To achieve our goal, we calculate the first
variation of E(n, ε,x;h) in h , i.e. solve

lim
t→0

E(n, ε,x;hε + tν)− E(n, ε,x;hε)

t
= 0.

For t ∈ R , let φ(t) = hε + tν , E0(t) = E(n, ε,x;φ(t)) , Z(t) = (Z1(t), ..., Zn−1(t)) = z(n, φ(t)) , Λ(t) =

λ(n, φ(t)) and U(x, t) = u(x;n, φ(t)) . Denote ′ = d
dx and · = d

dt . Let V (x, t) = U̇(x, t) . Then Z(0) = z(n, hε) ,
Λ(0) = λ and U(x, 0) = u(x) . Moreover, we have

Ė0(t) = r ∥Z − x∥r−1
r · Ż + εr

∫ 1

0

(|h′
ε + tν′|r−2

(h′
ε + tν′)ν′.

On the other hand, since U(Zi(t), t) = 0 , we have

Żi(t) = − V (Zi(t), t)

U ′(Zi(t), t)
.

Now, differentiating the equation

(φ(t) |U ′|p−2
U ′)′ + (p− 1)Λ |U |p−2

U = 0 (3.1)

with respect to t , we find V ′(0, t) = V ′(1, t) = 0 and

(ν |U ′|p−2
U ′)′ + (p− 1)(φ(t) |U ′|p−2

V ′)′ + (p− 1) Λ̇ |U |p−2
U + (p− 1)

2
Λ |U |p−2

V = 0 (3.2)

By (3.1) and (3.2), we have

(φ(t) |U ′|p−2
U ′)′V − (φ(t) |U ′|p−2

V ′)′U =
1

p− 1
(ν |U ′|p−2

U ′)′U + Λ̇ |U |p (3.3)

Since U ′(0, t) = U ′(1, t) = V ′(0, t) = V ′(1, t) = 0 , we can integrate (3.3) from 0 to x and apply integration by
parts to obtain

φ(t)
(
|U ′|p−2

U ′V − |U ′|p−2
V ′U

)
=

1

p− 1
ν |U ′|p−2

U ′U − 1

p− 1

∫ x

0

ν |U ′|p + Λ̇

∫ x

0

|U |p . (3.4)

We can take x = 1 in (3.4) to obtain

Λ̇(t) =

∫ 1

0
ν |U ′|p

(p− 1)
∫ 1

0
|U |p

.
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On the other hand, since zi = Zi(0) , u(x) = U(x, 0) and u(zi) = 0 , we can take x = zi and t = 0 in (3.4) to
obtain

hε(zi) |u′(zi)|
p−2

u′(zi)V (zi, 0) = − 1

p− 1

∫ zi

0

ν |u′|p + Λ̇(0)

∫ zi

0

|u|p .

Hence

Żi(0) = −V (zi, 0)

u′(zi)

=
−1

hε(zi) |u′(zi)|p
[
− 1

p− 1

∫ zi

0

ν |u′|p + Λ̇(0)

∫ zi

0

|u|p
]

=
−1

hε(zi) |u′(zi)|p

[
− 1

p− 1

∫ zi

0

ν |u′|p +
∫ 1

0
ν |u′|p

(p− 1)
∫ 1

0
|u|p

∫ zi

0

|u|p
]

=
1

(p− 1)hε(zi) |u′(zi)|p

[∫ zi

0

ν |u′|p −
∫ 1

0
ν |u′|p

∫ zi
0

|u|p∫ 1

0
|u|p

]

=
1

(p− 1)hε(zi) |u′(zi)|p
∫ 1

0

ν |u′|p
[
χ[0,zi] −

∫ zi
0

|u|p∫ 1

0
|u|p

]

=
1

(p− 1)hε(zi) |u′(zi)|p
∫ 1

0

ν |u′|p
[∫ 1

zi
|u|p∫ 1

0
|u|p

− χ[zi,1]

]
.

This implies that the first variation of E(n, ε,x;h) in h is

0 = Ė0(0)

= r ∥Z(0)− x∥r−1
r · Ż(0) + εr

∫ 1

0

|h′
ε|

r−2
h′
εν

′

= r

n−1∑
i=1

|zi − xi|r−2
(zi − xi)

(p− 1)hε(zi) |u′(zi)|p
∫ 1

0

ν |u′|p
[∫ 1

zi
|u|p∫ 1

0
|u|p

− χ[zi,1]

]
+ εr

∫ 1

0

|h′
ε|

r−2
h′
εν

′

= rε

∫ 1

0

{
|h′

ε|
r−2

h′
εν

′ +
1

ε
ν |u′|p

n−1∑
i=1

|zi − xi|r−2
(zi − xi)

(p− 1)hε(zi) |u′(zi)|p

(∫ 1

zi
|u|p∫ 1

0
|u|p

− χ[zi,1]

)}

Set a = (a0, a1, ..., an−1) where

a0 =
1

ε

n−1∑
i=1

|zi − xi|r−2
(zi − xi)

(p− 1)hε(zi) |u′(zi)|p

∫ 1

zi
|u|p∫ 1

0
|u|p

and ak = a0 +
1

ε

k∑
i=1

|zi − xi|r−2
(xi − zi)

(p− 1)hε(zi) |u′(zi)|p
for k = 1, 2, ..., n− 1.

We obtain the following equations about the minimizer:

(
|h′

ε|
r−2

h′
ε

)′
= |u′|p

n−1∑
i=0

akχ[zi,zi+1], z0 = 0, zn = 1

h′
ε(0) = h′

ε(1) = 0.

This completes the proof of Theorem 1.2.
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4. Eigenvalue gap for symmetric single-well depth

In this section, we study the eigenvalue gap for λ2 − λ1 where {λn}n≥0 is the eigenvalue set of (1.1). We

first observe that, if h(x) ≡ m > 0 , then the normalized eigenpairs are un(x) = p1/pSp (nπpx+ πp/2) and
λn = m (nπp)

p . Hence, limm→0+ λn = 0 and limm→∞ λn = ∞ for all n ∈ N . In particular, λ2 − λ1 is
increasing in m .

Now, let h(x, t) be a one-parameter family of functions such that ∂
∂th(x, t) exists and let (λn(t), un(x, t))n≥0

be the nth normalized eigenpair of (1.1). We have the following lemma.

Lemma 4.1 Consider (1.1) with the function h(x, t) . Then we have

λ̇n(t) =

∫ 1

0

ḣ(x, t) |u′
n(x, t)|

p
dx. (4.1)

Proof First, replacing h(x) by h(x, t) , (1.1) is reduced to(
h(x, t) |u′

n(x, t)|
p−2

u′
n(x, t)

)′
+ λ(t) |un(x, t)|p−2

un(x, t) = 0, 0 ≤ x ≤ 1. (4.2)

Denote ẏ(x, t) ≡ ∂
∂ty(x, t) . Then, differentiating (4.2) with respect to t and combining with (4.2), we obtain

λ̇(t) |un(x, t)|p = (p− 1)
(
h(x, t) |u′

n(x, t)|
p−2

u′
n(x, t)

)′
u̇n(x, t)

−
(
ḣ(x, t) |u′

n(x, t)|
p−2

u′
n(x, t) + (p− 1)h(x, t) |u′

n(x, t)|
p−2

u̇′
n(x, t)

)′
un(x, t)

Integrating the above equation from 0 to 1 with respect to x , using integration by parts, we obtain

λ̇n(t) =

∫ 1

0

ḣ(x, t) |u′
n(x, t)|

p
dx.

2

Next, we prove that |u′
1| and |u′

2| have at most two intersections in (0, 1) for the eigenfunctions u1 and
u2 .

Lemma 4.2 For the normalized eigenfunctions u1 and u2 of (1.1), the equation |u′
1(x)| = |u′

2(x)| has at most
two solutions in (0, 1) .

Proof Let α0 ∈ (0, 1) be a local minimum of u2(x) . Then u′
2(α0) = 0 . We will first show that u′

1(x) < 0 on

(0, 1) while u′
2(x) < 0 on (0, α0) and u′

2(x) > 0 on (α0, 1) . Let x
(1)
1 be the zero of u1(x) . Then u1(x) > 0 on

(0, x
(1)
1 ) and u1(x) < 0 on (x

(1)
1 , 1) . In particular, we have, for x ∈ (0, x

(1)
1 ) ,

h(x) |u′
1(x)|

p−2
u′
1(x) =

∫ x

0

(
h(z) |u′

1(z)|
p−2

u′
1(z)

)′
dz = −λ1

∫ x

0

|u1(z)|p−2
u1(z)dz < 0,

and for x ∈ (x
(1)
1 , 1) ,

−h(x) |u′
1(x)|

p−2
u′
1(x) =

∫ 1

x

(
h(z) |u′

1(z)|
p−2

u′
1(z)

)′
dt = −λ1

∫ 1

x

|u1(z)|p−2
u1(z)dt > 0.
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Hence, u′
1(x) < 0 on (0, 1) . Similarly, we can show that u′

2(x) < 0 on (0, α0) and u′
2(x) > 0 on (α0, 1) . This

implies that u2(x) has only one local minimum in (0, 1) .
In order to compare the behaviors of u′

1(x) and u′
2(x) , we introduce a Pru̇fer substitution

un(x) = r(x)Sp (φn(x)) , h
1

p−1 (x)u′
n(x) = r(x)S′

p (φn(x)) .

It can be shown that φn(0) = πp/2 ,

φ′
n(x) = h

1
p−1 (x)

∣∣S′
p (φn(x))

∣∣p + λn |Sp (φn(x))|p

and, by the comparison theorem [3], we have φ2(x) > φ1(x) on (0, α0) . Now, we calculate that(
|u′

2(x)|
p−2

u′
2(x)

|u′
1(x)|

p−2
u′
1(x)

)′

=

(
h(x) |u′

2(x)|
p−2

u′
2(x)

h(x) |u′
1(x)|

p−2
u′
1(x)

)′

=

(
h(x) |u′

2(x)|
p−2

u′
2(x)

)′
h(x) |u′

1(x)|
p−2

u′
1(x)− h(x) |u′

2(x)|
p−2

u′
2(x)

(
h(x) |u′

1(x)|
p−2

u′
1(x)

)′
(
h(x) |u′

1(x)|
p−2

u′
1(x)

)2
=

−
(
λ2 |u2(x)|p−2

u2(x)
)
h(x) |u′

1(x)|
p−2

u′
1(x) + h(x) |u′

2(x)|
p−2

u′
2(x)

(
λ1 |u1(x)|p−2

u1(x)
)

(
h(x) |u′

1(x)|
p−2

u′
1(x)

)2
=

λ1h(x) |u′
2(x)|

p−2
u′
2(x) |u1(x)|p−2

u1(x)− λ2h(x) |u′
1(x)|

p−2
u′
1(x) |u2(x)|p−2

u2(x)(
h(x) |u′

1(x)|
p−2

u′
1(x)

)2 .

Denote φ(x) = λ1h(x) |u′
2(x)|

p−2
u′
2(x) |u1(x)|p−2

u1(x)−λ2h(x) |u′
1(x)|

p−2
u′
1(x) |u2(x)|p−2

u2(x) . Then we find
φ(0) = 0, φ(α0) < 0 and

φ(x)− 1

(p− 1)
φ′(x)

= λ2h(x) |u′
1(x)|

p−2
u′
1(x) |u2(x)|p−2

u′
2(x)u1(x)− λ2h(x) |u′

1(x)|
p−2

u′
1(x) |u2(x)|p−2

u2(x)u
′
1(x)

= λ2h
p

p−1 (x) |u′
1(x)|

p−2
u′
1(x) |u2(x)|p−2

u′
1(x)u

′
2(x)

[
u1(x)

h
1

p−1 (x)u′
1(x)

− u2(x)

h
1

p−1 (x)u′
2(x)

]

= λ2h
p

p−1 (x) |u′
1(x)|

p−2
u′
1(x) |u2(x)|p−2

u′
1(x)u

′
2(x) [Tp (φ1(x))− Tp (φ2(x))]

> 0 on (0, α0),

where the last inequality comes from the monotonicity of Tp on (πp/2, 3πp/2) . This implies that φ′(x) < 0

whenever φ(x) = 0 . Hence, we find that φ(x) < 0 on (0, α0) . Moreover, since u′
2(α0)

u′
1(α0)

= 0 , we find that u′
2(x)

u′
1(x)

decreases to 0 on (0, α0) and hence |u′
2(x)| = |u′

1(x)| has at most one solution on (0, α0) . Similarly, it can be
shown that |u′

2(x)| = |u′
1(x)| has at most one solution on (α0, 1) . 2
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Now, we are prepared to prove Theorem 1.3.

Proof [Proof of Theorem 1.3]
Let h(x) be a symmetric single-well function with h(x) ≥ 1 on [0, 1] , and assume (λ2 − λ1) [h] attains

its minimum at some symmetric single-well function h0 . Define by (λn, un) the n -th normalized eigenpair of
(1.1) corresponding to h0 . It is clear that u1 is antisymmetric and u2 is symmetric. By Lemma 4.2, there
exists 0 ≤ x̂ < 1/2 such that

|u′
2(x)|

p − |u′
1(x)|

p

 > 0 for (0, x̂),
< 0 for (x̂, 1− x̂),
> 0 for (1− x̂, 1).

Now, consider the one-parameter family of functions h(x, t) ≡ th0(x̂) + (1 − t)h0(x) where 0 < t < 1

and denote by (λn(t), un(x, t)) the n -th normalized eigenpair of (1.1) corresponding to h(x, t) . It is clear that
λn(0) = λn and un(x, 0) = un(x) . By (4.1) and the optimality of h0 , we find that

0 ≤ d

dt
(λ2(t)− λ1(t))

∣∣∣∣
t=0

=

∫ 1

0

[h0(x̂)− h0(x)]
[
|u′

2(x, 0)|
p − |u′

1(x, 0)|
p]

dx ≤ 0.

This forces that h0(x) = h0(x̂) for all x ∈ (0, 1) . In particular, (λ2 − λ1) (h) attains its minimum if h is
constant. Finally, for h (x) ≡ m ≥ 1 , (λ2 − λ1) [h] is increasing in m . So we find the minimum of λ2 − λ1

occurs at m = 1 with (λ2 − λ1) [1] = (2πp)
p − πp

p = (2p − 1)πp
p . 2
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