т $\mathbf{B} \boldsymbol{B I t a K}$

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: 1401 - 1411
© TÜBİTAK
doi:10.3906/mat-2002-24

Some results on prime rings with multiplicative derivations

Gurninder Singh SANDHU ${ }^{1, *}{ }^{(1)}$, Didem KARALARLIOĞLU CAMCI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Patel Memorial National College, Rajpura, India
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

Received: 06.02.2020 • Accepted/Published Online: 01.06.2020 \quad • Final Version: 08.07.2020

Abstract

Let R be a prime ring with center $Z(R)$ and an automorphism α. A mapping $\delta: R \rightarrow R$ is called multiplicative skew derivation if $\delta(x y)=\delta(x) y+\alpha(x) \delta(y)$ for all $x, y \in R$ and a mapping $F: R \rightarrow R$ is said to be multiplicative (generalized)-skew derivation if there exists a unique multiplicative skew derivation δ such that $F(x y)=F(x) y+\alpha(x) \delta(y)$ for all $x, y \in R$. In this paper, our intent is to examine the commutativity of R involving multiplicative (generalized)-skew derivations that satisfy the following conditions: (i) $F\left(x^{2}\right)+x \delta(x)=\delta\left(x^{2}\right)+x F(x)$, (ii) $F(x \circ y)=\delta(x \circ y) \pm x \circ y$, (iii) $F([x, y])=\delta([x, y]) \pm[x, y]$, (iv) $F\left(x^{2}\right)=\delta\left(x^{2}\right)$, (v) $F([x, y])= \pm x^{k}[x, \delta(y)] x^{m}$, (vi) $F(x \circ y)= \pm x^{k}(x \circ \delta(y)) x^{m},($ vii $) F([x, y])= \pm x^{k}[\delta(x), y] x^{m},($ viii $) F(x \circ y)= \pm x(\delta(x) \circ y) x^{m}$ for all $x, y \in R$.

Key words: Prime ring, multiplicative generalized derivation, multiplicative (generalized)-skew derivation, multiplicative left centralizer.

1. Introduction and preliminaries

Let R be an associative ring and $Z(R)$ denotes the center of R. By a prime ring, we mean a ring R in which for every $a, b \in R, a R b=(0)$ implies $a=0$ or $b=0$. Moreover, if $a R a=(0)$ implies $a=0$, then R is called a semiprime ring. An additive mapping $d: R \rightarrow R$ is said to be a derivation of R if $d(x+y)=d(x)+d(y)$ and $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. Let $F: R \rightarrow R$ be a mapping associated with a derivation d such that $F(x+y)=F(x)+F(y)$ and $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. Then F is said to be a generalized derivation of R, which was introduced by Bre šar [1]. In the same paper Brešar observed that if R has the property that $R x=(0)$ implies $x=0 ; h: R \rightarrow R$ is any function and $\mu: R \rightarrow R$ is an additive mapping satisfying $\mu(x y)=\mu(x) y+x h(y)$ for all $x, y \in R$, then μ is uniquely determined by h and moreover h must be a derivation of R. A generalized derivation F associated with a zero derivation is said to be a left multiplier of R. Thus, every derivation and every left multiplier is a generalized derivation. Daif [4] introduced a mapping $\Delta: R \rightarrow R$ satisfying $\Delta(x y)=\Delta(x) y+x \Delta(y)$ for all $x, y \in R$, which is called multiplicative derivation of R. Of course, these mappings are not necessarily additive. Furthermore, the complete description of these mappings was given by Goldmann and \breve{S} emrl [9]. Let $R=\mathfrak{C}[0,1]$ be the ring of all continuous real-valued functions

[^0]defined on $[0,1]$ and a mapping $\Delta: R \rightarrow R$ such that
\[

\Delta(f)(x)=\left\{$$
\begin{array}{ll}
f(x) \log |f(x)| & \text { if } f(x) \neq 0 \\
0 & \text { if } f(x)=0
\end{array}
$$\right\}
\]

Then, it is straight forward to check that Δ is not additive but satisfies $\Delta\left(f_{1} f_{2}\right)=\Delta\left(f_{1}\right) f_{2}+f_{1} \Delta\left(f_{2}\right)$ for all $f_{1}, f_{2} \in R$. Daif and Tammam-El-Sayiad [5] gave a generalization of the notion of multiplicative derivation, which is known as multiplicative generalized derivation, namely a function $F: R \rightarrow R$ associated with a derivation Δ of R is said to be a multiplicative generalized derivation if $F(x y)=F(x) y+x \Delta(y)$ for all $x, y \in R$. In addition, Dhara and Ali [7] extended the notion of multiplicative derivation to its full generality by introducing multiplicative (generalized)-derivation. Accordingly, a function $F: R \rightarrow R$ is said to be a multiplicative (generalized)-derivation of R if there exists a function $\Delta: R \rightarrow R$ such that $F(x y)=F(x) y+x \Delta(y)$ for all $x, y \in R$. Of course, F and Δ are not necessarily additive. In a recent paper [3], second author and Aydin obtained that in semiprime rings the associated function of a multiplicative (generalized)-derivation must be a multiplicative derivation. For an up-to-date discussion of these mappings one may see $[3,7,11,16]$ and references therein.

Very recently, Rehman and Khan [15] introduced the notion of multiplicative (generalized)-skew derivation as; for any automorphism α of a ring R, a function $F: R \rightarrow R$ is said to be a multiplicative (generalized)skew derivation of R if there exists a function $\delta: R \rightarrow R$ such that $F(x y)=F(x) y+\alpha(x) \delta(y)$ for all $x, y \in R$. In case α is the trivial automorphism, F is just a multiplicative (generalized)-derivation of R. Therefore, multiplicative (generalized)-skew derivation covers the concepts of multiplicative (generalized)-derivation, multiplicative derivation and multiplicative left centralizer. Moreover, it has also been proved that in semiprime rings, the associated function δ of a multiplicative (generalized)-skew derivation F is defined as $\delta(x y)=\delta(x) y+\alpha(x) \delta(y)$ for all $x, y \in R$, which is called multiplicative skew derivation of R (see [15, Lemma 2.1]). In case δ is additive, it is called a skew derivation of R. A mapping $F: R \rightarrow R$ is called a multiplicative generalized skew derivation if it is uniquely determined by a skew derivation δ such that $F(x y)=F(x) y+\alpha(x) \delta(y)$ for all $x, y \in R$.

In 1992, Bell and Daif [6] proved that if R is a semiprime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d([x, y])=[x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. In 2003, Quadri et al. [14] proved the following result: Let R be a prime ring and I is a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d such that $F([x, y])=[x, y]$ for all $x, y \in I$, then R is commutative. Moreover, Shang [17] extended these results by characterizing the conditions $F([x, y])=x^{k}[x, y] x^{l}$ and $F([x, y])=-x^{k}[x, y] x^{l}$ where k, l are fixed positive integers. Inspired by Shang [17], Koç and Gölbaşi [11] proved that a semiprime ring R that admits a multiplicative generalized derivation F contains a nonzero central ideal if any one of the following conditions hold:

1. $F([x, y])=x^{m}[x, y] x^{n}$
2. $F([x, y])=-x^{m}[x, y] x^{n}$.

In this view, it is natural to think of some more general situations: $F([x, y])=x^{m}[\delta(x), y] x^{n}, F([x, y])=$ $-x^{m}[\delta(x), y] x^{n}, \quad F([x, y])=x^{m}[x, \delta(y)] x^{n}$ and $F([x, y])=-x^{m}[x, \delta(y)] x^{n}$, where F is a multiplicative (generalized)-skew derivation of R associated with a multiplicative skew derivation δ. In the present paper, we examine these identities and discuss the commutative structure of the rings.

Let us recall some well-known results of this subject that will be used in the sequel.

Lemma 1.1 ([2], Lemma) Let R be a prime ring. If functions $f: R \rightarrow R$ and $g: R \rightarrow R$ such that $f(x) y g(z)=g(x) y f(z)$ for all $x, y, z \in R$, and $0 \neq f$, then there exists λ in the extended centroid of R such that $g(x)=\lambda f(x)$ for all $x \in R$.

Corollary 1.2 ([8], Corollary 7) Let R be a prime ring containing a nonzero idempotent. Then any left centralizer $\varphi: R \rightarrow Q_{m l}$ is additive, where $Q_{m l}$ denotes the maximal right ring of quotients of R.

Corollary 1.3 ([10], Corollary pg no. 8) Let R be a prime ring and suppose that $0 \neq a \in R$ satisfies $a[u, x]=0$ for all $x \in R$. Then $u \in Z(R)$.

Theorem 1.4 ([13], Theorem) Let R be a prime ring that admits a nontrivial automorphism σ such that $[\sigma(x), x]=0$ for all $x \in R$. Then R is commutative.

Theorem 1.5 ([12], Theorem 1) Let R be a noncommutative prime ring with derivations d and δ such that $\left[d\left(x^{m}\right) x^{n}-x^{p} \delta\left(x^{q}\right), x^{r}\right]_{k}=0$ for all $x \in R$, where m, n, p, q, r, k are fixed positive integers. Then $d=0$ and $\delta=0$.

2. The Results

Lemma 2.1 Let R be a ring and α be an endomorphism of R. If R admits a multiplicative (generalized)-skew derivation F together with a multiplicative skew derivation δ, then $F-\delta$ is a multiplicative left centralizer of R.

Proof Let us set $H=F-\delta$. Then for any $x, y \in R$, we see that $H(x y)=(F-\delta)(x y)=F(x y)-\delta(x y)=$ $F(x) y-\delta(x) y=H(x) y$. Therefore, H is a multiplicative left centralizer of R.

Lemma 2.2 Let R be a ring and δ be a multiplicative derivation of R. Then δ preserves the center of R.
Proof Let $a \in Z(R)$ be any element. Then for each $x \in R$, we have

$$
\delta(x a)=\delta(x) a+x \delta(a)
$$

and on the other hand

$$
\delta(a x)=\delta(a) x+a \delta(x)
$$

Combining these both expressions, we get $[\delta(a), x]=0$ for all $x \in R$. Hence $\delta(a) \in Z(R)$.

Theorem 2.3 Let R be a prime ring with extended centroid C and $F: R \rightarrow R$ be a multiplicative (generalized)skew derivation associated with a multiplicative skew derivation δ of R.

1. If $F(x \circ y)=\delta(x \circ y) \pm x \circ y$ for all $x, y \in R$, then either R is commutative or there exists $\lambda \in C$ such that $F(x)=\lambda x+\delta(x)$ for all $x \in R$, where $\lambda= \pm 1$.
2. If $F([x, y])=\delta([x, y]) \pm[x, y]$ for all $x, y \in R$, then either R is commutative or there exists $\lambda \in C$ such that $F(x)=\lambda x+\delta(x)$ for all $x \in R$, where $\lambda= \pm 1$.

Proof

1. Let us consider $F(x \circ y)=\delta(x \circ y) \pm(x \circ y)$ for all $x, y \in R$. Which is equivalent to $H(x \circ y)= \pm(x \circ y)$ for all $x, y \in R$, where $H=F-\delta$ and by Lemma 2.1, H is a multiplicative left centralizer of R. Replace x by $x z$, we have

$$
H(x \circ y) z+H(x)[z, y]= \pm(x \circ y) z \pm x[z, y], \forall x, y, z \in R
$$

It implies that

$$
\begin{equation*}
H(x)[z, y]= \pm x[z, y], \forall x, y, z \in R \tag{2.1}
\end{equation*}
$$

Replace x by $p x$ in (2.1), we find that

$$
\begin{equation*}
H(p) x[z, y]= \pm p x[z, y] \tag{2.2}
\end{equation*}
$$

Left multiply (2.1) by p and subtract from (2.2), we get

$$
(H(p) x-p H(x))[z, y]=0, \forall x, y, z, p \in R .
$$

Replace x by $q x$, we get $(H(p) q-p H(q)) R[z, y]=(0)$ for all $y, z, p, q \in R$. It implies that either $H(p) q=p H(q)$ for all $p, q \in R$ or R is commutative. In the first case, we have $H(p) q=p H(q)$ for all $p, q \in R$. Replace p by $p r$, where $r \in R$, we have $H(p) r 1_{R}(q)=1_{R}(p) r H(q)$, where 1_{R} denotes the identity mapping of R. By Fact 1.1, there exists some $\lambda \in C$ such that $H(x)=\lambda x$ for all $x \in R$. Hence $F(x)=\lambda x+\delta(x)$ for all $x \in R$. In this view, the given hypothesis yields $\lambda= \pm 1$. In the latter case we have R is commutative.
2. Let us consider $F([x, y])=\delta([x, y]) \pm([x, y])$ for all $x, y \in R$. Which is equivalent to $H([x, y])= \pm([x, y])$ for all $x, y \in R$ and H is a multiplicative left centralizer of R. Replace x by $x z$, we have

$$
H([x, y]) z+H(x)[z, y]= \pm([x, y]) z \pm x[z, y], \forall x, y, z \in R
$$

It implies that $H(x)[z, y]= \pm x[z, y]$ for all $x, y, z \in R$. This expression is same as (2.1), in the same way we get the conclusions.

Theorem 2.4 Let R be a prime ring with extended centroid C. Let R contain a nontrivial idempotent element and $F: R \rightarrow R$ be a multiplicative (generalized)-skew derivation associated with a multiplicative skew derivation δ.

1. If $F\left(x^{2}\right)+x \delta(x)=\delta\left(x^{2}\right)+x F(x)$ for all $x \in R$, then either R is commutative or there exists $\lambda \in C$ such that $F(x)=\lambda x+\delta(x)$ for all $x \in R$.
2. If $F\left(x^{2}\right)=\delta\left(x^{2}\right)$ for all $x, y \in R$, then either R is commutative or $F=\delta$.

Proof Let $H=F-\delta$. By Lemma 2.1, H is a multiplicative left centralizer of R. Since R is prime and containing nonzero idempotents, in view of Fact $1.2, H$ is a left centralizer of R.

1. Let us consider $F\left(x^{2}\right)+x \delta(x)=\delta\left(x^{2}\right)+x F(x)$ for all $x \in R$. It can be seen as $(F-\delta)\left(x^{2}\right)=x(F-\delta)(x)$ for all $x \in R$. That is $H\left(x^{2}\right)=x H(x)$ for all $x \in R$. Since H is a left centralizer of R, we may infer that

$$
\begin{equation*}
[H(x), x]=0, \forall x \in R \tag{2.3}
\end{equation*}
$$

SANDHU and KARALARLIOĞLU CAMCI/Turk J Math

Linearizing on x and using (2.3), we get $[H(x), y]+[H(y), x]=0$ for all $x, y \in R$. Replacing y by $y z$ in the last relation, we get

$$
\begin{equation*}
y[H(x), z]=H(y)[x, z], \forall x, y, z \in R \tag{2.4}
\end{equation*}
$$

Substituting $t x$ for x in (2.4), we obtain

$$
y[H(t), z] x+y H(t)[x, z]=H(y) t[x, z]+H(y)[t, z] x, \forall x, y, z, t \in R
$$

Eq. (2.4) reduces it to $y H(t)[x, z]=H(y) t[x, z]$ for all $x, y, z, t \in R$. That is

$$
(y H(t)-H(y) t)[x, z]=0, \forall x, y, z, t \in R
$$

Replace t by $t r$, where $r \in R$, we find $(y H(t)-H(y) t) R[x, z]=(0)$ for all $x, y, z, t \in R$. Therefore either $y H(t)=H(y) t$ for all $y, t \in R$ or R is commutative. Let us consider $y H(t)=H(y) t$ for all $y, t \in R$. Replace y by $y z$, we get $1_{R}(y) z H(t)=H(y) z 1_{R}(t)$ for all $y, z, t \in R$. By Fact 1.1, we find that there exists some $\lambda \in C$ such that $H(x)=\lambda x$ for all $x \in R$. Thus $F(x)=\lambda x+\delta(x)$ for all $x \in R$.
2. Let $F\left(x^{2}\right)=\delta\left(x^{2}\right)$ for all $x \in R$. That is, $H\left(x^{2}\right)=0$ for all $x \in R$. Linearizing, we find $H(x \circ y)=0$ for all $x, y \in R$. Replacing y by $y z$, we get $H(y)[x, z]=0$ for all $x, y \in R$. We are done by Fact 1.3.

Theorem 2.5 Let R be a 2-torsion free prime ring and $F: R \rightarrow R$ be a multiplicative (generalized)-skew derivation associated with a multiplicative skew derivation δ and a nontrivial automorphism α of R such that $F([x, y])= \pm x^{k}[x, \delta(y)] x^{m}$ for all $x, y \in R$ and fixed positive integers k, m. Then $\delta(x)[\alpha(x), x]=0=$ $[\alpha(x), x] \delta(x)$ for all $x \in R$. Moreover, if δ is additive and $\delta(Z(R)) \neq(0)$, then R is commutative.

Proof Suppose that

$$
F([x, y])= \pm x^{k}[x, \delta(y)] x^{m}, \forall x, y \in R
$$

Substitute $y x$ for y in this expression, we get

$$
\begin{aligned}
F([x, y] x)= & \pm x^{k}[x, \delta(y) x+\alpha(y) \delta(x)] x^{m} \\
F([x, y]) x+\alpha([x, y]) \delta(x)= & \pm x^{k}[x, \delta(y)] x^{m+1} \pm x^{k} \alpha(y)[x, \delta(x)] x^{m} \\
& \pm x^{k}[x, \alpha(y)] \delta(x) x^{m}
\end{aligned}
$$

By the given hypothesis, we have

$$
\begin{equation*}
\alpha([x, y]) \delta(x)= \pm x^{k} \alpha(y)[x, \delta(x)] x^{m} \pm x^{k}[x, \alpha(y)] \delta(x) x^{m} \tag{2.5}
\end{equation*}
$$

Replace y by $\alpha^{-1}(x) y$ in (2.5), we obtain

$$
x \alpha([x, y]) \delta(x)+[\alpha(x), x] \alpha(y) \delta(x)= \pm x^{k+1} \alpha(y)[x, \delta(x)] x^{m} \pm x^{k+1}[x, \alpha(y)] \delta(x) x^{m}
$$

Employing (2.5), we get

$$
[\alpha(x), x] \alpha(y) \delta(x)=0, \forall x, y \in R
$$

SANDHU and KARALARLIOĞLU CAMCI/Turk J Math

It implies that for each $x \in R$, either $[\alpha(x), x]=0$ or $\delta(x)=0$. These both cases imply $\delta(x)[\alpha(x), x]=0$ and $[\alpha(x), x] \delta(x)=0$ for all $x \in R$.

Suppose that δ is additive. Then from the relation $\delta(x)[\alpha(x), x]=0$ for all $x \in R$, we obtain

$$
\begin{array}{r}
\delta(x)[\alpha(x), y]+\delta(x)[\alpha(y), x]+\delta(x)[\alpha(y), y]+\delta(y)[\alpha(x), x] \\
+\delta(y)[\alpha(x), y]+\delta(y)[\alpha(y), x]=0, \forall x, y \in R . \tag{2.6}
\end{array}
$$

Replace x by $-x$ in (2.6), we get

$$
\begin{array}{r}
\delta(x)[\alpha(x), y]+\delta(x)[\alpha(y), x]-\delta(x)[\alpha(y), y]+\delta(y)[\alpha(x), x] \\
-\delta(y)[\alpha(x), y]-\delta(y)[\alpha(y), x]=0, \forall x, y \in R . \tag{2.7}
\end{array}
$$

Combining (2.6) and (2.7), and using 2-torsion free condition of R, we get

$$
\begin{equation*}
\delta(x)[\alpha(x), y]+\delta(x)[\alpha(y), x]+\delta(y)[\alpha(x), x]=0 \tag{2.8}
\end{equation*}
$$

Left multiply (2.8) by $[\alpha(x), x]$, we get

$$
\begin{equation*}
[\alpha(x), x] \delta(y)[\alpha(x), x]=0, \forall x, y \in R \tag{2.9}
\end{equation*}
$$

Choose $c \in Z(R)$ such that $0 \neq \delta(c)$ and we replace y by $c y$ in (2.9) to get

$$
[\alpha(x), x] \delta(c) y[\alpha(x), x]+\alpha(c)[\alpha(x), x] \delta(y)[\alpha(x), x]=0
$$

Using (2.9), we get

$$
[\alpha(x), x] \delta(c) y[\alpha(x), x] \delta(c)=0, \forall x, y \in R
$$

Since α is an automorphism and R is prime, we have

$$
\begin{equation*}
[\alpha(x), x] \delta(c)=0, \forall x \in R \tag{2.10}
\end{equation*}
$$

Linearizing on x, we get

$$
[\alpha(x), y] \delta(c)=[x, \alpha(y)] \delta(c), \forall x, y \in R
$$

One may notice that by taking $y c$ for y in (2.9), we have $\delta(c)[\alpha(x), x]=0$ for all $x \in R$ and hence

$$
\delta(c)[\alpha(x), y]=\delta(c)[x, \alpha(y)], \quad \forall x, y \in R .
$$

Using (2.10), we find

$$
\begin{equation*}
[\alpha(x), y x] \delta(c)=[\alpha(x), y] x \delta(c), \forall x, y \in R \tag{2.11}
\end{equation*}
$$

and on the other side, we have

$$
\begin{align*}
{[x, \alpha(y x)] \delta(c) } & =\alpha(y)[x, \alpha(x)] \delta(c)+[x, \alpha(y)] \alpha(x) \delta(c) \\
& =[x, \alpha(y)] \alpha(x) \delta(c) \tag{2.12}
\end{align*}
$$

Combining (2.11) and (2.12), we find

$$
[\alpha(x), y] x \delta(c)=[x, \alpha(y)] \alpha(x) \delta(c), \forall x, y \in R
$$

SANDHU and KARALARLIOĞLU CAMCI/Turk J Math

Left multiplying with $\delta(c)$, we get

$$
\delta(c)[\alpha(x), y] x \delta(c)=\delta(c)[x, \alpha(y)] \alpha(x) \delta(c), \forall x, y \in R
$$

It implies that

$$
\begin{equation*}
\delta(c)[\alpha(x), y](x-\alpha(x)) \delta(c)=0, \forall x, y \in R . \tag{2.13}
\end{equation*}
$$

Replace y by $\delta(c) y$ in (2.13), we find

$$
\delta(c)^{2}[\alpha(x), y](x-\alpha(x)) \delta(c)+\delta(c)[\alpha(x), \delta(c)] y(x-\alpha(x)) \delta(c)=0, \forall x, y \in R
$$

Using (2.13), we find that $\delta(c)[\alpha(x), \delta(c)] y(x-\alpha(x)) \delta(c)=0$ for all $x, y \in R$. It implies that for each $x \in R$ either $\delta(c)[\alpha(x), \delta(c)]=0$ or $(x-\alpha(x)) \delta(c)=0$. Applying Brauer's trick, we find that either $(\alpha(x)-x) \delta(c)=0$ for all $x \in R$ or $\delta(c)[\alpha(x), \delta(c)]=0$ for all $x \in R$. The former case is not possible as it implies $\alpha(x)=x$ for all $x \in R$, and the latter case implies that

$$
\begin{equation*}
\delta(c) \in Z(R), \forall c \in Z(R) \tag{2.14}
\end{equation*}
$$

Using (2.14) in (2.10), we find that $[\alpha(x), x]=0$ for all $x \in R$. In view of Fact 1.4, R is commutative.

Theorem 2.6 Let R be a 2-torsion free prime ring and $F: R \rightarrow R$ be a multiplicative (generalized)-skew derivation associated with a multiplicative skew derivation δ and a nontrivial automorphism α of R such that $F(x \circ y)= \pm x^{k}(x \circ \delta(y)) x^{m}$ for all $x, y \in R$ and fixed positive integers k, m. Then $\delta(x)[\alpha(x), x]=0=$ $[\alpha(x), x] \delta(x)$ for all $x \in R$. Moreover, if δ is additive and $\delta(Z(R)) \neq(0)$, then R is commutative.

Proof Suppose that

$$
F(x \circ y)= \pm x^{k}(x \circ \delta(y)) x^{m}, \forall x, y \in R .
$$

Replace y by $y x$, we find that

$$
\begin{aligned}
F((x \circ y) x)= & \pm x^{k}(x \circ(\delta(y) x+\alpha(y) \delta(x))) x^{m} \\
F(x \circ y) x+\alpha(x \circ y) \delta(x)= & \pm x^{k}(x \circ \delta(y)) x^{m+1} \pm x^{k}(x \circ \alpha(y)) \delta(x) x^{m} \\
& \mp x^{k} \alpha(y)[x, \delta(x)] x^{m} .
\end{aligned}
$$

Using the given hypothesis, we have

$$
\begin{equation*}
\alpha(x \circ y) \delta(x)= \pm x^{k}(x \circ \alpha(y)) \delta(x) x^{m} \mp x^{k} \alpha(y)[x, \delta(x)] x^{m} . \tag{2.15}
\end{equation*}
$$

Replace y by $\alpha^{-1}(x) y$ in (2.15), we get

$$
[\alpha(x), x] \alpha(y) \delta(x)=0, \forall x, y \in R
$$

By repeating the same arguments as in Theorem 2.5, we get the desired conclusion.

Theorem 2.7 Let R be a prime ring and $F: R \rightarrow R$ be a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that $F([x, y])= \pm x^{k}[\delta(x), y] x^{m}$ for all $x, y \in R$ and fixed positive
integers k, m. Then $x^{k} \delta(x) \in Z(R)$ for all $x \in R$. Moreover, if δ is additive, then either R is commutative or $\delta=0$.

Proof Suppose that

$$
\begin{equation*}
F([x, y])=x^{k}[\delta(x), y] x^{m}, \forall x, y \in R . \tag{2.16}
\end{equation*}
$$

Taking $y x$ instead of y in (2.16), we get

$$
F([x, y]) x+[x, y] \delta(x)=x^{k}[\delta(x), y] x^{m+1}+x^{k} y[\delta(x), x] x^{m}, \forall x, y \in R .
$$

By the given hypothesis, we have

$$
\begin{equation*}
[x, y] \delta(x)=x^{k} y[\delta(x), x] x^{m}, \forall x, y \in R . \tag{2.17}
\end{equation*}
$$

Substituting ty for y in (2.17), we find

$$
t[x, y] \delta(x)+[x, t] y \delta(x)=x^{k} t y[\delta(x), x] x^{m}, \forall x, y, t \in R .
$$

Using (2.17), we obtain

$$
\begin{equation*}
[x, t] y \delta(x)=\left[x^{k}, t\right] y[\delta(x), x] x^{m}, \forall x, y, t \in R . \tag{2.18}
\end{equation*}
$$

Replacing y by $y x^{k}$ in (2.18), we have

$$
\begin{equation*}
[x, t] y x^{k} \delta(x)=\left[x^{k}, t\right] y\left(x^{k}[\delta(x), x] x^{m}\right), \forall x, y, t \in R . \tag{2.19}
\end{equation*}
$$

In particular, taking $x=y$ in (2.16), we find that $0=x^{k}[\delta(x), x] x^{m}$ for all $x \in R$. Thus from (2.19), we have

$$
[x, t] y x^{k} \delta(x)=0, \forall x, y \in R
$$

That is $[x, t] R x^{k} \delta(x)=(0)$ for all $x, t \in R$. Since R is a prime ring, for each $x \in R$ either $[x, R]=(0)$ or $x^{k} \delta(x)=0$. The first case implies that $x \in Z(R)$ and hence $x^{k} \delta(x) \in Z(R)$ by Lemma 2.2. Thus in each case we have $x^{k} \delta(x) \in Z(R)$ for all $x \in R$. We now assume that δ is additive. For some fixed positive integer j, we have $\left[x^{k} \delta(x), x^{j}\right]=0$ for all $x \in R$. By Fact 1.5 , either R is commutative or $\delta=0$.

By repeating the same arguments with necessary variations, we can get the same conclusion for the identity $F([x, y])=-x^{k}([\delta(x), y]) x^{m}$ for all $x, y \in R$.

Theorem 2.8 Let R be a prime ring and $F: R \rightarrow R$ be a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that $F(x \circ y)= \pm x(\delta(x) \circ y) x^{m}$ for all $x, y \in R$ and fixed positive integers m. Then $x[\delta(x), x]=0$ for all $x \in R$. Moreover, if δ is additive, then either R is commutative or $\delta=0$.
Proof Suppose that

$$
\begin{equation*}
F(x \circ y)=-x(\delta(x) \circ y) x^{m}, \forall x, y \in R . \tag{2.20}
\end{equation*}
$$

Replacing y by $y x$ in (2.20), we obtain

$$
F(x \circ y) x+(x \circ y) \delta(x)=-x(\delta(x) \circ y) x^{m+1}+x y[\delta(x), x] x^{m}, \forall x, y \in R .
$$

Using (2.20), we conclude that

$$
\begin{equation*}
(x \circ y) \delta(x)=x y[\delta(x), x] x^{m}, \forall x, y \in R \tag{2.21}
\end{equation*}
$$

Taking $t y$ in place of y in (2.21), we find

$$
\begin{equation*}
[x, t] y \delta(x)=[x, t] y[\delta(x), x] x^{m}, \forall x, y, t \in R \tag{2.22}
\end{equation*}
$$

Replacing y by $x y$ in (2.22) and using (2.21), we get

$$
\begin{align*}
{[x, t] x y \delta(x) } & =[x, t] x y[\delta(x), x] x^{m} \\
& =[x, t](x \circ y) \delta(x) \\
x t x y \delta(x)-t x^{2} y \delta(x) & =x t x y \delta(x)-t x^{2} y \delta(x)+x t y x \delta(x)-t x y x \delta(x) \\
0 & =[x, t] y x \delta(x) . \tag{2.23}
\end{align*}
$$

Substituting y by $y x$ in (2.23), we find

$$
\begin{equation*}
[x, t] y x^{2} \delta(x)=0, \forall x, y, t \in R \tag{2.24}
\end{equation*}
$$

Right multiplying (2.23) by x and combine with (2.24), we obtain $[x, t] y[x, x \delta(x)]=0$ for all $x, y, t \in R$. In particular, we obtain $[x, x \delta(x)] y[x, x \delta(x)]=0$ for all $x, y \in R$. Hence we obtain $x[x, \delta(x)]=0$ for all $x \in R$. In case, δ is additive, Fact 1.5 yields that either R is commutative or $\delta=0$.

By repeating the same arguments with necessary variations, we can get the same conclusion for the identity $F(x \circ y)=x(\delta(x) \circ y) x^{m}$ for all $x, y \in R$.

In this sequel, it is natural to think of the identity $F(x \circ y)= \pm x^{k}(\delta(x) \circ y) x^{m}$ for all $x, y \in R$. At this moment we are not able to solve it, therefore we pose it as an open problem.

Conjecture 2.9 Let R be a prime ring and $F: R \rightarrow R$ be a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that $F(x \circ y)= \pm x^{k}(\delta(x) \circ y) x^{m}$ for all $x, y \in R$ and fixed positive integers k, m. If δ is additive, then either R is commutative or $\delta=0$.

3. Examples

We conclude with some examples showing that the assumption of primeness on R is not redundant in our theorems.

Example 3.1 Let S be a ring. Consider $R=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in S\right\}$. Note that R is not a prime ring. Define maps $F, \delta, \alpha: R \rightarrow R$ by $F\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & a c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \delta\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $\alpha\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0\end{array}\right)$. Then it is verified that F is a multiplicative generalized skew

SANDHU and KARALARLIOĞLU CAMCI/Turk J Math

derivation associated with a skew derivation δ. It is easy to see that $F([x, y])= \pm x^{k}[x, \delta(y)] x^{m}$ and $F(x \circ y)= \pm x^{k}(x \circ \delta(y)) x^{m}$ for all $x, y \in R$. Also $\delta(Z(R)) \neq(0)$. But neither R is commutative nor $\delta=0$. Hence R to be prime in the hypothesis of Theorem 2.5 and 2.6 is essential.

Example 3.2 Let S be a ring. Consider $R=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in S\right\}$. Note that R is not a semiprime ring. Define maps $F, \delta: R \rightarrow R$ by $F\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & b a \\ 0 & 0 & c^{2} \\ 0 & 0 & 0\end{array}\right)$ and $\delta\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Then it is verified that F is a multiplicative generalized derivation associated with a derivation δ. It is easy to see that $F([x, y])= \pm x^{k}[\delta(x), y] x^{m}$ and $F(x \circ y)= \pm x(\delta(x) \circ y) x^{m}$ for all $x, y \in R$. But neither R is commutative nor $\delta=0$. Hence R to be prime in the hypothesis of Theorem 2.7 and 2.8 is crucial.

References

[1] Brešar M. On the distance of the composition of two derivations to the generalized derivations. Glasgow Mathematical Journal 1991; 33: 89-93. doi: 10.1017/S0017089500008077
[2] Brešar M. Semiderivations of prime rings. Proceedings of American Mathematical Society 1990; 108 (4): 859-860. doi: 10.1090/S0002-9939-1990-1007488-X
[3] Camci DK, Aydin N. On multiplicative (generalized)-derivations in semiprime rings. Communications Faculty of Science University of Ankara Series A1 Maththematics and Statistics 2017; 66 (1): 153-164. doi: 10.1501/Commua1_0000000784
[4] Daif MN. When is a multiplicative derivation additive? International Journal of Mathematics and Mathematical Sciences 1991; 14 (3): 615-618. doi: 10.1155/S0161171291000844
[5] Daif MN, Tammam El-Sayiad MS. Multiplicative generalized derivations which are additive. East-West Journal of Mathematics 1997; 9 (1): 31-37.
[6] Daif MN, Bell HE. Remarks on derivations on semiprime rings. International Journal of Mathematics and Mathematical Sciences 1992; 15 (1): 205-206. doi: 10.1155/S0161171292000255
[7] Dhara B, Ali S. On multiplicative (generalized)-derivations in prime and semiprime rings. Aequationes Mathematicae 2013; 86 (12): 65-79. doi: $10.1007 / \mathrm{s} 00010-013-0205-\mathrm{y}$
[8] Eremita D, Ili $\begin{gathered}\text { éević D. On additivity of centralisers. Bulletin of the Australian Mathematical Society 2006; } 74 \text { (2): }\end{gathered}$ 177-184. doi: 10.1017/S0004972700035620
[9] Goldmann H, \breve{S} emrl P. Multiplicative derivations on C(X). Monatshefte für Mathematik 1996; 121: 189-197. doi: 10.1007/BF01298949
[10] Herstein IN. Rings with involutions. Chicago, USA: University of Chicago Press, 1969.
[11] Koç E, Gölbaşi O. Some results on ideals of semiprime rings with multiplicative generalized derivations. Communications in Algebra 2018; 46 (11): 4905-4913. doi: 10.1080/00927872.2018.1459644
[12] Lee TK, Shiue WK. A result on derivations with Engel condition in prime rings. Southeast Asian Bulletin of Mathematics 1999; 23: 437-446.
[13] Luh J. A note on commuting automorphisms of rings. American Mathematical Monthly 1970; 77: 61-62. doi: 10.1080/00029890.1970.11992420

SANDHU and KARALARLIOGLU CAMCI/Turk J Math

[14] Quadri MA, Khan MS, Rehman NU. Generalized derivations and commutativity of prime rings. Indian Journal of Pure and Applied Mathematics 2003; 34 (9): 1393-1396.
[15] Rehman NU, Khan MS. A note on multiplicative (generalized)-skew derivation on semiprime rings. Journal of Taibah University of Sciences 2018; 12 (4): 450-454. doi: 10.1080/16583655.2018.1490049
[16] Sandhu GS, Kumar D. Derivable mappings and commutativity of associative rings. Italian Journal of Pure and Applied Mathematics 2018; 40: 376-393.
[17] Shang Y. A note on the commutativity od prime near-rings. Algebra Colloquium 2015; 22 (3): 361-366. doi: 10.1142/S1005386715000310

[^0]: *Correspondence: gurninder_rs@pbi.ac.in
 2010 AMS Mathematics Subject Classification: 16N60; 16W20

