
Turk J Math
(2020) 44: 1442 – 1452
© TÜBİTAK
doi:10.3906/mat-1906-52

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On the variational curves due to the ED-frame field in Euclidean 4-space

Muradiye ÇİMDİKER ASLAN, Yasin ÜNLÜTÜRK∗

Department of Mathematics, Kırklareli University, Kırklareli, Turkey

Received: 13.06.2019 • Accepted/Published Online: 05.06.2020 • Final Version: 08.07.2020

Abstract: In this study, we define a variational field for constructing a family of Frenet curves of the length l lying on a
connected oriented hypersurface and calculate the length of the variational curves due to the ED-frame field in Euclidean
4-space. And then, we derive the intrinsic equations for the variational curves and also obtain boundary conditions for
this type of curves due to the ED-frame field in Euclidean 4-space.
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1. Introduction
An elastic line of the length l is defined as a curve with associated energy

K =
l∫
0

k21ds,

where s is the arc-length parameter and k1 is the first curvature of the curve [8]. The integral K is called the
total square curvature. If the curve is an extremal for the variation problem that minimizes the value of K,

then this curve is called a relaxed elastic line [8]. Besides, Nickerson and Manning [10] derived the boundary
conditions for a relaxed elastic line on an oriented surface in Euclidean 3-space. In addition, similar applications
of the elasticity theory in different spaces can be found in [2, 5, 7]. So far, studies have been about elastic energy
problems that occur in the absence of any external force on the elastic line mentioned. Manning [8] solved the
problem of minimizing the sum of the energies of elasticity and the energy that is created due to the stationary
force when the force acts on an elastic line. The physical motivation for the problem of elastic lines on surfaces
may be found in the investigation of the nucleosome core particle of a DNA molecule [9, 12].

Frame fields constitute a very useful tool for studying curves and surfaces. It is well known that a regular
space curve in R3 is 3-times continuously differentiable for the construction of its Frenet frame. In general,
the Frenet–Serret frame field was well defined by Guggenheimer [6]. Another one of the most important frame
fields of the differential geometry is the Darboux frame field which is a natural moving frame constructed on
a surface. It is the analogous of the Frenet–Serret frame field as applied to surface geometry [3, 11]. There
are many studies about the Frenet–Serret frame field into higher dimensional spaces but the Darboux frame
field even into 4-space was not available in the literature. Recently, Düldül et al. studied the generalization of
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Darboux frame field to higher dimensional spaces and they called this new frame field ”the extended Darboux
frame field (ED-frame field)” [4].

In this study, we define a variational field for constructing a family of Frenet curves of the length l lying
on a connected oriented hypersurface and calculate the length of the variational curves due to the ED-frame
field in Euclidean 4-space. And then, we derive the intrinsic equations for the variational curves and also obtain
boundary conditions for this type of curves due to the ED-frame field in Euclidean 4-space.

2. Preliminaries
Definition 2.1 Let {e1, e2, e3, e4} be the standard basis of R4. The vector product of the vectors

x =
4∑

i=1

xiei, y =
4∑

i=1

yiei, z =
4∑

i=1

ziei is defined by [14]

x× y × z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ .
Definition 2.2 A unit-speed curve α : I → En of class Cn is called a Frenet curve if the vectors

α′(s), α′′(s), ..., α(n−1)(s) are linearly independent at each point along the curve [1].

Let M be a hypersurface oriented by the unit normal vector field N in E4 and α be a Frenet curve of
class Cn (n ≥ 4) with the arc-length parameter s lying on M. We denote the unit tangent vector field of the
curve by T and denote unit normal vector field of the hypersurface restricted to the curve by N(s)=N(α(s)).

Case 1. If the set {N,T,α′′} is linearly independent, then the Gram–Schmidt orthonormalization

method gives the orthonormal set {N,T,E}, where E =
α′′ − ⟨α′′,N⟩N
∥α′′ − ⟨α′′,N⟩N∥

.

Case 2. If the set {N,T,α′′} is linearly dependent, i.e. if α′′ is in the direction of the normal vector N ,
applying the Gram–Schmidt orthonormalization method to {N,T,α′′′} yields the orthonormal set {N,T,E},

where E =
α′′′ − ⟨α′′′,N⟩N−⟨α′′′,T⟩T
∥α′′′ − ⟨α′′′,N⟩N−⟨α′′′,T⟩T∥

.

In each case, if we define D = N×T×E, the orthonormal frame field {T,E,D,N} is obtained along
the curve α instead of its Frenet frame field. It is obvious that E(s) and D(s) are also tangent to the
hypersurface M for all s . Thus, the set {T(s),E(s),D(s)} spans the tangent hyperplane of the hypersurface
at the point α(s) . The derivative formulas of the ED-frame field (the extended Darboux frame field) have the
matrix form for Case 1:

d

ds


T
E
D
N

 =


0 κ1

g 0 κn

−κ1
g 0 κ2

g τ1g
0 −κ2

g 0 τ2g
−kn −τ1g −τ2g 0




T
E
D
N

 , (2.1)

and for Case 2:

d

ds


T
E
D
N

 =


0 0 0 κn

0 0 κ2
g τ1g

0 −κ2
g 0 0

−κn −τ1g 0 0




T
E
D
N

 , (2.2)
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where κn, κi
g , and τ ig are the normal curvature, geodesic curvature, and geodesic torsion of order i , (i = 1, 2),

respectively, such that ⟨T′,N⟩ = κn, ⟨E′,N⟩ = τ1g , ⟨D′,N⟩ = τ2g , ⟨T′,E⟩ = κ1
g and ⟨E′,D⟩ = κ2

g [4].

Theorem 2.3 Let α be a unit-speed curve parameterized by the arc-length s on an oriented hypersurface M

in Euclidean 4-space. If α is a line of curvature on M if and only if

τ1g (s) = τ2g (s) = 0 (2.3)

for Case 1 [4].

Theorem 2.4 Let α be a unit-speed curve parameterized by the arc-length s on an oriented hypersurface M

in Euclidean 4-space. If α is a geodesic curve on M, then

κ2
g(s) = k3(s), τ1g (s) = −k2(s), κn(s) = k1(s), (2.4)

where ki (i = 1, 2, 3) denotes the i− th curvature functions of α [4].

Theorem 2.5 Let α be a unit-speed curve parameterized by the arc-length s on an oriented hypersurface M

in Euclidean 4-space. If α is an asymptotic curve on M, then

κ1
g(s) = k1(s), κ2

g(s) = k2(s) cosφ, τ1g (s) = −k2(s) sinφ, τ2g (s) = k3(s) +
dφ

ds
, κn(s) = 0, (2.5)

where ki (i = 1, 2, 3) denotes the i− th curvature functions of α [4].

Definition 2.6 A variation of a curve segment α : [a, b] → M is a two-parameter mapping

x : [a, b]× (−δ, δ) → M

such that α(u) = x(u, 0) for all a ≤ u ≤ b. [11].

3. On the variational curves due to the ED-frame field in Euclidean 4-space

Let x be a coordinate patch of M(u1, u2, u3) and the partial velocities of x are given by

xu1 =
∂x

∂u1
, xu2 =

∂x

∂u2
, xu3 =

∂x

∂u3
(3.1)

in Euclidean 4-space.
A curve α ∈ M can be written α(s) = x(u1(s), u2(s), u3(s)), 0 ≤ s ≤ l. Then, the unit tangent vector

of α is expressed with

T(s) = α′(s) = xu1

du1

ds
+ xu2

du2

ds
+ xu3

du3

ds
, (3.2)

and for any suitable scalar functions p(s), q(s), r(s), we can write

E(s) = p(s)xu1 + q(s)xu2 + r(s)xu3 , (3.3)

where s is the arc-length parameter.
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To obtain variational curves of the length l, it is generally necessary to extend α to an arc α∗(s) defined
for 0 ≤ s ≤ l∗ with l∗ > l, but sufficiently close to l so that α∗ lies in the coordinate patch.

Let µ(s), 0 ≤ s ≤ l∗ be a sufficiently smooth scalar, non-vanishing function. Then it can be defined as

η(s) = µ(s)p∗(s), ξ(s) = µ(s)q∗(s), σ(s) = µ(s)r∗(s), (3.4)

where p∗(s), q∗(s), r∗(s) are the coefficients of E(s) for a newly obtained curve. In this case, we denote the
variational vector field

η(s)xu1
+ ξ(s)xu2

+ σ(s)xu3
= µ(s)E(s) (3.5)

along α.

Suppose that
µ(0) = 0 and µ′(0) = 0. (3.6)

For 0 ≤ δ ≤ l∗, a variational of α is defined by

β(δ; t) = x (u1(δ) + tη(δ), u2(δ) + tξ(δ), u3(δ) + t σ(δ)) . (3.7)

Because of (3.6), the variational (3.7) has β(0; t) = α(0),
∂β(δ; t)

∂δ

∣∣∣∣
δ=0

=
∂α(δ)

∂δ

∣∣∣∣
δ=0

= α′(0). It means that

the variational curves have the same initial point and initial direction.
Let L∗(t) denote the length of the variational β(δ; t), for fixed t, such that |t| < ϵ, 0 ≤ δ ≤ l∗. Then, we
have

L∗(t) =
l∗∫
0

∣∣∣∣〈∂β

∂δ
(δ; t) ,

∂β

∂δ
(δ; t)

〉∣∣∣∣
1

2
dδ

(3.8)

with
L∗(0) = l∗ > l. (3.9)

It is clear from the expressions (3.7) and (3.8) that L∗(t) is continuous in t . It follows from the expression
(3.9), we have

L∗(t) >
l + l∗

2
> l, |t| < ϵ∗, (3.10)

for a suitable ϵ∗ satisfying 0 < ϵ∗ ≤ ϵ.

If the parameter δ is restricted to an interval 0 ≤ δ ≤ γ(t) ≤ l∗ with the condition

γ(t)∫
0

∣∣∣∣〈∂β

∂δ
,
∂β

∂δ

〉∣∣∣∣
1

2
dδ = l,

(3.11)

then β(δ; t) is bounded to an arc of length l .
Note that γ(0) = l, where the function γ(t) need not be determined explicitly, but we shall need its derivative
(given in Lemma 3.1).
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3.1. The variational calculations due to the ED-frame field for Case 1 in Euclidean 4-space

Some partial derivatives of the variational β(δ; t) with respect to δ are calculated as

∂β

∂δ

∣∣∣∣
t=0

= T, (3.12)

and
∂2β

∂δ2

∣∣∣∣
t=0

= T′ = κ1
gE+ κnN. (3.13)

The first derivative of the variational β(δ; t) with respect to t is obtained as

∂β

∂t

∣∣∣∣
t=0

= µE. (3.14)

Using the expressions (3.14) and (2.1), then we have the following mixed derivatives of the variational β(δ; t)

∂2β

∂t∂δ

∣∣∣∣
t=0

=
∂2β

∂δ∂t

∣∣∣∣
t=0

= −µκ1
gT+ µ′E+ µκ2

gD+ µτ1gN, (3.15)

and
∂3β

∂t∂δ2

∣∣∣∣
t=0

= (−2µ′κ1
g − µ(κ1

g)
′ − µτ1gκn)T

+(µ′′ − µ(κ1
g)

2 − µ(κ2
g)

2 − µ(τ1g )
2)E

+(2µ′κ2
g + µ(κ2

g)
′ − µτ1g τ

2
g )D

+(2µ′τ1gκ
2
g + µ(τ1g )

′ + µκ2
gτ

2
g − µκ1

gκn)N.

(3.16)

Lemma 3.1 Due to the ED-frame field for Case 1, the following relation is obtained:

dγ

dt

∣∣∣∣
t=0

=
l∫
0

µκ1
gds. (3.17)

Proof Differentiating the expression (3.11) with respect to t , then we find

dγ

dt

∣∣∣∣
t=0

√∣∣∣∣〈∂β

∂δ
,
∂β

∂δ

〉∣∣∣∣
∣∣∣∣∣
δ=γ(t)

+
l∫
0

〈
∂β

∂δ
,
∂2β

∂δ∂t

〉
√√√√√

∣∣∣∣∣∣
〈
∂β

∂δ
,
∂β

∂δ

〉∣∣∣∣∣∣
ds = 0. (3.18)

Using the expressions (3.12) and (3.15) with γ(0) = l at t = 0 into the expression (3.18), the proof is
completed. 2
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We can obtain equations which satisfy condition K ′(0) = 0 for arbitrary µ satisfying (3.6). The omitted

terms are those with the factor
〈
∂β

∂δ
,
∂2β

∂δ2

〉
which vanishes at t = 0. Hence, we have

K ′(t) =
dγ

dt

{〈
∂β

∂δ
,
∂β

∂δ

〉〈
∂2β

∂δ2
,
∂2β

∂δ2

〉}

−3
l∫
0

〈
∂2β

∂δ∂t
,
∂β

∂δ

〉〈
∂2β

∂δ2
,
∂2β

∂δ2

〉〈
∂β

∂δ
,
∂β

∂δ

〉−
5

2
dδ

+2
l∫
0

〈
∂3β

∂δ2∂t
,
∂2β

∂δ2

〉〈
∂β

∂δ
,
∂β

∂δ

〉−
3

2
dδ.

(3.19)

Using the expressions (3.12), (3.13), (3.15), and (3.16) into the expression (3.19), then we find

K ′(t) =

(
l∫
0

µκ1
gds

)(
(κ1

g(l))
2 + (κn(l))

2
)

+
l∫
0

µ
(
(κ1

g)
3 + κ1

gκ
2
n − 2κ1

g(κ
2
g)

2 − 2κ1
g(τ

1
g )

2 + 2κ2
gτ

2
gκn + 2(τ1g )

′κn

)
ds

+4
l∫
0

µ′(τ1gκn)ds+ 2
l∫
0

µ′′κ1
gds.

(3.20)

Integrating by parts together with (3.6), we get

l∫
0

µ′′κ1
gds. = κ1

g(l)µ
′(l)− (κ1

g(l))
′µ(l) +

l∫
0

µ(κ1
g)

′′ds, (3.21)

and
l∫
0

µ′(τ1gκn)ds = τ1g (l)κn(l)µ(l)−
l∫
0

µ
(
(τ1g )

′κn + τ1gκ
′
n

)
ds. (3.22)

If we use partial integration to remove derivative of µ , we obtain the following equation

K ′(0) =
l∫
0

µ[(κ1
g)

3 + κ1
gκ

2
n − 2κ1

g(κ
2
g)

2 − 2κ1
g(τ

1
g )

2 + 2κ2
gτ

2
gκn

−2(τ1g )
′κn − 4τ1gκ

′
n + 2(κ1

g)
′′ + κ1

g(κ
1
g(l))

2 + (κn(l))
2]ds

+µ(l)[4τ1g (l)κn(l)− 2(κ1
g(l))

′] + µ′(l)[2κ1
g(l)].

(3.23)

The given curve must satisfy the following conditions and the differential equation for all of µ, since α

is to minimize K :
(I) κ1

g(l) = 0

(II) (κ1
g)

′(l) = 2τ1g (l)κn(l),
(3.24)

1447



ÇİMDİKER ASLAN and ÜNLÜTÜRK /Turk J Math

and

(DE) κ1
g[(κ

1
g)

2 + κ2
n − 2(κ2

g)
2 − 2(τ1g )

2 + (κ1
g(l))

2 + (κn(l))
2]

+2κ2
gτ

2
gκn − 2(τ1g )

′κn − 4τ1gκ
′
n + 2(κ1

g)
′′ = 0.

(3.25)

Consequently, we can say that the given curve is a relaxed elastic line:

Theorem 3.2 The intrinsic equations for a relaxed elastic line due to the ED-frame field for Case 1 on a
connected oriented hypersurface M in Euclidean 4-space are given by the differential equation (3.25) and the
boundary conditions (3.24) at the free end, where κi

g, τ ig, and κn are the functions giving the geodesic curvature
of order i , geodesic torsion of order i and normal curvature.

3.2. The variational calculations due to the ED-frame field for Case 2 in Euclidean 4-space

Some partial derivatives of the variational β(δ; t) with respect to δ are calculated as

∂β

∂δ

∣∣∣∣
t=0

= T, (3.26)

and
∂2β

∂δ2

∣∣∣∣
t=0

= T′ = κnN. (3.27)

The first derivative of the variational β(δ; t) with respect to t is obtained as

∂β

∂t

∣∣∣∣
t=0

= µE. (3.28)

From the expressions (3.28) and (2.2), we have the following derivatives of the variational β(δ; t)

∂2β

∂t∂δ

∣∣∣∣
t=0

=
∂2β

∂δ∂t

∣∣∣∣
t=0

= µ′E+ µκ2
gD+ µτ1gN, (3.29)

and
∂3β

∂t∂δ2

∣∣∣∣
t=0

= (−µτ1gκn)T+ (µ′′ − µ(κ2
g)

2 − µ(τ1g )
2)E

+(2µ′κ2
g + µ(κ2

g)
′)D+ (2µ′τ1g + µ(τ1g )

′)N.

(3.30)

Lemma 3.3 Due to the ED-frame field for Case 2, the following relation is obtained:

dγ

dt

∣∣∣∣
t=0

= 0. (3.31)

Proof Using the expressions (3.26) and (3.29) into the expression (3.18), then the proof is completed. 2
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When we write obtained equations for t = 0 in the expression (3.19), we have the following:

K ′(t) =
l∫
0

(4µ′τ1gκn + 2µ(τ1g )
′κn)ds. (3.32)

However, using integration by parts and the relation (3.6), we can write

l∫
0

µ′(τ1gκn)ds = τ1g (l)κn(l)µ(l)−
l∫
0

µ
(
(τ1g )

′κn + τ1gκ
′
n

)
ds. (3.33)

Using the partial integration (3.33) to remove derivative of µ , we arrive at the following equation:

K ′(0) = −
l∫
0

µ(2(τ1g )
′κn + 4τ1gκ

′
n)ds+ 4µ(l)τ1g (l)κn(l). (3.34)

According to the expression (3.34) and the relation (3.6), we obtain

(I) τ1g (l)κn(l) = 0. (3.35)

and
(DE) 2(τ1g )

′κn + 4τ1gκ
′
n = 0. (3.36)

Then, we can give the following theorem:

Theorem 3.4 Let α be a curve on a connected oriented hypersurface M in Euclidean 4-space . If the curve α

lying on M is a line of curvature or an asymptotic curve, then the given curve is a relaxed elastic line due to
the ED-frame field for Case 2 in Euclidean 4-space.

4. Geometrical interpretations

Corollary 4.1 Let α be a curve on a connected oriented hypersurface M in Euclidean 4-space . If the curve α

lying on M is a line of curvature, then we obtain the following intrinsic equations for a relaxed elastic line due
to the ED-frame field for Case 1:

(I) κ1
g(l) = 0

(II) (κ1
g)

′(l) = 0,
(4.1)

and

(DE) κ1
g[(κ

1
g)

2 + κ2
n − 2(κ2

g)
2 + (κn(l))

2] + 2(κ1
g)

′′ = 0. (4.2)

Proof We know that τ1g = τ2g = 0. Hence, the intrinsic equations for a relaxed elastic line due to the ED-
frame field for Case 1 on a connected oriented hypersurface in Euclidean 4-space provide the conditions (4.1)
and (4.2). 2
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Corollary 4.2 Let α be a curve on a connected oriented hypersurface M in Euclidean 4-space . If the curve α

lying on M is a geodesic curve, then we have the following boundary conditions and differential equation for a
relaxed elastic line due to the ED-frame field for Case 1:

(I) κ1
g(l) = 0

(II) (κ1
g)

′(l) = −2k2(l)k1(l),
(4.3)

and

(DE) 2k3k1τ
2
g + 2k1k

′
2 + 4k2k

′
1 = 0. (4.4)

Proof According to Theorem 2.4, the proof is completed. 2

Corollary 4.3 Let α be a curve on a connected oriented hypersurface M in Euclidean 4-space . If the curve α

lying on M is an asymptotic curve, then we have the following boundary conditions and differential equation
for a relaxed elastic line due to the ED-frame field for Case 1:

(I) k1(l) = 0

(II) k′1(l) = 0,
(4.5)

and

(DE) k31 − 2k1k
2
2 + k21 − 2k23 + 2k′′1 = 0. (4.6)

Proof Using the expression (2.5) into the expressions (3.24) and (3.25), we obtain the expressions (4.5) and
(4.6). 2

5. Applications
In this section, we shall give the following applications for the hypersphere and hypercylinder.

Example 5.1 Let us consider the unit-speed curve

γ(s) =

(
cos

√
2

3
s, sin

√
2

3
s, cos

√
1

3
s, sin

√
1

3
s

)

lying on the hypersphere M given by its implicit equation x2 + y2 + z2 + w2 = 2.

The unit normal vector of M along γ is N(s) =

√
1

2
(γ(s)) and the unit tangent vector field of the curve γ

is as follows:

T(s) =

(
−
√

2

3
sin

√
2

3
s,

√
2

3
cos

√
2

3
s,−

√
1

3
sin

√
1

3
s,

√
1

3
cos

√
1

3
s

)
.

Differentiating the tangent vector field T with respect to s, then we find

T′(s) =

(
−2

3
cos

√
2

3
s,−2

3
sin

√
2

3
s,−1

3
cos

√
1

3
s,−1

3
sin

√
1

3
s

)
.
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Since T′ is linear independent with N, then Case 1 is valid.
Thus, we obtain

E(s) =

√
1

2

(
− cos

√
2

3
s,− sin

√
2

3
s, cos

√
1

3
s, sin

√
1

3
s

)
.

From T′ = κ1
gE+κnN, we get κ1

g =

√
1

18
and κn = −

√
1

2
.

According to Theorems 2.4, 2.5, and 3.2, the given curve is not a geodesic curve, an asymptotic curve, a relaxed
elastic line.

Example 5.2 Assume that the unit-speed curve

γ(s) =

(√
2 cos

s

3
,
2s

3
,
√
3 cos

s

3
,
√
5 sin

s

3

)

lying on the hypercylinder f(x, y, z, w) = x2 + z2 + w2 = 5 [13].

The unit normal vector of the hypercylinder is N(s) =
1√
5
(x, 0, z, w), namely,

N(s) =

(√
2

5
cos

s

3
, 0,

√
3

5
cos

s

3
, sin

s

3

)
.

The unit tangent vector field of γ is as follows:

T(s) =
γ′(s)

∥γ′(s)∥
=

(
−
√
2

3
sin

s

3
,
2

3
,−

√
3

3
sin

s

3
,

√
5

3
cos

s

3

)
.

Since the curvature vector field T′(s) = γ′′(s) =

(
−
√
2

9
cos

s

3
, 0,−

√
3

9
cos

s

3
,−

√
5

9
sin

s

3

)
is linear indepen-

dent with N(s); Case 2 is valid along the curve γ.

Thus, we obtain

E(s) =

(
2
√
2

3
√
5
sin

s

3
,

5

3
√
5
,
2
√
3

3
√
5
sin

s

3
,−2

3
cos

s

3

)
.

Since T′ = κnN, then we get κn = −
√
5
9 .

According to Theorem 2.5, the curve γ is not an asymptotic curve.

Now, calculate τ1g = ⟨E′,N⟩ . Differentiating E and using N , then we find τ1g =
2

9
.

From Theorem 2.3, the curve γ is not a line of curvature. According to Theorem 3.4, the curve is not a relaxed
elastic line.
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