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Abstract: In this study, we analytically investigate hypergeometric functions having some properties such as convexity
and starlike. We fundamentally focus on obtaining desired conditions on the parameters a, b , and c in order that a
hypergeometric function to be in various subclasses of starlike and convex functions of order α = 2−r and order α = 2−r

type β = 2−1 , with r is a positive integer.
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1. Introduction
First in order to achieve ultimate goal in this study, we consider basic concepts and preliminary results such as
certain subclass of univalent analytic functions we need. We know that complex analytic functions have very
important features such as having infinitely differentiable and Taylor series representation which, in fact, real
analytical functions do not. All of those properties are really amazing and very useful. Perhaps these are the
most obvious and remarkable differences between complex analytical functions and real analytical functions. In
this regard, the most common an analytic complex function f which used in univalent function theory may be
expressed as:

w = f(z) = z +

∞∑
n=2

anz
n. (1.1)

The functions above are normalized in the sense that f(0) = f ′(0)− 1 = 0 where origin 0 is the center of unit
disk D = {| z |< 1 : z is a complex number} . As usual, the set of all analytic and normalized functions
is denoted by A . Intuitively the function f is called as univalent (or one-to-one or schlicht) if it takes the
same value once. That is to say, if z1, z2 are the two distinct points in the domain (say D) of f , then it
f(z1) 6= f(z2) ⇐⇒ z1 6= z2 . Also, let S denote the class of univalent functions as f ∈ A . It means that

S = {f ∈ A : f is univalent in D}.

The studies in univalent function theory are mainly done on S class. Furthermore, a function is known as
starlike with regard to the origin, if tw ∈ f(D) when w ∈ f(D) and t ∈ (0, 1] . It is clear that f is starlike if

∗Correspondence: alaattinakyar@duzce.edu.tr
2010 AMS Mathematics Subject Classification: Primary 30C45; Secondary 23584.

This work is licensed under a Creative Commons Attribution 4.0 International License.
1453

https://orcid.org/0000-0001-7544-4835
https://orcid.org/0000-0003-4759-8313


YILDIZ and AKYAR/Turk J Math

and only if it satisfies the inequality of Re
(

zf ′(z)
f(z)

)
> 0 for all z ∈ D [2]. The class of such functions will be

denoted as S∗ . An analytic description of S∗ is shown as:

S∗ =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D

}
.

Furthermore, a function f ∈ A maps D onto a convex domain f(D) then it is known as a convex function
(see [16]). In order that f is a convex function if and only if it should be satisfied with the inequality

Re
(
1 + zf ′′(z)

f ′(z)

)
> 0 for all z ∈ D [9]. The class of such functions will be denoted as C . An analytic

description of C is as follows:

C =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D

}
.

Thus, it is easy to see that f ∈ C if and only if zf ′ ∈ S∗ .

The function f ∈ A is called as a starlike of order α ∈ [0, 1) if and only if it has Re
(

zf ′(z)
f(z)

)
> α [2].

The class of such functions will be denoted by S∗(α) . Similarly, a function f ∈ A is named convex of order

α ∈ [0, 1) if and only if Re
(
1 + zf ′′(z)

f ′(z)

)
> α [9]. In this case, the class of such functions will be denoted by

C(α) . Respectively, two such subclasses are analytically characterized by

S∗(α) =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α, z ∈ D, α ∈ [0, 1)

}
,

and

C(α) =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ D, α ∈ [0, 1)

}
.

Usually, class of starlike and convex functions can also be written as S∗(0) = S∗ and C(0) = C , respectively.
Furthermore, let us show with S∗

1 (α) the subclass S∗(α) containing of functions f for which | (zf ′/f)−1 |< 1−α

for all z ∈ D . On the other hand, a function f is said to be in C1(α) if zf ′ ∈ S∗
1 (α) . One could also find

coefficient bounds and different properties of S∗
1 (α) and C1(α) in [3, 6, 11, 14, 17].

Let T be the class consisting of functions of the form as:

w = f(z) = z −
∞∑

n=2

anz
n, (an ≥ 0). (1.2)

The elements of this class are analytic and univalent in the unit disk D . A subclass of T is S∗(α, β)

that contains the functions providing the following condition:

∣∣∣∣∣
zf ′(z)
f(z) − 1

zf ′(z)
f(z) + 1− 2α

∣∣∣∣∣ < β, (1.3)
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where α ∈ [0, 1) , β ∈ (0, 1) and for all z ∈ D . In addition, a subclass of T is C∗(α, β) that contains the
functions providing the following condition:∣∣∣∣∣

zf ′′(z)
f ′(z)

zf ′′(z)
f ′(z) + 2(1− α)

∣∣∣∣∣ < β, (1.4)

where α ∈ [0, 1) , β ∈ (0, 1] and for all z ∈ D . These classes have already been by Gupta and Jain (see [4]).
We note that S∗(α, 1) = S∗(α) and C∗(α, 1) = C∗(α)(see [13]). Furthermore, from (1.3) and (1.4), we have
f ∈ C∗(α, β) ⇔ zf ′ ∈ S∗(α, β)(see [8]).

After the analysis of analytic (or regular or holomorphic) functions in D , we discuss the hypergeometric
type functions. They were first introduced in 1866 by C.F. Gauss. The ordinary or Gaussian hypergeometric
function z 7→ 2F1(a, b; c; z) with complex parameters a, b, c (c 6= 0,−1,−2, ...) is defined for | z |< 1 by the
power series as:

F (z) = 2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, (1.5)

where (a)n is the Pochhammer symbol or shifted factorial defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

{
a(a+ 1)(a+ 2)...(a+ n− 1), if n = 1, 2, ...,
1, if n = 0.

One can easily verify that (1.5) satisfies the hypergeometric differential equation

z(1− z)
d2F (z)

dz2
+ [(a+ b+ 1) z − c]

dF (z)

dz
+ abF (z) = 0.

On the other hand, since (a)n = Γ(a+n)
Γ(a) = a(a+ 1) · · · (a+ n− 1)(where Γ denotes Gamma function ) we can

write:

2F1(a, b; c; z) = 1 +
ab

c1!
z +

a(a+ 1)b(b+ 1)

c(c+ 1)2!
z2 + · · ·

=
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)(1)n
zn.

Most of the mathematical functions, including all the univalent functions, could be defined as hypergeometric
functions. Let us take some important examples into consideration as:

1. when a = 1 and b = c in (1.5)

z2F1 (1, b; b; z) = z

∞∑
n=0

(1)n (b)n
(b)n (1)n

zn

=

∞∑
n=0

zn+1 =
z

1− z
.

Please note that the function w = f (z) = z (1− z)
−1 is one of the leading examples of the classes S∗

and C which maps D onto the half-plane Re(w) > −1/2 ; thus, it is clear that this function is starlike
and convex as well.
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2. when a = 1/2 , b = 1 and c = 3/2 in (1.5)

z2F1

(
1

2
, 1;

3

2
; z2
)

= z

∞∑
n=0

(
1
2

)
n
(1)n(

3
2

)
n
(1)n

(
z2
)n

= z
∞∑

n=0

(
1
2

)
n(

3
2

)
n

z2n

= z

[(
1
2

)
0(

3
2

)
0

+

(
1
2

)
1(

3
2

)
1

z2 +

(
1
2

)
2(

3
2

)
2

z4 + · · ·

]

= z

[
1 +

1

3
z2 +

1

5
z4 + · · ·

]
= z +

1

3
z3 +

1

5
z5 + · · ·

=
1

2
log

(
1 + z

1− z

)
.

The function above is probably one of the most important members of the S∗ class and C class which
maps D onto the horizontal strip −π

4 < Im(w) < π
4 . This indicates that this function is convex and also

starlike with respect to the origin.

3. when a = c = 1 and b = 2 in (1.5)

z2F1 (1, 2; 1; z) = z

∞∑
n=0

(1)n (2)n
(1)n (1)n

zn =

∞∑
n=0

(2)n
(1)n

zn+1

= z + 2z2 + 3z3 + · · ·

= z +

∞∑
n=2

nzn.

The function obtained above is well known as the Koebe function. The Koebe function k (z) =

z (1− z)
−2

= z+
∞∑

n=2
nzn is univalent and it is also extremal for many problems in the geometric properties

of univalent functions which maps D onto the entire plane minus the negative real axis from − 1
4 to −∞ .

Therefore, it is obvious that this function is starlike with respect to the origin but it is not convex.

To determine and verify our main results, we need to use each of the following results in our investigation.

Remark 1.1 (see [12]) For real or complex numbers a, b, c(c 6= 0,−1,−2, · · · ) and Re(c) > Re(b) > 0 and
| arg (1− z) |< π , we have

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 (1− tz)
−a

dt.

Now, we can list below some elementary properties of 2F1(a, b; c; z) that can be easily verified and can be found
in [10]:

2F1(a, b; c; z) = 2F1(b, a; c; z)

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z)
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2F1(a, b; c; z) = (1− z)
c−a−b

2F1(c− a, c− b; c; z)

2F1(a, b; b; z) = (1− z)
−a

.

Theorem 1.2 Let the hypergeometric function 2F1(a, b; c; z) . Then the following hold:

1. Converges absolutely if | z |< 1 ;

2. Converges absolutely if Re(c− a− b) > 0 if | z |= 1 ;

3. Converges conditionaly if 0 ≥ Re(c− a− b) > −1 if | z |= 1 and z 6= 1 ;

4. Diverges if Re(c− a− b) ≤ −1 .

Theorem 1.3 (Gauss 1812). Suppose Re(c− a− b) > 0 . Then

2F1(a, b; c; 1) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(1.6)

holds.

Many scientists used continuous fractions to determine the sufficient conditions for z2F1(a, b; c; z) to be in S∗(α)

and S∗
1 (α) with α ∈ [0, 1) for various choices of parameters a, b , and c (see [5, 7, 10, 15]). The subject of the

present paper is to give some characterizations for a hypergeometric functions to be in various subclasses of
starlike and convex functions of order α = 2−r and order α = 2−r type β = 2−1 . To obtain the main results,
we will give the following theorems, which may be found in [13].

Theorem 1.4 A sufficient condition for a function f in form (1.1) to be in S∗
1 (α)(C1(α)) is that

∞∑
n=2

(n− α) | an |≤ (1− α)

( ∞∑
n=2

n(n− α) | an |≤ 1− α

)
.

Theorem 1.5 Late us take a function f in form (1.2). Then a necessary and sufficient condition for f to be
in S∗

1 (α)(C1(α)) is that
∞∑

n=2

(n− α)an ≤ (1− α)

( ∞∑
n=2

n(n− α)an ≤ 1− α

)
.

In addition, f ∈ S∗
1 (α) ⇐⇒ f ∈ S∗(α) ,f ∈ C1(α) ⇐⇒ f ∈ C(α) , and f ∈ S∗ ⇐⇒ f ∈ S.

2. Main results
Theorem 2.1 If a, b > 0 and c > a + b + 1 , then a sufficient condition for z2F1(a, b; c; z) to be in S∗

1 (2
−r)

with r is a positive integer:

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
1 +

ab

(1− 2−r)(c− a− b− 1)

]
≤ 2. (2.1)
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Also, condition (2.1) is necessary and sufficient for

2F1 (a, b; c; z) = z (2− 2F1 (a, b; c; z))

to be in S∗(2−r)(S∗
1 (2

−r)) .

Proof Since

z2F1(a, b; c; z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn,

according to Theorem (1.4) we need only to show that

∞∑
n=2

(n− 2−r)
(a)n−1(b)n−1

(c)n−1(1)n−1
≤ (1− 2−r).

Now
∞∑

n=2

(n− 2−r)
(a)n−1(b)n−1

(c)n−1(1)n−1
=

∞∑
n=1

(n+ 1− 2−r)
(a)n(b)n
(c)n(1)n

=

∞∑
n=1

(
(a)n(b)n
(c)n(1)n−1

+ (1− 2−r)

∞∑
n=1

(
(a)n(b)n
(c)n(1)n

. (2.2)

Noting that (a)n = a(a+ 1)n−1 and then applying (1.6), we may express (2.2)

=

∞∑
n=1

a(a+ 1)n−1b(b+ 1)n−1

c(c+ 1)n−1(1)n−1
+ (1− 2−r)

∞∑
n=1

(a)n(b)n
(c)n(1)n

=
ab

c

∞∑
n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n−1
+ (1− 2−r)

∞∑
n=1

(a)n(b)n
(c)n(1)n

)

=
ab

c

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+ (1− 2−r)

[
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

]

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
ab

c− a− b− 1
+ (1− 2−r)

]
− (1− 2−r).

However, this last expression is bounded above by (1− 2−r) if and only if (2.1) holds. Since

2F1(a, b; c; z) = z −
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn,

the necessity of (2.1) for 2F1 (a, b; c; z) to be in S∗
1 (2

−r) and S∗(2−r) follows from Theorem (1.5). 2

Remark 2.2 Condition (2.1) as r → ∞ is both necessary and sufficient for 2F1 (a, b; c; z) to be in S .

In the next theorem, we investigate some constraints on parameters a, b , and c that lead to necessary and
sufficient conditions for z2F1(a, b; c; z) to be in S∗(2−r) .
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Theorem 2.3 If a, b > −1 , c > 0 , and ab < 0 , then a necessary and sufficient condition for z2F1(a, b; c; z) to
be in S∗(2−r)(S∗

1 (2
−r)) is that c ≥ a+ b+1− ab/(1− 2−r) . The condition c ≥ a+ b+1− ab is necessary and

sufficient for z2F1(a, b; c; z) to be in S .

Proof Since

z2F1(a, b; c; z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn

= z +

∞∑
n=2

a(a+ 1)n−2b(b+ 1)n−2

c(c+ 1)n−2(1)n−1
zn

= z +
ab

c

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
zn

= z− | ab
c

|
∞∑

n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
zn, (2.3)

according to Theorem (1.5) we must show that

∞∑
n=2

(n− 2−r)
(a+ 1)n−2(b+ 1)n−2

(c)n−2(1)n−1
≤| c

ab
| (1− 2−r). (2.4)

Note that the left side of (2.4) diverges if c ≤ a+ b+ 1 . Now

∞∑
n=2

(n− 2−r)
(a+ 1)n−2(b)n−2

(c+ 1)n−2(1)n−1
=

∞∑
n=0

(n+ 2− 2−r)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

=

∞∑
n=0

(n+ 1)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

+

∞∑
n=0

(1− 2−r)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

=
∞∑

n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+
c

ab
(1− 2−r)

∞∑
n=1

(a)n(b)n
(c)n(1)n

=
Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+ (1− 2−r)

c

ab

[
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

]
.

Hence, (2.4) is equivalent to

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

[
1 + (1− 2−r)

c− a− b− 1

ab

]
≤

(1− 2−r)

[
c

| ab |
+

c

ab

]
= 0. (2.5)

Thus, (2.5) is valid if and only if 1+(1−2−r)(c−a−b−1)/ab ≤ 0 or, equivalently, c ≥ a+b+1−ab/(1−2−r) .
Another application of Theorem (1.5) when r → ∞ completes the proof.

Furthermore, the following two theorems are parallel to those (2.1) and (2.3) for the convex case. 2
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Theorem 2.4 If a, b > 0 and c > a + b + 2 , then a sufficient condition for z2F1(a, b; c; z) to be in C1(2
−r)

with r is a positive integer:

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
1 +

(
3− 2−r

1− 2−r

)(
ab

c− a− b− 1

)

+
(a)2(b)2

(1− 2−r)(c− a− b− 2)2

]
≤ 2. (2.6)

Condition (2.6) is necessary and sufficient for 2F1(a, b; c; z) = z (2− 2F1(a, b; c; z)) to be in C(2−r)(C1(2
−r)) .

Proof In view of Theorem (1.4) , we only need to show that

∞∑
n=2

n(n− 2−r)
(a)n−1(b)n−1

(c)n−1(1)n−1
) ≤ 1− 2−r.

Now
∞∑

n=2

n(n− 2−r)
(a)n−1(b)n−1

(c)n−1(1)n−1
=

∞∑
n=0

(n+ 2)(n+ 2− 2−r)
(a)n+1(b)n+1

(c)n+1(1)n+1

= (n+ 2)2
∞∑

n=0

(a)n+1(b)n+1

(c)n+1(1)n+1
− (2−r)

∞∑
n=0

(n+ 2)
(a)n+1(b)n+1

(c)n+1(1)n+1
(2.7)

Letting n+ 2 = (n+ 1) + 1 , we have

∞∑
n=0

(n+ 2)
(a)n+1(b)n+1

(c)n+1(1)n+1
=

∞∑
n=0

(n+ 1)
(a)n+1(b)n+1

(c)n+1(1)n+1
+

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n
+

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n+1
(2.8)

and
∞∑

n=0

(n+ 2)2
(a)n+1(b)n+1

(c)n+1(1)n+1
=

∞∑
n=0

(n+ 1)2
(a)n+1(b)n+1

(c)n+1(1)n+1
+ 2

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

+

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=

∞∑
n=0

(n+ 1)
(a)n+1(b)n+1

(c)n+1(1)n
+ 2

∞∑
n=0

(n+ 1)
(a)n+1(b)n+1

(c)n+1(1)n

+

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=

∞∑
n=1

(a)n+1(b)n+1

(c)n+1(1)n−1
+ 3

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n
+

∞∑
n=1

(a)n(b)n
(c)n(1)n

.
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Substituting this last equality and (2.8) into right side of (2.7) yields

∞∑
n=0

(a)n+2(b)n+2

(c)n+2(1)n
+ (3− 2−r)

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n
+ (1− 2−r)

∞∑
n=1

(a)n(b)n
(c)n(1)n

. (2.9)

Since (a)n+k = (a)k(a+ k)n , we may rewrite (2.9) as

(a)2(b)2
(c)2

Γ(c+ 2)Γ(c− a− b− 2)

Γ(c− a)Γ(c− b)
+ (3− 2−r)

ab

c

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+

(1− 2−r)

[
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

]
.

Upon simplification, we can see that this last expression is bounded above by 1− 2−r if and only if (2.6) holds.
That (2.6) is also necessary for 2F1(a, b; c; z) to be in C(2−r)(C1(2

−r)) follows from Theorem (1.5) . 2

Theorem 2.5 If a, b > −1 , ab < 0 , and c > a + b + 2 , then a necessary and sufficient condition for
z2F1(a, b; c; z) to be in C(2−r)(C1(2

−r)) is that

(a)2(b)2 + (3− 2−r)ab(c− a− b− 2) + (1− 2−r)(c− a− b− 1)2 ≥ 0. (2.10)

Proof Since z2F1(a, b; c; z) has the form (2.3), we can see from Theorem (1.5) that our conclusion is equivalent
to

∞∑
n=2

n(n− 2−r)
(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
≤| c

ab
| (1− 2−r). (2.11)

Note that c > a + b + 2 if the left side of (2.11) converges. Writing (n + 2)(n + 2 − 2−r) = (n + 1)2 + (2 −
2−r)(n+ 1) + (1− 2−r) , we see that

∞∑
n=2

n(n− 2−r)
(a+ 1)n−2(b+ 1)n−2

(c)n−2(1)n−1
=

∞∑
n=0

(n+ 2)(n+ 2− 2−r)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

=

∞∑
n=0

(n+ 1)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+ (2− 2−r)

∞∑
n=0

(a+ 2)n(b+ 2)n
(c+ 2)n(1)n

+

(1− 2−r)

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

=
(a+ 1)(b+ 1)

(c+ 1)

∞∑
n=0

(a+ 2)n(b+ 2)n
(c+ 2)n(1)n

+ (3− 2−r)

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+(1− 2−r)
c

ab

∞∑
n=1

(a)n(b)n
(c)n(1)n
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=
Γ(c+ 1)Γ(c− a− b− 2)

Γ(c− a)Γ(c− b)

[
(a+ 1)(b+ 1)

.

+(3− 2−r)(c− a− b− 2) +
(1− 2−r)

ab
(c− a− b− 1)2

]
− c(1− 2−r)

ab
.

This last expression is bounded above by | c/ab | (1− 2−r) if and only if (a+ 1)(b+ 1) + (3− 2−r)(c−
a− b− 2) + ((1− 2−r)/ab)(c− a− b− 1)2 ≤ 0 , which is equivalent to (2.10).

Now we need to recall the following necessary and sufficient conditions for functions f to be in the class
S∗(α, β) and due to Gupta and Jain (see [4]). 2

Lemma 2.6
(i) A function f of the form (1.2) is in the class S∗(α, β) if and only if

∞∑
n=2

[n (1 + β)− 1 + β (1− 2α)] an ≤ 2β (1− α) .

(ii) A function f of the form (1.2) is in the class C∗(α, β) if and only if

∞∑
n=2

n [n (1 + β)− 1 + β (1− 2α)] an ≤ 2β (1− α) .

Theorem 2.7

(i) If a, b > −1 , c > 0 and ab < 0 , then z2F1(a, b; c; z) is in S∗(2−r, 2−1) if and only if

c > a+ b+ 1− 3ab

2(1− 2−r)
(2.12)

(ii) If a, b > 0 , c > a+ b+ 1 ,then 2F1(a, b; c; z) = z [2− 2F1 (a, b; c; z)] is in S∗(2−r, 2−1) if and only if

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
1 +

3ab

2(1− 2−r)(c− a− b− 1)

]
≤ 2. (2.13)

Proof (i) Since

z2F1(a, b; c; z) = z +
ab

c

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
zn

= z− | ab
c

|
∞∑

n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
zn,

according to (i) of Lemma (2.6), we must show that

∞∑
n=2

[
n(3/2)− 1 + (1/2)(1− 21−r)

] (a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1
≤
(
1− 2−r

)
| c

ab
| . (2.14)
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Note that the left side of (2.14) diverges if c < a+ b+ 1 (see[15]). Now

∞∑
n=2

[
n(3/2)− 1 + (1/2)

(
1− 21−r

)] (a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1

=
3

2

∞∑
n=0

(n+ 1)
(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

+
(
1− 2−r

) ∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n+1

=
3

2

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+
(1− 2−r)c

ab

∞∑
n=1

(a)n(b)n
(c)n(1)n

=
3

2

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+

(1− 2−r)c

ab

[
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

]
.

Hence, (2.14) is equivalent to

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

[
3

2
+

(1− 2−r)(c− a− b− 1

ab

]
≤

(1− 2−r)

[
c

| ab |
+

c

ab

]
= 0. (2.15)

Thus, (2.15) is valid if only if

3

2
+

(1− 2−r)(c− a− b− 1

ab
≤ 0,

or equivalently,

c ≥ a+ b+ 1− 3ab

2(1− 2−r)
.

(ii) Since

2F1 (a, b; c; z) = z −
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn,

by(i) of Lemma (2.6), we only need to show that

∞∑
n=2

[
n(3/2)− 1 + (1/2)

(
1− 21−r

)] (a)n−1(b)n−1

(c)n−1(1)n−1
≤
(
1− 2−r

)
.

Now,

∞∑
n=2

[
n(3/2)− 1 + (1/2)

(
1− 21−r

)] (a)n−1(b)n−1

(c)n−1(1)n−1
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=
3

2

∞∑
n=1

n
(a)n(b)n
(c)n(1)n

+
(
1− 2−r

) ∞∑
n=1

(a)n(b)n
(c)n(1)n

=
3

2

∞∑
n=1

(a)n(b)n
(c)n(1)n−1

+
(
1− 2−r

) ∞∑
n=1

(a)n(b)n
(c)n(1)n

. (2.16)

Noting that (a)n = a(a+ 1)n−1 then, (2.16) may be expressed as

3ab

2c

∞∑
n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n−1
+
(
1− 2−r

) ∞∑
n=1

(a)n(b)n
(c)n(1)n

=
3ab

2c

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+
(
1− 2−r

) [ ∞∑
n=0

(a)n(b)n
(c)n(1)n

− 1

]

=
3ab

2c

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+
(
1− 2−r

) [Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

]

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[(
1− 2−r

)
+

3ab

2 (c− a− b− 1)

]
−
(
1− 2−r

)
.

However, this last expression is bounded by (1− 2−r) if (2.13) holds. 2

3. Conclusion
In this manuscript, we have offered a study on “An analytical investigation on starlikeness and convexity
properties for hypergeometric function z2F1(a, b; c; z)”. Hypergeometric functions with some properties such
as convexity and starlike were analytically investigated. The main subject of the research was to obtain the
desired conditions for a, b , and c parameters of interest. Most of the results of this article have been many
special results of [1, 5, 8, 10, 15] in some particular cases.
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