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1. Introduction
Let k be an algebraic number field and Cl2(k) its 2 -class group, that is the 2 -Sylow subgroup of the ideal
class group Cl(k) of k . Let k(1) be the Hilbert 2 -class field of k , that is the maximal unramified (including
the infinite primes) abelian field extension of k whose degree over k is a 2 -power. Put k(0) = k and let k(i)

denote the Hilbert 2 -class field of k(i−1) for any integer i ≥ 1 . Then the sequence of fields

k = k(0) ⊂ k(1) ⊂ k(2) ⊂ · · · ⊂ k(i) · · ·

is called the 2 -class field tower of k . If for all i ≥ 1 , k(i) ̸= k(i−1) , the tower is said to be infinite; otherwise, the
tower is said to be finite, and the minimal integer i satisfying the condition k(i) = k(i−1) is called the length of
the tower. Unfortunately, deciding whether or not the 2 -class field tower of a number field k is finite is still an
open problem and there is no known method to study this finiteness. However, it is known that if the rank of
Cl2(k

(1)) ≤ 2 , then by group theoretical meaning the tower is finite and its length is ≤ 3 (cf.[8]). Furthermore,
this problem is closely related to the structure of the Galois group of the tower. In particular, for Cl2(k) being
cyclic, the Hilbert 2 -class field tower of k terminates at the first step k(1) , whereas for Cl2(k) being of type
(2, 2) , the Hilbert 2 -class field tower of k terminates in at most two steps and the structure of the Galois group
Gk = Gal(k(2)/k) is closely related to the capitulation problem in the unramified quadratic extensions of k (cf.
[16]), so to the unit groups of these extensions. In fact the number of classes which capitulate in these quadratic
extensions of k is given in terms of their unit groups (cf. [12]). In the literature, most studies done in this
vein concern quadratic or biquadratic fields (e.g., [2, 7, 16]). In this paper, we are interested in investigating
the 2 -class field towers of some multiquadratic number fields related to the imaginary triquadratic number field
Q(ζ8,

√
d) whenever its 2 -class group is of type (2, 2) , where ζ8 is a primitive 8th root of unity and d is an

odd positive square free integer.
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The layout of this paper is the following. In Section 2, we quote some properties of 2 -groups G satisfying
G/G′ ≃ (2, 2) . Next, in Section 3, we characterize the 2 -class groups of some imaginary multiquadratic number
fields and we compute their 2 -class numbers. In Section 4, involving some technical computations, we give unit
groups of some multiquadratic number fields of degree 8 and 16 . Thereafter, and as applications, in Section
5, we shall investigate the Hilbert 2 -class field tower of some families of imaginary triquadratic number fields;
and then we deduce the capitulation behaviors in the unramified quadratic extensions of these fields.

Notations
Let k be a number field. Throughout this paper we shall respect the following notations:

• p , p′ and q : Three prime integers,

• Cl2(k) : The 2 -class group of k ,

• h2(k) : The 2 -class number of k ,

• h2(d) : The 2 -class number of the quadratic field Q(
√
d) ,

• εd : The fundamental unit of the quadratic field Q(
√
d) ,

• Ek : The unit group of k ,

• FSU: Abbreviation of “fundamental system of units”,

• k(1) : The Hilbert 2 -class field of k ,

• k(2) : The Hilbert 2 -class field of k(1) ,

• Gk : The Galois group of k(2)/k , i.e. Gal(k(2)/k) ,

• k∗ : The genus field of k ,

• k+ : The maximal real subfield of k , whenever k is imaginary,

• q(k) = [Ek :
∏

i Eki ] : The unit index of k , if k is multiquadratic and ki are the quadratic subfields of k ,

• Nk′/k : The norm map of an extension k′/k .

2. Some preliminary results of group theory

Let Qm , Dm , and Sm denote the quaternion, dihedral, and semidihedral groups respectively, of order 2m ,
where m ≥ 3 and m ≥ 4 for Sm . In addition, let A denote the Klein four-group. Each of these groups is
generated by two elements x and y , and admits a representation by generators and relations as follows:

A = {x, y | x2 = y2 = 1, y−1xy = x},
Qm = {x, y | x2m−2

= y2 = a, a2 = 1, y−1xy = x−1},
Dm = {x, y | x2m−1

= y2 = 1, y−1xy = x−1},
Sm = {x, y | x2m−1

= y2 = 1, y−1xy = x2m−2−1}.
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We shall recall some well known properties of 2 -groups G such that G/G′ is of type (2, 2) , where G′ denotes the
commutator subgroup of G . For more details about these properties, we refer the reader to [16, pp. 272-273],
[7, p. 162] and [10, Chap. 5].

Let k be an algebraic number field and Cl2(k) the 2 -Sylow subgroup of its ideal class group Cl(k) .
Let k(1) (resp. k(2) ) be the first (resp. second) Hilbert 2 -class field of k and put G = Gal(k(2)/k) ,
then if G′ denotes the commutator subgroup of G , we have by class field theory G′ ≃ Gal(k(2)/k(1)) and
G/G′ ≃ Gal(k(1)/k) ≃ Cl2(k) . Assume in all what follows that Cl2(k) is of type (2, 2) , then it is known that
G is isomorphic to A , Qm , Dm , or Sm .

Let x and y be as above. Note that the commutator subgroup G′ of G is always cyclic and G′ = ⟨x2⟩ .
The group G possesses exactly three subgroups of index 2 which are:

H1 = ⟨x⟩, H2 = ⟨x2, y⟩, H3 = ⟨x2, xy⟩.

Note that for the two cases Q3 and A , each Hi is cyclic. For the case Dm , with m > 3 , H2 and H3 are
also dihedral. For Qm , with m > 3 , H2 and H3 are quaternion. Finally for Sm , H2 is dihedral, whereas H3

is quaternion. Furthermore, if G is isomorphic to A (resp. Q3 ), then the subgroups Hi are cyclic of order 2

(resp. 4). If G is isomorphic to Qm , with m > 3 , Dm or Sm , then H1 is cyclic and Hi/H
′
i is of type (2, 2)

for i ∈ {2, 3} , where H ′
i is the commutator subgroup of Hi .

Let Fi be the subfield of k(2) fixed by Hi , where i ∈ {1, 2, 3} . If k(2) ̸= k(1) , ⟨x4⟩ is the unique subgroup
of G′ of index 2 . Let L (L is defined only if k(2) ̸= k(1) ) be the subfield of k(2) fixed by ⟨x4⟩ . Then F1 , F2 ,
and F3 are the three quadratic subextensions of k(1)/k and L is the unique subfield of k(2) such that L/k is
a nonabelian Galois extension of degree 8 .

We continue by recalling the definition of Taussky’s conditions A and B ([18]). Let k′ be a cyclic
unramified extension of a number field k and j denotes the basic homomorphism: jk′/k : Cl(k) −→ Cl(k′),

induced by extension of ideals from k to k′ . Thus, we say

1. k′/k satisfies condition A if and only if |ker(jk′/k) ∩Nk′/k(Cl(k
′))| > 1 .

2. k′/k satisfies condition B if and only if |ker(jk′/k) ∩Nk′/k(Cl(k
′))| = 1 .

Set jFi/k = ji , i = 1, 2, 3 . Then we have:

Theorem 2.1 ([16, Theorem 2])

1. If k(1) = k(2) , then Fi satisfy condition A , |ker(ji)| = 4 , for i = 1, 2, 3 , and G is abelian of type (2, 2) .

2. If Gal(L/k) ≃ Q3 , then Fi satisfy condition A and |ker(ji)| = 2 for i = 1, 2, 3 and G ≃ Q3 .

3. If Gal(L/k) ≃ D3 , then F2 , F3 satisfy condition B and |kerj2| = |kerj3| = 2 . Furthermore, if F1 satisfies
condition B , then |kerj1| = 2 and G ≃ Sm , if F1 satisfies condition A and |kerj1| = 2 then G ≃ Qm . If
F1 satisfies condition A and |kerj1| = 4 then G ≃ Dm .

These results are summarized in the following table (see Table 1).
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Table 1. Capitulation types.

|ker j1| (A/B) |ker j2| (A/B) |ker j3| (A/B) G
4 4 4 (2, 2)

2A 2A 2A Q3

4 2B 2B Dm,m ≥ 3

2A 2B 2B Qm,m > 3

2B 2B 2B Sm,m > 3

By Theorem 2.1 and group theoretic properties quoted in the beginning of this section, one can easily
deduce the following remark.

Remark 2.2 The 2-class groups of the three unramified quadratic extensions of k are cyclic if and only if
k(1) = k(2) or k(1) ̸= k(2) and G ≃ Q3 . In the other cases the 2-class group of only one unramified quadratic
extension is cyclic and the others are of type (2, 2) .

Proposition 2.3 Let K be a number field and let L be an abelian unramified 2-extension of K . If GL =

Gal(L(2)/L) is abelian, then L and K(1) have the same Hilbert 2-class field ( i.e. K(2) = L(1)) . Furthermore,
|GK | = [L : K] · h2(L) . In particular, if the 2-class group of K∗ ( i.e. the genus field of K) is cyclic, then
|GK | = [K∗ : K] · h2(K

∗) .

Proof The fact that L/K is unramified implies that K ⊂ L ⊂ K(1) ⊂ L(1) ⊂ K(2) ⊂ L(2). Since GL is
abelian, we deduce that L(1) = L(2) . Therefore, K(2) = L(1) ; hence, the first equality. As the 2 -class group of
K∗ is cyclic, the 2 -class field tower of K terminates at the first step, which completes the proof. 2

3. 2-class groups of some multiquadratic number fields
Let d be an odd positive square-free integer and ζ8 a primitive 8th root of unity. Note that the triquadratic
field Ld = Q(ζ8,

√
d) is the first step of both the cyclotomic Z2 -extension and a noncyclotomic Z2 -extension

(e.g., the noncyclotomic Z2 -extension of Q(
√
−1) (cf. [13]) shifted by

√
d) of the biquadratic field Q(

√
−1,

√
d) .

This fact makes it of particular importance for the triquadratic number fields. In this subsection and the next
section, we will make some preparations on the 2 -class groups and unit groups of some multiquadratic number
fields that will help to study the 2 -class field towers and the second 2 -class groups of all fields Ld = Q(ζ8,

√
d) ,

such that 2 -class group is of type (2, 2) , together with some different families of mutiquadratic number fields
in the last section of this paper. For this, we recall the following results of our earlier paper [3, Theorem 5.7].
Let p , p′ , and q be three prime integers. The 2 -class group of Ld = Q(

√
d, ζ8) is of type (2, 2) if and only if

d takes one of the following forms:

d = pq with p ≡ −q ≡ 1 (mod 4),

(
2

p

)
= −1,

(
2

q

)
= 1 and

(
p

q

)
= −1. (3.1)

d = pq with p ≡ q ≡ −1 (mod 4),

(
2

p

)
= −1,

(
2

q

)
= 1 and

(
p

q

)
= −1, (3.2)

1469



Azizi et al./Turk J Math

d = p′ with p′ ≡ 1 (mod 16) and
(
2

p′

)
4

̸=
(
p′

2

)
4

. (3.3)

Consider the following notations

1. Lpq = Q(
√
2,
√
qp,

√
−1) .

2. L∗
pq = Q(

√
2,
√
p,
√
q,
√
−1) the genus field of Lpq .

3. Lp′ = Q(
√
2,
√
p′,

√
−1) .

4. Fpq = Q(
√
2p,

√
2q,

√
−2) or Q(

√
p,
√
2q,

√
−2) , according to whether p and q verify conditions (3.1) or

(3.2) .

5. Kpq = Q(
√
p,
√
q,
√
−2) or Q(

√
q,
√
2p,

√
−2) , according to whether p and q verify conditions (3.1) or (3.2).

6. kpq = Q(
√
−2,

√
pq) or Q(

√
−2,

√
2pq) according to whether p and q verify conditions (3.1) or (3.2).

7. m ≥ 2 the positive integer satisfying h2(−2q) = 2m (cf. [9]).

Let us start with some lemmas that we shall use in what follows.

Lemma 3.1 ([1]) Let K0 be a real number field, K = K0(i) a quadratic extension of K0 , n ≥ 2 be an integer
and ξn a 2n -th primitive root of unity, then ξn = 1

2 (µn + λni) , where µn =
√
2 + µn−1 , λn =

√
2− µn−1 ,

µ2 = 0 , λ2 = 2 and µ3 = λ3 =
√
2 . Let n0 be the greatest integer such that ξn0 is contained in K , {ε1, ..., εr}

a fundamental system of units of K0 and ε a unit of K0 such that (2 + µn0
)ε is a square in K0 (if it exists).

Then a fundamental system of units of K is one of the following systems:

1. {ε1, ..., εr−1,
√
ξn0ε} if ε exists, in this case ε = εj11 ...εj1r−1εr , where ji ∈ {0, 1} .

2. {ε1, ..., εr} elsewhere.

Lemma 3.2 Let p and q be two primes satisfying conditions (3.1). Then,

1. A FSU of Q(
√
p,
√
q) is {εp, εq,

√
εqεpq}.

2. A FSU of Q(
√
p,
√
2q) is {εp, ε2q,

√
ε2pq} .

Proof To prove this lemma, we will use the algorithm described in [19]. Let εpq = x+y
√
pq for some integers

x and y . Since N(εpq) = 1 , then x2 − 1 = y2pq . Hence, by the unique factorization in Z there exist y1 , y2 in
Z such that

(1) :

{
x± 1 = y21
x∓ 1 = pqy22 ,

(2) :

{
x± 1 = py21
x∓ 1 = qy22 ,

(3) :

{
x± 1 = 2py21
x∓ 1 = 2qy22 ,

or (4) :

{
x± 1 = 2y21
x∓ 1 = 2pqy22 ,

Note that y = y1y2 or y = 2y1y2 .

• System (1) implies 1 =
(

y2
1

p

)
=

(
x±1
p

)
=

(
x∓1±2

p

)
=

(
2
p

)
= −1. Thus, this case is impossible.
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• System (3) implies
(

2q
p

)
=

(
x∓1
p

)
=

(
±2
p

)
=

(
2
p

)
= −1 , which contradicts the fact that

(
p

q

)
= −1 .

• If system (4) holds, then 2εpq = 2(x+ y
√
pq) = 2(y1 + y2

√
pq)2 . Thus, εpq is a square in Q(

√
pq) which is

absurd.

• Suppose that
{

x+ 1 = py21
x− 1 = qy22 ,

then, −1 =
(

p
q

)
=

(
x+1
q

)
=

(
x−1+2

q

)
=

(
2
q

)
= 1. This is impossible too.

From the above discussion, we infer that
{

x− 1 = py21
x+ 1 = qy22 .

Therefore, 2εpq = ( y1
√
p+ y2

√
q)2 . Therefore, 2εpq

is a square in Q(
√
p,
√
q) .

Using similar techniques, one can show that 2εq is a square in Q(
√
p,
√
q) . Hence, εpq (resp. εq ) is

not a square in Q(
√
p,
√
q) , since, otherwise, we will get

√
2 ∈ Q(

√
p,
√
q) , which is not true. As εp has

norm −1 , it follows that √
εqεpq is the only element of {εipεjqεkpq : i, j and k ∈ {0, 1}} which is a square in

Q(
√
p,
√
q) . Therefore, the first item (cf. [19]). We similarly prove the second item. 2

Remark 3.3 By the previous proof, we have εpq is a square in Q(
√
2,
√
p,
√
q) . One can similarly show that

if q ≡ 3 (mod 4) , then 2εq (resp. 2ε2q) is a square in Q(
√
q) (resp. Q(

√
2q)) .

Lemma 3.4 Let p and q be two primes satisfying conditions (3.1) or (3.2) . Then the class number of
F = Q(

√
q,
√
p, i) is odd.

Proof For values of class numbers of quadratic number fields used below one can see [9, 15].

• If p and q satisfy conditions (3.1), then by class number formula (cf. [19]) we have

h2(F ) =
1

25
q(F )h2(p)h2(q)h2(−p)h2(−q)h2(pq)h2(−pq)h2(−1),

=
1

25
q(F ) · 1 · 1 · 2 · 1 · 2 · 2 · 1 =

1

22
q(F ).

Since, by Lemma 3.2, a FSU of F+ = Q(
√
q,
√
p) is given by {εp, εq,

√
εqεpq} and

√
2εq is a square in F+ ,

then by Lemma 3.1, {εp,
√
εqεpq,

√
iεq} is a FSU of F . Thus, h2(F ) = 1

22 · 4 = 1 .

• If p and q satisfy conditions (3.2), then as above we get

h2(F ) =
1

25
q(F )h2(p)h2(q)h2(−p)h2(−q)h2(pq)h2(−pq)h2(−1),

=
1

25
q(F ) · 1 · 1 · 1 · 1 · 1 · 4 · 1 =

1

23
q(F ).

By Remark 3.3 we have
√
2εq ,

√
2εp ∈ F+ , so it is easy to see that a FSU of F+ is {εq,

√
εpεq,

√
εpεpq or √

εpq}

or {εq, εpq,
√
εpεq} . Thus, by Lemma 3.1 and the fact that 1

23 q(F ) ∈ N , we have q(F ) = 23 (and thus
{εq, εpq,

√
εpεq} is not a FSU of F+ ). Therefore, h(F ) is odd.
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2

Theorem 3.5 Let p and q be two primes satisfying conditions (3.1) or (3.2) . Then we have

1. The 2-class group of Lpq is of type (2, 2) .

2. The 2-class group of Fpq is of type (2, 2) .

3. The 2-class group of Kpq is cyclic of type Z/2m+1Z , with h2(−2q) = 2m .

Proof Assume firstly that p and q verify conditions (3.1). Thus, by [3], the 2 -class group of Lpq is of
type (2, 2) . Under this assumption, h2(p) = h2(q) = h2(−2) = 1 , h2(−2p) = h2(pq) = 2 and h2(−2pq) = 4

(cf.[9, 15]). We claim that the class number of k′ = Q(
√
p,
√
q) is odd. In fact, we have h2(p) = h2(q) = 1

and h2(pq) = 2 (cf. [9, 15]). Therefore, Lemma 3.2 and Kuroda’s class number formula (cf. [17]) imply
that h2(k

′) = 1
4q(k

′)h2(p)h2(q)h2(pq) = 1 . Since there are only two primes which ramify in Kpq/k
′ , then by

ambiguous class number formula (cf. [11]) the rank of the 2 -class group of Kpq equals 2− 1− e = 1− e , where
e is an integer defined by [Ek′ : Ek′ ∩NKpq/k′(Kpq)] = 2e . We infer that the rank of the 2 -class group of Kpq

cannot be equal to 2 . On the other hand, note that Lpq , Fpq , and Kpq are the three unramified quadratic
extensions of kpq = Q(

√
−2,

√
pq) that have a 2 -class group of type (2, 2) (cf. [2, Theorem 1]). Then, by

Remark 2.2, the 2 -class group of Fpq is of type (2, 2) and that of Kpq is cyclic. From [2, Proposition 6], we
deduce that q(Kpq) = 4 . Hence, class number formula (cf. [19]) implies that

h2(Kpq) =
1

25
q(Kpq)h2(p)h2(q)h2(pq)h2(−2p)h2(−2q)h2(−2pq)h2(−2) = 2h2(−2q).

Thus, we have the result for this case.
Suppose now that p and q satisfy conditions (3.2) . Using [2, Proposition 5] and [9, 15, 17], we similarly

show that h2(Kpq) = 2 · h2(−2q) . Thus, h2(Kpq) is divisible by 8 . Thus, as above its 2 -class group cannot be
of type (2, 2) , which completes the proof. 2

Corollary 3.6 Keep assumptions of Theorem 3.5 , then the group Gkpq
is neither abelian nor quaternion of

order 8 .

Proof Since Lpq , Fpq , and Kpq are the three unramified quadratic extensions of kpq . Therefore, we have the
result by Theorem 3.5 and Remark 2.2. 2

Corollary 3.7 Keep assumptions of Theorem 3.5 , then the group GKpq
is cyclic of order 2m+1 .

Theorem 3.8 Let p and q be two primes satisfying conditions (3.1) or (3.2) . Then the 2-class group of
L∗
pq = Q(

√
2,
√
q,
√
p, i) is Z/2mZ , where h2(−2q) = 2m .

Proof Let F = Q(
√
q,
√
p, i) , so we know by Lemma 3.4 that the class number of F is odd. If p and q

verify conditions (3.1) (resp. (3.2)) we have 2 unramified in k′ = Q(
√
p,
√
−q) (resp. k′′ = Q(

√
−p,

√
−q)) ,

then the decomposition group of 2 is a nontrivial cyclic subgroup of Gal(k′/Q) (resp. Gal(k′′/Q)) (in fact 2

is inert in Q(
√
−pq) (resp. Q(

√
−p) )). Since a nontrivial cyclic subgroup of Gal(k′/Q) (resp. Gal(k′′/Q))
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has two elements, there are exactly 2 primes of k′ (resp. k′′ ) above 2 . As 2 ramify in Q(
√
−1) , it follows

that there are exactly 2 primes of F above 2 . Therefore, there are exactly two primes that ramify in L∗
pq/F .

By ambiguous class number formula (cf. [11]) rank(Cl2(L
∗
pq)) = 2 − 1 − e = 1 − e , where e is defined by

[EF : EF ∩NL∗
pq/F

(L∗
pq)] = 2e . Since L∗

pq is the genus field of Lpq = Q(
√
2,
√
qp, i) , so [L∗

pq : Lpq] = 2 ; moreover,

Cl2(Lpq) ≃ (2, 2) , then the 2 -class group Cl2(L
∗
pq) is cyclic or of type (2, 2) (cf. Remark 2.2). It follows by

the previous equality that Cl2(L
∗
pq) is cyclic. Note that L∗

pq is an unramified quadratic extension of Kpq .

Therefore, by Proposition 2.3 we have L∗
pq

(1) = K
(2)
pq and GKpq

= 2 ·h2(L
∗
pq) . Since by Theorem 3.5 the 2 -class

group of Kpq is cyclic of order 2m+1 , it follows that L∗
pq

(1) = K
(2)
pq = K

(1)
pq and 2 · h2(L

∗
pq) = h2(Kpq) = 2m+1 .

Hence, we have the theorem. 2

Corollary 3.9 The group GL∗
pq

is abelian.

4. Units of some multiquadratic number fields

Let p and q be two prime integers satisfying conditions (3.1), namely

p ≡ −q ≡ 1 (mod 4),

(
2

p

)
= −1,

(
2

q

)
= 1 and

(
p

q

)
= −1.

Consider the field K = Q(
√
2,
√
p,
√
q,
√
−1) , and let K+ = Q(

√
2,
√
p,
√
q) be its maximal real subfield. The

main task of this section is to determine fundamental system of units of K+ and K , which will be used to prove
Theorems 5.2 and 5.5. To prove this result, we have to do some preparations. In the same manner as in the
proof of Lemma 3.2, one shows the following lemma.

Lemma 4.1 Let p and q be two primes satisfying conditions (3.1) .

1. Let εpq = a+b
√
pq , a, b ∈ Z , then p(a−1) is a square in N , and

√
2εpq = b1

√
p+b2

√
q and 2 = −pb21+qb22 ,

for some integers b1 and b2 .

2. Let ε2pq = x + y
√
2pq , x, y ∈ Z , then 2p(x − 1) is a square in N , and

√
2ε2pq = y1

√
2p + y2

√
q and

2 = −2py21 + qy22 , for some integers y1 and y2 .

3. Let ε2q = c + d
√
2q , c, d ∈ Z , then c + 1 is a square in N , and

√
2ε2q = d1 + d2

√
2q and 2 = d21 − 2qd22 ,

for some integers d1 and d2 .

4. Let εq = c′ + d′
√
q , c′, d′ ∈ Z , then c′ + 1 is a square in N , and

√
2εq = d′1 + d′2

√
q and 2 = d′21 − qd′22 , for

some integers d′1 and d′2 .

Lemma 4.2 Let p and q be two primes satisfying conditions (3.1) . Let K+ = Q(
√
2,
√
p,
√
q) , so the unit

group of K+ is one of the following:

1. EK+ = ⟨−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p⟩,

2. EK+ = ⟨−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2εpε2p,

4
√
ε22εqεpqε2pq⟩.

1473



Azizi et al./Turk J Math

Proof To prove this lemma, we use the algorithm described by [19]. Consider the following diagram (see
Figure 1):

K+ = Q(
√
2,
√
p,
√
q)

OO hh

RRR
RRR

RRR
RRR66

mmm
mmm

mmm
mmm

L1 = Q(
√
2,
√
p)

hh

QQQ
QQQ

QQQ
QQQ

Q
L2 = Q(

√
2,
√
q)

OO
L3 = Q(

√
2,
√
pq)

66

lll
lll

lll
lll

l

Q(
√
2)

Figure 1. Subfields of K+/Q(
√
2) .

By [4], Lemma 3.2, and [3], we have a FSU of L1 is given by {ε2, εp,
√
ε2εpε2p} , a FSU of L2 is given by

{ε2,
√
εq,

√
ε2q} and a FSU of L3 is given by {ε2, εpq,

√
εpqε2pq} . It follows that

EL1
EL2

EL3
= ⟨−1, ε2, εp, εpq,

√
εq,

√
ε2q,

√
εpqε2pq,

√
ε2εpε2p⟩.

Note that an FSU of K consists of seven units chosen from those of L1 , L2 , and L3 , and from the square roots
of the units of EL1

EL2
EL3

which are squares in K (cf. [19]). Thus, we shall determine elements of EL1
EL2

EL3

which are squares in K+ . Suppose that X is an element of K+ which is a square of an element of EL1EL2EL3 ,
so

X2 = εa2ε
b
pε

c
pq
√
εq

d√ε2q
e√εpqε2pq

f√ε2εpε2p
g,

where a, b, c, d, e, f , and g are in {0, 1} .

We shall use norm maps from K+ to its subextensions to eliminate the cases of X2 which do not occur.
Set G = Gal(K+/Q) = ⟨σ1, σ2, σ3⟩ , where

σ1(
√
2) = −

√
2 , σ2(

√
p) = −√

p and σ3(
√
q) = −√

q ,

and σi(
√
2) =

√
2 for i ∈ {2, 3} ,

σi(
√
p) =

√
p for i ∈ {1, 3} and

σi(
√
q) =

√
q for i ∈ {1, 2} .

Hence, L1 , L2 , and L3 are the fixed fields of the subgroups of G generated respectively by σ3 , σ2 , and σ2σ3 .
Let us firstly do some computations that will help in the computations of these norm maps which we

shall use now and for the proof of the next lemmas as well. Let L4 = Q(
√
p,
√
q) and L5 = Q(

√
p,
√
2q) . By

Lemma 3.2, a FSU of L4 is {εp, εq,
√
εqεpq} , and a FSU of L5 is {εp, ε2q,

√
ε2pq} .

Let u, v, t, k , and r ∈ {0, 1} . Table 2 will be used to compute norm maps. Its 8th line, for example,
is constructed as follows (the other lines are constructed in the same manner). By Lemma 4.1, there are two
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integers y1 and y2 such that √
ε2pq =

√
2
2 (y1

√
2p+ y2

√
q) , which implies that

√
ε2pq

σ1 = −
√
2

2 (−y1
√
2p+ y2

√
q)

=
−

√
2

2 (−y1
√
2p+y2

√
q)(y1

√
2p+y2

√
q)

(y1
√
2p+y2

√
q)

=
−

√
2

2 (−y2
12p+y2

2q)√
2
√
ε2pq

=
−

√
2

2 ·2√
2
√
ε2pq

= −1√
ε2pq

·

√
ε2pq

σ2 =
√
2
2 (−y1

√
2p+ y2

√
q)

= −−
√
2

2 (−y1
√
2p+ y2

√
q)

= − −1√
ε2pq

= 1√
ε2pq

·

√
ε2pq

σ3 =
√
2
2 (y1

√
2p− y2

√
q)

= −
√
2

2 (−y1
√
2p+ y2

√
q)

= −1√
ε2pq

·

√
ε2pq

1+σ1 =
√
ε2pq · −1√

ε2pq
= −1.

√
ε2pq

1+σ2 =
√
ε2pq · 1√

ε2pq
= 1.

√
ε2pq

1+σ3 =
√
ε2pq · −1√

ε2pq
= −1.

√
ε2pq

1+σ1σ2 =
√
ε2pq · ( 1√

ε2pq
)σ1 = −ε2pq.

√
ε2pq

1+σ1σ3 =
√
ε2pq · ( −1√

ε2pq
)σ1 = ε2pq.

√
ε2pq

1+σ2σ3 =
√
ε2pq · ( −1√

ε2pq
)σ2 = −ε2pq.

Now we return to our square X2 = εa2ε
b
pε

c
pq
√
εq

d√ε2q
e√εpqε2pq

f√ε2εpε2p
g , by applying the norm

NK+/L2
= 1 + σ2 (see Table 2 page 1478) we get:

NK+/L2
(X2) = ε2a2 · (−1)b · 1 · εdq · εe2q · 1 · (−1)vg · εg2

= ε2a2 εdqε
e
2q(−1)b+vgεg2.

As εq , ε2q are squares in L2 and NK+/L2
(X2) > 0 , so b+ vg ≡ 0 (mod 2) and εg2 is a square in L2 . However,

ε2 is not a square in L2 , then g = 0 and thus b = 0 . Therefore, X2 become

X2 = εa2ε
c
pq
√
εq

d√ε2q
e√εpqε2pq

f .

Similarly, by applying NK+/L3
= 1 + σ2σ3 (see Table 2 page 1478) one gets:

NK+/L3
(X2) = ε2a2 · ε2cpq · (εpqε2pq)f ,

unfortunately, here we conclude nothing. Therefore, we will use the norm map over L4 = Q(
√
p,
√
q) which is

NK+/L4
= 1 + σ1 . Note that {εp, εq,

√
εqεpq} is a FSU of L4 . Thus,

NK+/L4
(X2) = (−1)a · ε2cpq · (−εq)

d · (−1)e · (εpq)f

= ε2cpq · (−1)a+d+e · εdq · εfpq > 0.

Since NK+/L4
(X2) > 0 , then a+ d+ e ≡ 0 (mod 2) . By Remark 3.3, 2εq is a square in Q(

√
q) and 2εpq is a

square in Q(
√
p,
√
q) . Therefore, d = f , since otherwise we will get εpq or εq is a square in L4 . Therefore,

X2 = εa2ε
c
pq
√
εq

d√ε2q
e√εpqε2pq

d.
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Now we apply NK+/L5
= 1+σ1σ3 , where L5 = Q(

√
p,
√
2q) . Note that a FSU of L5 is given by {εp, ε2q,

√
ε2pq} .

We have

NK+/L5
(X2) = (−1)a · 1 · (−1)d · (−ε2q)

e · εd2pq

= εd2pq · (−1)a+d+e · εe2q > 0.

Therefore, a+d+ e ≡ 0 (mod 2) . As ε2q is not a square in L5 , then e = 0 and a+d ≡ 0 (mod 2) . Therefore,
a = d and

X2 = εd2ε
c
pq
√
εq

d√εpqε2pq
d.

Remark that εpq is a square in K+ , so we may put

X2 = εd2
√
εq

d√εpqε2pq
d.

Applying the norm maps from K+ to all the rest of its subextensions, no contradiction is obtained and we
conclude nothing about d . Therefore, d = 0 or 1 ; thus, we have the result. 2

Lemma 4.3 Suppose that the unit group of K+ takes the form in the second item of Lemma 4.2 . Then the
unit group of K is one of the following:

1. EK = ⟨ζ8, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2εpε2p,

4
√
ε22εqεpqε2pq⟩ , or

2. EK = ⟨ζ8, ε2, εp,
√
εq,

√
εpq,

√
ε2εpε2p,

4
√
ε22εqεpqε2pq,

4
√
ζ28εqε2q⟩.

Proof We shall make use of Table 2 page 1478, and respect the same notations of the proof of the previous
Lemma 4.2. According to Lemma 3.1, set

Y 2 = (2 +
√
2)εa2ε

b
p
√
εq

c√ε2q
d√εpq

e√ε2εpε2p
f 4

√
ε22εqεpqε2pq

g

.

We have NK+/L2
= 1 + σ2 . Thus,

NK+/L2
(Y 2) = (2 +

√
2)2 · ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)fv · εf2 · (−1)gt · εg2 ·

√
εq

g,

= (2 +
√
2)2 · ε2a2 · εcq · εd2q · (−1)fv+b+gt · εg+f

2 · √εq
g > 0,

We have fv + b+ gt = 0 (mod 2) . Recall that a FSU of L2 is {ε2,
√
εq,

√
ε2q} , so

• the case g = 0 and f = 1 is impossible. In fact √
ε2 ̸∈ L2 ,

• the case g = 1 and f = 0 is impossible too. In fact
√

ε2
√
εq ̸∈ L2 ,

• the case g = 1 and f = 1 is impossible too. In fact 4
√
εq ̸∈ L2 .

It follows that f = g = 0 and b = 0 . Thus,

Y 2 = (2 +
√
2)εa2

√
εq

c√ε2q
d√εpq

e.
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We have NK+/L4
= 1 + σ1 . Hence,

NK+/L4
(Y 2) = (4− 2) · (−1)

a · (−1)
c · εcq · (−1)

d · (−1)e · εepq,

= (−1)a+c+d+e · 2 · εcqεepq > 0.

We have a+ c+ d+ e = 0 (mod 2) . Note that {εp, εq,
√
εqεpq} is a FSU of L4 . Since 2 is not a square in L4 ,

then e ̸= c . It follows that a+ d+ 1 = 0 (mod 2) . Therefore, a ̸= d and e ̸= c . To summarize we have

Y 2 = (2 +
√
2)εa2

√
εq

c√ε2q
d√εpq

e,

with a ̸= d and e ̸= c . Let us now apply NK+/L3
= 1 + σ2σ3 . Thus,

NK+/L3
(Y 2) = (2 +

√
2)2 · ε2a2 · 1 · 1 · (−1)e · √εpq

e > 0.

Thus, e = 0 and so c = 1 . Then we have

Y 2 = (2 +
√
2)εa2

√
εq
√
ε2q

d.

By applying NK+/L5
= 1 + σ1σ3 with Q(

√
p,
√
2q) , we get

NK+/L5
(Y 2) = (4− 2) · (−1)a · (−1) · (−1)d · εd2q

= (−1)a+d+1 · 2 · εd2q > 0.

Since 2 is not a square in L5 , then d = 1 and so a = 0 . Thus, Y 2 = (2 +
√
2)
√
εq
√
ε2q . Therefore, the results

are obtained by applying Lemma 3.1. 2

Now we are able to state and prove the main theorem of this section.

Theorem 4.4 Let p and q be two primes satisfying conditions (3.1) . Let K = Q(
√
2,
√
p,
√
q,
√
−1) and

K+ = Q(
√
2,
√
p,
√
q) . Then we have:

1. EK+ = ⟨−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2εpε2p,

4
√
ε22εqεpqε2pq⟩.

2. EK = ⟨ζ8, ε2, εp,
√
εq,

√
εpq,

√
ε2εpε2p,

4
√
ε22εqεpqε2pq,

4
√
ζ28εqε2q⟩.
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ε
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1
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σ
1
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2
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√
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√
ε
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√
ε 2
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√
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−
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1

√
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q
−
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√
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−
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−
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−
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√
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√
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−
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−
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−
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√
ε 2
ε p
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√ ε

p

ε
2
ε
2
p

(−
1)
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√ ε

2

ε
p
ε
2
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√
ε 2
ε p
ε 2

p
(−

1
)u
ε p

(−
1
)v
ε 2

ε 2
ε p
ε 2

p

4√ ε2 2
ε q
ε p

q
ε 2

p
q

(−
1)

k
4√ ε q

ε
p
q

ε
2 2
ε
2
p
q

(−
1)

t
4√ ε

2 2
ε
q

ε
p
q
ε
2
p
q

(−
1
)r

4√
ε
2 2

ε
q
ε
p
q
ε
2
p
q

(−
1
)k
√
ε q
ε p

q
(−

1
)t
ε 2
√
ε q

(−
1
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Proof Under conditions (3.1), we have h2(p) = h2(q) = h2(−q) = h2(2q) = h2(−1) = h2(2) = h2(−2) = 1 ,
h2(−p) = h2(2p) = h2(−2p) = h2(pq) = h2(−pq) = h2(2pq) = 2 and h2(−2pq) = 4 (cf. [9, 15]). Therefore, by
Wada’s class number formula (cf. [19]) one gets

h2(K) = 1
216 q(K)h2(−1)h2(2)h2(−2)h2(p)h2(−p)h2(q)
h2(−q)h2(2p)h2(−2p)h2(2q)h2(−2q)h2(pq)h2(−pq)h2(2pq)h2(−2pq)

= 1
216 · q(K) · 1 · 1 · 1 · 1 · 2 · 1 · 1 · 2 · 2 · 1 · h2(−2q) · 2 · 2 · 2 · 4,

= 1
28 .q(K).h2(−2q).

On the other hand, by Theorem 3.8 we have h2(K) = h2(−2q) . Therefore, obviously we must have q(K) = 28 .

• Suppose that the unit group of K+ takes the form in the first item of Lemma 4.2, then a FSU of K+ is

{ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p} = {α1, α2, ..., α7}.

Thus, by Lemma 3.1 a FSU of K is {α1, α2, ..., α7} or {αi1 , ..., αi5 , αi0 ,
√
ζ8α} with ik ∈ {1, ..., 7} and

α = αr1
1 αr2

2 · · ·αr7
7 , where rk ∈ {0, 1} , and αi0 ∈ {ε2, εp} , for some i0 . Thus, q(K) ≤ 27 , which is absurd.

• Assume now that the unit group of K takes the form in the first item of Lemma 4.3, then q(K) ≤ 27 , which
is also absurd.

Thus, the only possible case is the one which is given by the second item of Lemma 4.3. This completes the
proof. 2

5. 2-class field towers of some multiquadratic number fields

Keep the notations of the previous sections. Now we can investigate the structure of the second 2 -class groups
of Lpq and Fpq (i.e. GLpq

and GFpq
) defined in Section 3.

Lemma 5.1 Let p and q be two primes satisfying conditions (3.1). Then

• NL∗
pq/Lpq

(
√
εq) = 1 and NL∗

pq/Lpq
(
√
εpq) = −εpq .

• NL∗
pq/Lpq

(ε2) = ε22 , NL∗
pq/Lpq

(ζ8) = i and NL∗
pq/Lpq

(εp) = −1 .

• NL∗
pq/Lpq

(
√
ε2εpε2p) = ±ε2 , NL∗

pq/Lpq
( 4
√
ζ28εqε2q) = ±ζ8 and NL∗

pq/Lpq
( 4
√
ε22εqεpqε2pq) = ±ε2

√
εpqε2pq .

Proof We shall use Lemma 4.1 and keep its notations. Note that {ε2, εpq,
√
εpqε2pq} is a FSU of Lpq .

• NL∗
pq/Lpq

(
√
εq) =

1√
2
(d′1 + d′2

√
q) · 1√

2
(d′1 − d′2

√
q) = 1 .

NL∗
pq/Lpq

(
√
εpq) =

1√
2
(b1

√
2p+ b2

√
q) · 1√

2
(−b1

√
2p− b2

√
q) = −√

εpq ·
√
εpq = −εpq .

• The norms in the second point are direct.

• We have NL∗
pq/Lpq

(ε2εpε2p) = ε22 · (−1) · (−1) . Thus, NL∗
pq/Lpq

(
√
ε2εpε2p) = ±ε2 .

Since NL∗
pq/Lpq

(
√
ε2q) =

1√
2
(d1+d2

√
2q) · 1√

2
(d1−d2

√
2q) = 1 , then NL∗

pq/Lpq
(ζ8

√
εq
√
ε2q) = ζ28 ·1 ·1 . Thus,

NL∗
pq/Lpq

( 4
√
ζ28εqε2q) = ±ζ8 .

NL∗
pq/Lpq

(ε2
√
εq
√
εpqε2pq) = ε22 · 1 · εpq · ε2pq . Thus, NL∗

pq/Lpq
( 4
√
ε22εqεpqε2pq) = ±ε2

√
εpqε2pq .
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2

Theorem 5.2 Let p and q be two primes satisfying conditions (3.1) or (3.2) and let p′ be a prime satisfying
conditions (3.3) . Let m ≥ 2 be an integer such that h2(−2q) = 2m . Then the group GLpq ≃ Qm+1 and the
group GLp′ is of type (2, 2) .

Proof

1. By Proposition 2.3 and Theorem 3.8 we have |GLpq | = 2 · h2(L
∗
pq) = 2m+1 . Assume that p and q verify

conditions (3.1). According to [2, Corollaire 17], the group Gkpq
is quaternion or semidihedral. By Galois

theory we have
Gal(L(2)

pq /kpq) ≃ Gal(Lpq/kpq)×GLpq .

Thus, GLpq
is a subgroup of Gkpq

of index 2 . Therefore, GLpq
is dihedral or quaternion. Since a FSU

of Lpq is {ε2, εpq,
√
εpqε2pq} (cf.[3]), then by [12], Theorem 4.4 and Lemma 5.1, the number of classes of

Cl2(Lpq) which capitulate in L∗
pq is [L∗

pq : Lpq][ELpq : NL∗
pq/Lpq

(EL∗
pq
)] = 2 · 1 = 2 . Therefore, from Table 1,

we deduce that GLpq
cannot be dihedral. Hence, GLpq

is quaternion.

Suppose now that p and q verify the condition (3.2). As previously we show that GLpq
is a subgroup of

Gkpq
of index 2 and by [2] Gkpq

is quaternion. Therefore, GLpq
is quaternion.

2. Let k′ = Q(
√
−1,

√
2p′) . As Lp′ = Q(

√
−1,

√
p′,

√
2) is the genus field of k′ , so by [6, Théorème 5.2], the

2 -class group of k′ is of type (2, 4) . Hence, [5, Corollaire 1] implies that the Hilbet 2 -class field tower of k

terminates at the first step. Therefore, the Hilbert 2 -class field tower of its genus field Lp′ terminates at the
first step. Thus, we have the result.

2

Corollary 5.3 Keep the assumptions of the previous Theorem 5.2 . Then

1. There are exactly 2 classes of Cl2(Lpq) which capitulate in each of the three unramified quadratic extensions
of Lpq .

2. There are 4 classes of Cl2(Lp′) which capitulate in each of the three unramified quadratic extensions of Lp′ .

Lemma 5.4 Let p and q be two primes satisfying conditions (3.1). Then

• NL∗
pq/Fpq

(
√
εq) = −1 and NL∗

pq/Fpq
(
√
εpq) = εpq .

• NL∗
pq/Fpq

(ε2) = −1 , NL∗
pq/Fpq

(εp) = −1 and NL∗
pq/Fpq

(ζ8) = −1 .

• NL∗
pq/Fpq

(
√
ε2εpε2p) = ±ε2p , NL∗

pq/Fpq
( 4
√

ζ28εqε2q) = ±√−ε2q and NL∗
pq/Fpq

( 4
√
ε22εqεpqε2pq) = ±√

εpq .

Proof

• Let us use and keep the notations notations of Lemma 4.1. We have:
NL∗

pq/Fpq
(
√
εq) =

1√
2
(d′1 + d′2

√
q) · 1

−
√
2
(d′1 − d′2

√
q) = −1

2 (d′21 − d′22 q) = −1 .

NL∗
pq/Fpq

(
√
εpq) =

1√
2
(b1

√
2p+ b2

√
q) · 1

−
√
2
(−b1

√
2p− b2

√
q) =

√
εpq ·

√
εpq = εpq .
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• The first norm and the second norm in the second point are direct. We have NL∗
pq/Fpq

(ζ8) = NL∗
pq/Fpq

( 1√
2
(1+

i)) = −1
2 (1− i2) = −1 .

• Note that NL∗
pq/Lpq

(ε2p) = ε22p . Then NL∗
pq/Lpq

(ε2εpε2p) = (−1) · (−1) · ε22p . Thus, NL∗
pq/Lpq

(
√
ε2εpε2p) =

±ε2p .
We have NL∗

pq/Fpq
(
√
ε2q) = 1√

2
(d1 + d2

√
2q) · 1

−
√
2
(d1 + d2

√
2q) = −ε2q , then NL∗

pq/Fpq
(ζ8

√
εq
√
ε2q) =

(−1) · (−1) · (−ε2q) = −ε2q . Therefore, NL∗
pq/Fpq

( 4
√
ζ28εqε2q) = ±√−ε2q .

We have NL∗
pq/Fpq

(
√
ε2pq) =

1√
2
(y1

√
2p+ y2

√
q) · 1

−
√
2
(y1

√
2p− y2

√
q) = −1

2 (y212p− y22q) = 1 . So

NL∗
pq/Fpq

(ε2
√
εq
√
εpq

√
ε2pq) = (−1) · (−1) · εpq · 1 = εpq . Therefore, NL∗

pq/Fpq
( 4
√
ε22εqεpqε2pq) = ±√

εpq .

2

Theorem 5.5 Let m ≥ 2 such that h2(−2q) = 2m .

1. Let p and q be two primes satisfying conditions (3.1). Then GFpq
≃ Dm+1 .

2. Let p and q be two primes satisfying conditions (3.2) . Then GFpq
≃ Qm+1 .

Proof

1. Since, by the third point of Lemma 5.4, √
εpq ∈ Fpq , then according to [2, Proposition 5], a FSU of Fpq is

given by {√εpq, ε2p,
√−ε2q} . As in the proof of Theorem 5.2 and using the same references we deduce that

GFpq
≃ Qm+1 or Dm+1 . By Lemma 5.4, [12] and Theorem 4.4 , the number of classes of Cl2(Fpq) which

capitulate in L∗
pq is [L∗

pq : Fpq][EFpq
: NL∗

pq/Fpq
(EL∗

pq
)] = 2 · 2 = 4 . Thus, we prove the first item.

2. The proof of the second item is similar to that of Theorem 5.2.

2

Corollary 5.6

1. Let p and q be two primes satisfying conditions (3.1). Then there are 4 classes of Cl2(Fpq) which capitulate
in L∗

pq and there are exactly 2 classes of Cl2(Fpq) which capitulate in each of the other quadratic unramified
extensions of Fpq .

2. Let p and q be two primes satisfying conditions (3.2) . Then, there are exactly 2 classes of Cl2(Fpq) which
capitulate in each of the three unramified quadratic extensions of Fpq .

Remark 5.7 • Assume that p and q verify conditions (3.1) or (3.2). The authors of [2] did not determine
the order of Gkpq

, but now by the above results it is easy to see that |Gkpq
| = 2m+2 , with m ≥ 2 such that

h2(−2q) = 2m , and so we have the following diagram (see Figure 2):
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kpq

Kpq FpqLpq

L∗
pq = k

(1)
pq

L
(1)
pq = F

(1)
pq

L∗
pq

(1) = F
(2)
pq = L

(2)
pq = K

(1)
pq = K

(2)
pq = k

(2)
pq

2

2

2

2m-1

Figure 2. The Hilbert 2 -class field towers.

• Note also that the authors of [2] did not determine the exact structure of Gkpq
whenever p and q satisfy

conditions (3.1). Now by our above results it is easy to see that, under conditions (3.1), Gkpq is semidihedral
of order 2m+2 .
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