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Abstract: A 3-dimensional Riemannian manifold equipped with a tensor structure of type (1, 1) , whose third power
is the identity, is considered. This structure and the metric have circulant matrices with respect to some basis, i.e.
these structures are circulant. An associated manifold, whose metric is expressed by both structures, is studied. Three
classes of such manifolds are considered. Two of them are determined by special properties of the curvature tensor of the
manifold. The third class is composed by manifolds whose structure is parallel with respect to the Levi-Civita connection
of the metric. Some geometric characteristics of these manifolds are obtained. Examples of such manifolds are given.
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1. Introduction
Significant results in the geometry of Riemannian manifolds with additional structures are related to the
curvature tensor, the Ricci tensor, the scalar curvatures, the Ricci curvature and the sectional curvatures
of some characteristic 2-planes of every tangent space of the manifolds. We will mention the following papers on
this topic. Some of them refer to the theory of Riemannian almost product manifolds ([10, 11, 14]), and others
refer to the theory of almost Hermitian manifolds ([2, 13, 15, 17]). There are studied classes of manifolds, whose
curvature tensors are invariant under the additional structure, with interesting geometrical characteristics.
Naveira made a classification of Riemannian almost product manifolds by the properties of the tensor ∇P ,
where ∇ is the Levi-Civita connection determined by the metric, and P is the almost product structure ([12]).
The class W0 defined by ∇P = 0 in this classification is common to all classes. Every manifold in W0 has
curvature tensor which is invariant under P . In this way, almost Hermitian manifolds were classified by Gray
and Hervella ([8]). In [9], there are introduced three classes determined by Gray’s curvature identities and it is
proved that every Kähler manifold satisfies them. Due to Gray, in these classes curvature identities are a key
to understand their geometry.

We consider a 3-dimensional Riemannian manifold (M, g,Q) . Here g is the metric and Q is a tensor
field of type (1, 1) , such that Q3 = id, Q ̸= id. The local coordinates of Q form a circulant matrix and Q is
compatible with g , such that an isometry is induced in any tangent space of M . Also, we consider an associated
manifold (M, g̃,Q) whose metric g̃ is expressed by g and Q , and g̃ is necessarily indefinite. We study two
classes L2 and L1 of manifolds whose curvature tensors are invariant under Q . The class L0 , composed
by manifolds whose structure Q is parallel with respect to the Levi-Civita connection of the metric, is their
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subclass. Our purpose is to obtain some geometric properties of (M, g̃,Q) and relations between curvature
quantities of (M, g,Q) and (M, g̃,Q) , when these manifolds belong to L2 , L1 , or L0 .

The paper is organized as follows. In Section 2, we recall some basic facts about (M, g,Q) and (M, g̃,Q)

known from [3, 5, 6]. In Section 3, we obtain conditions for (M, g,Q) which are necessary and sufficient for
belonging of (M, g̃,Q) to each of the classes L2 , L1 and L0 . In both classes L2 and L1 , we express the
Ricci tensor of (M, g̃,Q) by the metrics g and g̃ , and establish that (M, g̃,Q) is an almost Einstein manifold.
Also, we get a condition under which the manifold (M, g̃,Q) is Einstein. In Section 4, we obtain the sectional
curvatures of some characteristic 2-planes of (M, g̃,Q) . For an Einstein manifold, we find the Ricci curvature
in the direction of a nonisotropic vector, as well as in the direction of an isotropic vector. In Section 5, we
characterize geometrically examples of the considered manifolds on 3-dimensional real Lie groups, which are
constructed in [4].

2. Preliminaries
We continue our investigations on manifolds (M, g,Q) and (M, g̃,Q) studied in [3, 5, 6]. These manifolds are
determined in the following way.

Let M be a 3 -dimensional differentiable manifold equipped with a Riemannian metric g . Let Q be a
tensor field on M of type (1, 1) whose coordinate matrix, with respect to some basis {e1, e2, e3} of the tangent
space TpM , p ∈ M , is a circulant one:

(Qj
i ) =

0 1 0
0 0 1
1 0 0

 . (2.1)

Obviously

Q3 = id, Q ̸= id. (2.2)

Let the structure Q be compatible with g such that

g(Qx,Qy) = g(x, y). (2.3)

Here and anywhere in this work, x, y, z, u will stand for arbitrary elements of the algebra on the smooth vector
fields on M or vectors in TpM . The Einstein summation convention is used, the range of the summation indices
being always {1, 2, 3} .

The equalities (2.2) and (2.3) imply that the matrix of g has the form

(gij) =

A B B
B A B
B B A

 , (2.4)

where A and B are smooth functions on M . We suppose A > B > 0 in order that the metric g is positive
definite.

The associated metric g̃ on (M, g,Q) is determined by

g̃(x, y) = g(x,Qy) + g(Qx, y). (2.5)
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It is an indefinite metric whose component matrix has the form

(g̃ij) =

 2B A+B A+B
A+B 2B A+B
A+B A+B 2B

 . (2.6)

Further, we will say that (M, g̃,Q) is associated with (M, g,Q) .

Definition 2.1 A basis of type {x,Qx,Q2x} of TpM is called a Q-basis. In this case, we say that the vector
x induces a Q-basis of TpM .

In [5], for (M, g,Q) it is verified that:

(i) if a vector x induces a Q -basis of TpM and φ is the angle between x and Qx with respect to g , then

φ ∈
(
0,

2π

3

)
, ∠(x,Qx) = ∠(Qx,Q2x) = ∠(x,Q2x) = φ; (2.7)

(ii) an orthogonal Q -basis of TpM exists.

The Levi-Civita connection on a Riemannian manifold is denoted by ∇ . The curvature tensor R of ∇
is defined by

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z. (2.8)

Also, we consider the tensor of type (0, 4) associated with R , defined as follows:

R(x, y, z, u) = g(R(x, y)z, u).

A manifold (M, g,Q) is in class L0 if the structure Q is parallel with respect to g , i.e.

∇Q = 0.

A manifold (M, g,Q) is in class L1 if

R(x, y,Qz,Qu) = R(x, y, z, u). (2.9)

A manifold (M, g,Q) is in class L2 if

R(Qx,Qy,Qz,Qu) = R(x, y, z, u). (2.10)

The subsets L0 ⊂ L1 ⊂ L2 are valid ([3]).
Let Rijkh be the components of the curvature tensor R of type (0, 4) . The following statements are

presented in [3].

Proposition 2.2 The property (2.9) of the manifold (M, g,Q) is equivalent to the conditions

R1212 = R1313 = R2323 = −R1213 = −R1323 = R1223. (2.11)
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Proposition 2.3 The property (2.10) of the manifold (M, g,Q) is equivalent to the conditions

R1212 = R1313 = R2323, R1213 = R1323 = −R1223. (2.12)

The Ricci tensor ρ and the scalar curvatures τ and τ∗ , with respect to g , are given by the well-known
formulas:

ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej) τ∗ = g̃ijρ(ei, ej). (2.13)

In (2.13) we denote by gij and g̃ij the components of the inverse matrices of (gij) and (g̃ij) , respectively.
A Riemannian manifold is said to be Einstein if its Ricci tensor ρ is a multiple of the metric tensor g

and a smooth function on M , i.e.
ρ(x, y) = αg(x, y). (2.14)

In [16], for locally decomposable Riemannian manifolds is defined a class of almost Einstein manifolds.
For the considered in our paper manifolds, we suggest the following:

Definition 2.4 A Riemannian manifold (M, g,Q) is called almost Einstein if the metrics g and g̃ satisfy

ρ(x, y) = αg(x, y) + βg̃(x, y),

where α and β are smooth functions on M .

3. Almost Einstein manifolds
We consider a manifold (M, g,Q) and the associated manifold (M, g̃,Q) .

Let ∇̃ be the Levi-Civita connection of g̃ and R̃ be the curvature tensor of ∇̃ . The Ricci tensor ρ̃ and
the scalar curvatures τ̃ and τ̃∗ , with respect to g̃ , are

ρ̃(y, z) = g̃ijR̃(ei, y, z, ej), τ̃ = g̃ij ρ̃(ei, ej), τ̃∗ = gij ρ̃(ei, ej). (3.1)

In [4], for (M, g,Q) and (M, g̃,Q) , it is established the following

Theorem 3.1 For the Ricci tensors ρ and ρ̃ and for the scalar curvatures τ , τ∗ , τ̃ and τ̃∗ the following
relation is valid:

ρ̃(x, y) = ρ(x, y) +
1

3
(τ̃∗ − τ)g(x, y) +

1

6
(2τ̃ − 2τ∗ + τ̃∗ − τ)g̃(x, y). (3.2)

Further, we apply formulas (2.8) – (2.12) to g̃ , ∇̃ and R̃ .

3.1. The class L2

For the manifold (M, g,Q) the following propositions are equivalent ([3]):

(i) (M, g,Q) belongs to L2 ;

(ii) the components of the Ricci tensor ρ are

ρ11 = ρ22 = ρ33, ρ12 = ρ13 = ρ23; (3.3)
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(iii) (M, g,Q) is an almost Einstein manifold and the Ricci tensor ρ is expressed by

ρ(x, y) =
τ

3
g(x, y) +

(τ
6
+

τ∗

3

)
g̃(x, y). (3.4)

Further, we will obtain some geometric properties of (M, g̃,Q) when (M, g,Q) is in L2 . For this purpose,
first we state the following:

Theorem 3.2 A manifold (M, g,Q) belongs to L2 if and only if (M, g̃,Q) belongs to L2 .

Proof The local form of (3.2) is

ρ̃ij = ρij +
1

3
(τ̃∗ − τ)gij +

1

6
(2τ̃ − 2τ∗ + τ̃∗ − τ)g̃ij . (3.5)

Let (M, g,Q) belong to L2 . From (3.5), having in mind (2.4), (2.6) and (3.3), we get

ρ̃11 = ρ̃22 = ρ̃33, ρ̃12 = ρ̃13 = ρ̃23. (3.6)

It is known that the curvature tensor R for a 3 -dimensional Riemannian manifold is completely deter-
mined by the Ricci tensor ρ and the metric g , as follows:

R(x, y, z, u) = −g(x, z)ρ(y, u)− g(y, u)ρ(x, z) + g(y, z)ρ(x, u) + g(x, u)ρ(y, z)

+
τ

2

(
g(x, z)g(y, u)− g(y, z)g(x, u)

)
.

The local form of the above identity, written for R̃ , is

R̃ijkl = −g̃ikρ̃jl − g̃jlρ̃ik + g̃jkρ̃il + g̃ilρ̃jk +
τ̃

2

(
g̃ikg̃jl − g̃jkg̃il

)
. (3.7)

Taking into account (2.6), (3.6) and (3.7) we find that the components of the curvature tensor R̃ satisfy

R̃1212 = R̃1313 = R̃2323, R̃1213 = R̃1323 = −R̃1223. (3.8)

According to Proposition 2.3, the equalities (3.8) imply that (M, g̃,Q) belongs to L2 .
Conversely, for (M, g̃,Q) ∈ L2 conditions (3.8) hold. On the other hand, bearing in mind (2.6), we state

that the components of the inverse matrix of g̃ satisfy the equalities g̃11 = g̃22 = g̃33 and g̃12 = g̃13 = g̃23.

Then, using (3.8) and the first equality of (3.1), we get (3.6). Therefore, from (2.4), (2.6), (3.5) and (3.6) it
follows that that equalities (3.3) are valid, i.e. (M, g,Q) ∈ L2 . 2

In the course of the above proof we obtain the following:

Corollary 3.3 A manifold (M, g̃,Q) belongs to L2 if and only if the components of the Ricci tensor ρ̃ satisfy
the equalities (3.6).

Theorem 3.4 A manifold (M, g̃,Q) belongs to L2 if and only if (M, g̃,Q) is an almost Einstein manifold.
Then we have

ρ̃(x, y) =
τ̃∗

3
g(x, y) +

( τ̃
3
+

τ̃∗

6

)
g̃(x, y). (3.9)
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Proof Let (M, g̃,Q) belong to L2 . Due to Theorem 3.2, (M, g,Q) is in L2 and the equality (3.4) is valid.
We substitute (3.4) into (3.2) and obtain (3.9), i.e. (M, g̃,Q) is an almost Einstein manifold.

Vice versa. Let (M, g̃,Q) be an almost Einstein manifold. Bearing in mind Definition 2.4 we have
ρ̃(x, y) = αg(x, y) + βg̃(x, y) . Applying (2.4) and (2.6) in the latter expression of ρ̃ we get (3.6). Due to
Corollary 3.3, the manifold (M, g̃,Q) is in L2 . 2

Theorem 3.5 Let (M, g̃,Q) belong to L2 . Then the curvature tensor R̃ has the form

R̃ =
( τ̃∗
3

+
τ̃

6

)
π̃1 +

τ̃∗

3
π̃2, (3.10)

where

π̃1(x, y, z, u) = g̃(y, z)g̃(x, u)− g̃(x, z)g̃(y, u),

π̃2(x, y, z, u) = g(y, z)g̃(x, u) + g(x, u)g̃(y, z)− g(x, z)g̃(y, u)− g(y, u)g̃(x, z).
(3.11)

Proof The proof follows directly from (3.7) and (3.9). 2

Next, with the help of Theorem 3.4, we establish the following:

Corollary 3.6 Let (M, g̃,Q) belong to L2 . Then (M, g̃,Q) is an Einstein manifold if and only if the scalar
curvature τ̃∗ is equal to zero.

Proof The equality (3.9) is similar to (2.14) if and only if τ̃∗ = 0 . In this case the Ricci tensor has the form

ρ̃(x, y) =
τ̃

3
g̃(x, y). (3.12)

2

Now, taking into account (2.6), (3.6) and (3.12), we make the following:

Remark 3.7 Every Einstein manifold (M, g̃,Q) belongs to L2 .

3.2. The class L1

Theorem 3.8 Let (M, g̃,Q) belong to L2 . Then (M, g̃,Q) belongs to L1 if and only if the scalar curvatures
satisfy τ̃∗ = −τ̃ .

Proof From (2.4), (2.6), (3.8), (3.10) and (3.11) we calculate the components of R̃ :

R̃1212 = R̃1313 = R̃2323 =
τ̃∗

3
(A2 −B2) +

τ̃

6
(A2 + 2AB − 3B2),

R̃1213 = R̃1323 = −R̃1223 =
τ̃∗

3
(AB −B2) +

τ̃

6
(A2 −B2).

(3.13)

If (M, g̃,Q) ∈ L1 then, due to Proposition 2.2, we have R̃1212 = −R̃1213 . Hence, from (3.13) it follows
that

(τ̃ − τ̃∗)(A−B)(A+ 2B) = 0.
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Therefore, having in mind that A > B > 0 , we get τ̃∗ = −τ̃ .

Vice versa. Let τ̃∗ = −τ̃ be valid. From (3.13) we find that R̃1212 = −R̃1213 , so (M, g̃,Q) is in L1 . 2

Furthermore, due to Theorem 3.4, Theorem 3.5 and Theorem 3.8, we obtain the following:

Corollary 3.9 Let (M, g̃,Q) belong to L1 . Then

(i) the Ricci tensor is ρ̃(x, y) =
τ̃

6

(
g̃(x, y)− 2g(x, y)

)
and it is degenerate;

(ii) the curvature tensor is R̃ = − τ̃

6
(π̃1 + 2π̃2).

Proof (i) Applying the equality τ̃∗ = −τ̃ in (3.9) we get ρ̃ =
τ̃

6

(
g̃(x, y) − 2g(x, y)

)
, which because of (2.4)

and (2.6) yields ρ̃11 =
τ̃

3
(B −A), ρ̃12 =

τ̃

6
(A−B) . Consequently, we have that det(ρ̃ij) = 0 .

(ii) Using the equality τ̃∗ = −τ̃ , from (3.10) we find R̃ = − τ̃

6
(π̃1+2π̃2), where π̃1 and π̃2 are determined

by (3.11). 2

Remark 3.10 A manifold (M, g̃,Q) ∈ L1 does not admit Einstein metric.

3.3. The class L0

In [5], it is proved that (M, g,Q) belongs to L0 if and only if the functions A and B satisfy the following
matrix equality

gradA = gradB

−1 1 1
1 −1 1
1 1 −1

 . (3.14)

Proposition 3.11 The manifold (M, g̃,Q) belongs to L0 if and only if (M, g,Q) belongs to L0 .

Proof Let (M, g̃,Q) be in L0 . Thus the components of the metric (2.6) satisfy an equality of the type (3.14).
Therefore we have

grad2B = grad(A+B)

−1 1 1
1 −1 1
1 1 −1

 ,

i.e.

2B1 = −A1 −B1 +A2 +B2 +A3 +B3,

2B2 = −A2 −B2 +A3 +B3 +A1 +B1,

2B3 = −A3 −B3 +A2 +B2 +A1 +B1,

(3.15)

where Ai =
∂A
∂xi

, Bj =
∂B
∂xj

. The system (3.15) is reduced to

A1 = −B1 +B2 +B3, A2 = B1 −B2 +B3, A3 = B1 +B2 −B3, (3.16)
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which is equivalent to the matrix equality (3.14), i.e. (M, g,Q) ∈ L0 .
Vice versa. If (M, g,Q) is in L0 , then we have (3.16) which implies (3.15). Consequently, the components

of the metric g̃ satisfy an equality of the type (3.14). Hence (M, g̃,Q) ∈ L0 . 2

4. Some curvature properties of the considered manifolds

In this section we consider some curvature properties of the associated manifold (M, g̃,Q) .
According to the well-known definitions we say that:

(i) a 2-plane {x, y} spanned by the vectors x, y ∈ TpM is nondegenerate if g̃(x, x)g̃(y, y)− g̃2(x, y) ̸= 0 ;

(ii) the sectional curvature of a nondegenerate 2 -plane {x, y} spanned by the vectors x, y ∈ TpM is the value

k̃(x, y) =
R̃(x, y, x, y)

g̃(x, x)g̃(y, y)− g̃2(x, y)
. (4.1)

Further in this section, we suppose that x induces a Q -basis in TpM and φ is the angle between x and
Qx with respect to g . Thus the properties (2.7) are valid.

Lemma 4.1 The 2-plane {x,Qx} is nondegenerate, with respect to g̃ , if and only if φ ̸= arccos
(
− 1

3

)
. If

{x,Qx} is a nondegenerate 2-plane, then {x,Q2x} and {Qx,Q2x} are also nondegenerate 2-planes.

Proof The vectors x , Qx and Q2x determine 2-planes {x,Qx} , {x,Q2x} and {Qx,Q2x} . With the help of
(2.3), (2.5) and (2.7) we calculate

g̃(x,Qx) = g̃(x,Q2x) = g̃(Qx,Q2x) = g(x, x)(cosφ+ 1),

g̃(x, x) = g̃(Qx,Qx) = g̃(Q2x,Q2x) = 2g(x, x) cosφ.
(4.2)

Then, we obtain that {x,Qx} is a nondegenerate 2-plane when the inequality

g̃2(x, x)− g̃2(x,Qx) = (cosφ− 1)(3 cosφ+ 1)g2(x, x) ̸= 0

holds. Consequently, the 2-plane {x,Qx} is nondegenerate if and only if φ ̸= arccos
(
− 1

3

)
. Due to (4.2), if

{x,Qx} is a nondegenerate 2-plane, then {x,Q2x} and {Qx,Q2x} are also nondegenerate 2-planes. 2

Theorem 4.2 If (M, g̃,Q) belongs to L2 , then the sectional curvatures of the basic 2-planes are

k̃(x,Qx) = k̃(x,Q2x) = k̃(Qx,Q2x) = − τ̃∗(1 + cosφ)

3(1 + 3 cosφ)
− τ̃

6
, (4.3)

where φ ̸= arccos
(
− 1

3

)
.

Proof Since (M, g̃,Q) is in L2 we have (2.12), which implies

R̃(x,Qx, x,Qx) = R̃(x,Q2x, x,Q2x) = R̃(Qx,Q2x,Qx,Q2x). (4.4)
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On the other hand, taking into account (3.10), (3.11) and (4.2), we find

R̃(x,Qx, x,Qx) =
τ̃∗

3
(1− cos2 φ)g2(x, x) +

τ̃

6
(1− cosφ)(1 + 3 cosφ)g2(x, x). (4.5)

We apply Lemma 4.1 and the equalities (4.2), (4.4), (4.5) in (4.1) and we get (4.3). 2

Corollary 4.3 If a vector x induces an orthonormal Q-basis, then

k̃(x,Qx) = k̃(x,Q2x) = k̃(Qx,Q2x) = − τ̃∗

3
− τ̃

6
.

The following statement is inspired by results for curvatures of degenerate 2-planes obtained in [1].

Proposition 4.4 Let (M, g̃,Q) belong to L2 and let {x,Qx} be a degenerate 2-plane. Then R̃(x,Qx, x,Qx)

vanishes if and only if (M, g̃,Q) is an Einstein manifold.

Proof Let {x,Qx} be a degenerate 2-plane. From Lemma 4.1 it follows that φ = arccos
(
− 1

3

)
. Thus the

equality (4.5) takes the form R̃(x,Qx, x,Qx) =
8τ̃∗

27
g2(x, x) . Then R̃(x,Qx, x,Qx) = 0 if and only if τ̃∗ = 0 .

Due to Corollary 3.6, (M, g̃,Q) is an Einstein manifold. 2

In case that (M, g̃,Q) is an Einstein manifold we suggest the following definition: The sectional curvature of a
degenerate 2-plane {x,Qx} is

k̃(x,Qx) = lim
φ→arccos

(
− 1

3

) R̃(x,Qx, x,Qx)

g̃(x, x)g̃(Qx,Qx)− g̃2(x,Qx)
. (4.6)

Therefore, we establish the following:

Theorem 4.5 Let (M, g̃,Q) be an Einstein manifold. Then the sectional curvature of a 2-plane {x,Qx} is a
constant and

k̃(x,Qx) = − τ̃

6
. (4.7)

Proof Due to Corollary 3.6 we have τ̃∗ = 0 . Hence (4.5) becomes

R̃(x,Qx, x,Qx) =
τ̃

6
(1− cosφ)(1 + 3 cosφ)g2(x, x).

If φ = arccos
(
− 1

3

)
then from the above equality, (4.2) and (4.6) we find

k̃(x,Qx) = lim
φ→arccos

(
− 1

3

) −τ̃(1 + 3 cosφ)

6(1 + 3 cosφ)
= − τ̃

6
.

If φ ̸= arccos
(
− 1

3

)
then (4.3) holds. Hereof the equality τ̃∗ = 0 implies (4.7), which completes the proof. 2

With the help of Theorem 3.8 and Theorem 4.2 we state the following:
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Corollary 4.6 If (M, g̃,Q) belongs to L1 , then the sectional curvature of a 2-plane {x,Qx} is

k̃(x,Qx) =
τ̃(1− cosφ)

6(1 + 3 cosφ)
,

where φ ̸= arccos
(
− 1

3

)
.

Since g̃ is an indefinite metric it admits isotropic vectors. In [7], it is established that x is an isotropic
vector with respect to g̃ if and only if φ = π

2 . Also, if x is an isotropic vector, then Qx and Q2x are isotropic
vectors, too.

The Ricci curvature in the direction of a nonisotropic vector x is the value

r̃(x) =
ρ̃(x, x)

g̃(x, x)
. (4.8)

Theorem 4.7 If (M, g̃,Q) belongs to L2 and x is a nonisotropic vector, then the Ricci curvatures are

r̃(x) = r̃(Qx) = r̃(Q2x) =
τ̃∗

6 cosφ
+

( τ̃∗
6

+
τ̃

3

)
. (4.9)

Proof According to Corollary 3.3 the components of ρ̃ satisfy (3.6), which implies ρ̃(x, x) = ρ̃(Qx,Qx) =

ρ̃(Q2x,Q2x) . Hence, taking into account (3.9), we find

ρ̃(x, x) = ρ̃(Qx,Qx) = ρ̃(Q2x,Q2x) =
τ̃∗

3
g(x, x) +

( τ̃∗
6

+
τ̃

3

)
g̃(x, x). (4.10)

Applying (4.2) and (4.10) in (4.8), we obtain (4.9). 2

Proposition 4.8 Let (M, g̃,Q) belong to L2 and let x be an isotropic vector. Then ρ̃(x, x) vanishes if and
only if (M, g̃,Q) is an Einstein manifold.

Proof Since x is an isotropic vector it follows that φ = π
2 . The latter equality, (4.2) and (4.10) imply

ρ̃(x, x) =
τ̃∗

3
g(x, x) . Thus ρ̃(x, x) = 0 if and only if τ̃∗ = 0 . Hereof, due to Corollary 3.6, (M, g̃,Q) is an

Einstein manifold. 2

In case that (M, g̃,Q) is an Einstein manifold we suggest the following definition: The Ricci curvature in the
direction of an isotropic vector x is

r̃(x) = lim
φ→π

2

ρ̃(x, x)

g̃(x, x)
. (4.11)

Therefore, we establish the following:

Theorem 4.9 Let (M, g̃,Q) be an Einstein manifold. Then the Ricci curvature is a constant and

r̃(x) =
τ̃

3
. (4.12)
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Proof Due to Corollary 3.6 we have τ̃∗ = 0 , and the equality (4.10) becomes

ρ̃(x, x) =
τ̃

3
g̃(x, x). (4.13)

Let x be an isotropic vector, i.e., φ = π
2 . Therefore, using (4.2), (4.11) and (4.13), we calculate

r̃(x) = lim
φ→π

2

τ̃ cosφ

3 cosφ
=

τ̃

3
.

Let x be a nonisotropic vector. Substituting τ̃∗ = 0 into (4.9) we get (4.12), which completes the proof. 2

Having in mind Theorem 3.8 and Theorem 4.7 we state the following

Corollary 4.10 If (M, g̃,Q) belongs to L1 and x is a non-isotropic vector, then the Ricci curvature is

r̃(x) =
τ̃

6

(
1− 1

cosφ

)
.

5. Lie groups as manifolds of the considered type

Let G be a 3 -dimensional real connected Lie group and g be its Lie algebra with a basis {x1, x2, x3} of left
invariant vector fields. The manifold (G, g,Q) equipped with a circulant structure Q and a Riemannian metric
g , determined by

Qx1 = x2, Qx2 = x3, Qx3 = x1, (5.1)

g(xi, xj) =

{
0, i ̸= j;
1, i = j, (5.2)

is a manifold of the same type as (M, g,Q) ([4]).
For the associated metric g̃ , using (2.5), (5.1) and (5.2), we get

g̃(xi, xj) =

{
1, i ̸= j;
0, i = j. (5.3)

Obviously (G, g̃,Q) is a manifold of the same type as (M, g̃,Q) .
Let G′ be a subgroup of G , and (G′, g,Q) be a manifold with the curvature tensor which is invariant

under Q . According to [4], we have three classes of Lie algebras g satisfying this condition. We consider two
of them whose Lie brackets are determined as follows:

[x1, x2] = λ1x1 + λ2x2, [x2, x3] = λ3x2 − λ1x3, [x1, x3] = λ3x1 + λ2x3. (5.4)

[x1, x2] = [x2, x3] = −[x1, x3] = λ1x1 + λ2x2 − (λ1 + λ2)x3. (5.5)
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5.1. Einstein manifolds
Let (G′, g,Q) be a manifold with Lie algebra determined by (5.4). In this case (G′, g,Q) belongs to L2 and it
is an Einstein manifold ([4]). Further, we study the associated manifold (G′, g̃, Q) .

The well-known Koszul formula implies

2g̃(∇̃xi
xj , xk) = g̃([xi, xj ], xk) + g̃([xk, xi], xj) + g̃([xk, xj ], xi). (5.6)

Now, using (5.3), (5.4) and (5.6), we calculate

∇̃x1x1 = −λ2x1, ∇̃x2x2 = λ1x2, ∇̃x3x3 = λ3x3,

2∇̃x1x2 = (λ1 − λ2 − λ3)x1 + (λ1 + λ2 − λ3)x2 − (λ1 − λ2 − λ3)x3,

2∇̃x1
x3 = −(λ1 + λ2 − λ3)x1 + (λ1 + λ2 − λ3)x2 − (λ1 − λ2 − λ3)x3,

2∇̃x2
x1 = −(λ1 + λ2 + λ3)x1 + (λ1 − λ2 − λ3)x2 − (λ1 − λ2 − λ3)x3,

2∇̃x2
x3 = −(λ1 + λ2 + λ3)x1 + (λ1 + λ2 + λ3)x2 − (λ1 − λ2 − λ3)x3,

2∇̃x3
x1 = −(λ1 + λ2 + λ3)x1 + (λ1 + λ2 − λ3)x2 − (λ1 + λ2 − λ3)x3,

2∇̃x3
x2 = −(λ1 + λ2 + λ3)x1 + (λ1 + λ2 − λ3)x2 + (λ1 + λ2 + λ3)x3.

Then, from (2.8), (5.1) and (5.3), we obtain all nonzero components of R̃ on (G′, g̃, Q) :

R̃1212 = R̃2323 = R̃1313 = R̃2321 = R̃1213 = R̃1323 =
1

2
(λ2

1 + λ2
2 + λ2

3) + λ1λ2 + λ2λ3 − λ1λ3. (5.7)

The latter equalities imply that conditions (2.12) are satisfied, but (2.11) are not satisfied.
Further, from (3.1), (5.2), (5.3) and (5.7), we find all nonzero components of ρ̃ and the scalar curvatures

of (G′, g̃, Q) :

ρ̃12 = ρ̃13 = ρ̃23 = (λ2
1 + λ2

2 + λ2
3) + 2λ1λ2 + 2λ2λ3 − 2λ1λ3, (5.8)

τ̃ = 3(λ2
1 + λ2

2 + λ2
3) + 6λ1λ2 + 6λ2λ3 − 6λ1λ3. (5.9)

Moreover, taking into account (5.3), (5.8) and (5.9), it follows that ρ̃ =
τ̃

3
g̃, i.e. (G′, g̃, Q) is an Einstein

manifold.
We apply (5.3) and (5.7) in (4.1) and we state that the sectional curvatures k̃ij of the basic 2 -planes

{xi, xj} are equal to

k̃ = −1

2
(λ2

1 + λ2
2 + λ2

3)− λ1λ2 − λ2λ3 + λ1λ3. (5.10)

Therefore, we establish the truthfulness of the following:

Proposition 5.1 Let (G′, g̃, Q) be a manifold with Lie algebra determined by (5.4). Then the following
properties hold:

(i) (G′, g̃, Q) belongs to L2 but (G′, g̃, Q) does not belong to L1 ;
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(ii) the nonzero components of R̃ and ρ̃ are (5.7) and (5.8), respectively;

(iii) (G′, g̃, Q) is an Einstein manifold and its scalar curvature is (5.9);

(iv) (G′, g̃, Q) is of constant sectional curvatures (5.10).

5.2. Almost Einstein manifolds
Let (G′, g,Q) be a manifold with Lie algebra determined by (5.5). In this case (G′, g,Q) belongs to L0 and it
is an almost Einstein manifold ([4]).

Now, we consider the associated manifold (G′, g̃, Q) . From (5.3), (5.5) and (5.6) we obtain

∇̃x1
x1 = λ1(x3 − x2), ∇̃x1

x2 = λ1(x1 − x3), ∇̃x1
x3 = λ1(x2 − x1),

∇̃x2x1 = λ2(x3 − x2), ∇̃x2x2 = λ2(x1 − x3), ∇̃x2x3 = λ2(x2 − x1),

∇̃x3
x1 = (λ1 + λ2)(x2 − x3), ∇x3

x2 = (λ1 + λ2)(x3 − x1), ∇̃x3
x3 = (λ1 + λ2)(x1 − x2).

(5.11)

In the well-known formula (∇̃xiQ)xj = ∇̃xi(Qxj)−Q∇̃xixj we apply (5.1) and (5.11). Thus we find ∇̃Q = 0 ,
i.e., (G′, g̃, Q) ∈ L0 .

By using (2.8), (3.1), (5.1), (5.3) and (5.11) we calculate the components of R̃ and ρ̃ :

R̃1212 = R̃2323 = R̃1313 = −R̃1213 = −R̃2123 = −R̃1323 = −2(λ2
1 + λ2

2 + λ1λ2), (5.12)

ρ̃11 = ρ̃22 = ρ̃33 = −2ρ̃12 = −2ρ̃13 = −2ρ̃23 = −4(λ2
1 + λ2

2 + λ1λ2). (5.13)

We find the scalar curvatures and the sectional curvatures of (G′, g̃, Q) with the help of (3.1), (4.1), (5.2), (5.3),
(5.12) and (5.13). The obtained results we expose in the following:

Proposition 5.2 Let (G′, g̃, Q) be a manifold with Lie algebra determined by (5.5). Then the following
properties hold:

(i) (G′, g̃, Q) belongs to L0 ;

(ii) the nonzero components of R̃ and ρ̃ are (5.12) and (5.13), respectively;

(iii) (G′, g̃, Q) is an almost Einstein manifold and its scalar curvature τ and τ∗ are

τ̃ = −τ̃∗ = 12(λ2
1 + λ2

2 + λ1λ2);

(iv) the sectional curvatures of the basic 2-planes {xi, xj} are equal to k̃ = 2(λ2
1 + λ2

2 + λ1λ2).
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