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Abstract: We study on the Rhoades’ question concerning the discontinuity problem at fixed point for a self-mapping
T of a metric space. We obtain a new solution to this question. Our result generalizes some recent theorems existing in
the literature and implies the uniqueness of the fixed point. However, there are also cases where the fixed point set of a
self-mapping contains more than 1 element. Therefore, by a geometric point of view, we extend the Rhoades’ question
to the case where the fixed point set is a circle. We also give a solution to this extended version.
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1. Introduction
In [29], Rhoades asked the question whether there exists a contractive condition which is strong enough to
generate a fixed point, but which does not force the map to be continuous at the fixed point. Some solutions of
this open problem have been presented. For more details, we refer the interested readers to [1–7, 13, 18, 21, 24–
27, 32]. For example, in [24] and [1], the following results were obtained as solutions to this open problem on
metric spaces.

Theorem 1.1 [24] If a self-mapping T of a complete metric space (X, d) satisfies the conditions

1. d (Tx, Ty) ≤ ψ (max {d (x, Tx) , d (y, Ty)}) , where ψ : R+ → R+ is a self-mapping such that ψ (t) < t for
each t > 0 ,

2. For a given ε > 0 , there exists a δ (ε) > 0 such that

ε < max {d (x, Tx) , d (y, Ty)} < ε+ δ

implies d (Tx, Ty) ≤ ε ,

then T has a unique fixed point z . Moreover, T is continuous at z if and only if

lim
x→z

max {d (x, Tx) , d (z, Tz)} = 0.
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Theorem 1.2 [1] If a self-mapping T of a complete metric space (X, d) satisfies the conditions

1. d (Tx, Ty) ≤ ψ (N (x, y)) , where ψ : R+ → R+ is a self-mapping such that ψ (t) < t for each t > 0 with

N (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty) , a [d (x, Ty) + d (y, Tx)] /2} , 0 ≤ a < 1,

2. There exists a δ (ε) > 0 such that ε < M (x, y) < ε+ δ implies d (Tx, Ty) ≤ ε for a given ε > 0 with

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty) , [d (x, Ty) + d (y, Tx)] /2} ,

then T has a unique fixed point z . Moreover, T is continuous at z if and only if

limM (x, z)
x→z

= 0.

Let (X, d) be a metric space, T : X → X be a self-mapping and Fix(T ) = {x ∈ X : Tx = x} be the
fixed point set of the self-mapping T . In this paper, we investigate new contractive conditions. In Section
2, we give a solution to the Rhoades’ question by means of 2 auxiliary numbers. In Section 3, we investigate
geometric properties of the fixed point sets of some discontinuous activation functions. By a geometric point of
view, we extend the Rhoades’ question. We also give a solution to this extended version and provide necessary
illustrative examples to support our theoretical results.

2. New discontinuity results

From now on, we assume that 0 ≤ θ < 1 , α, β, µ ∈ R+ ∪ {0} and γ = α+ β + µ > 0 . We define the following
numbers:

Nd (x, y) = αmax {d (x, Tx) , d (y, Ty)}

+βmax {d (x, y) , d (x, Tx) , d (y, Ty) , θ [d (x, Ty) + d (y, Tx)] /2}

+µmax

{
d (x, Tx) , d (y, Ty) ,

d (x, y) d (y, Ty)

1 + d (x, Tx)
,
d (x, y) d (y, Ty)

1 + d (Tx, Ty)

}

and

Md (x, y) = αmax {d (x, Tx) , d (y, Ty)}

+βmax {d (x, y) , d (x, Tx) , d (y, Ty) , [d (x, Ty) + d (y, Tx)] /2}

+µmax

{
d (x, y) , d (x, Tx) , d (y, Ty) ,

d (y, Ty) [d (x, Ty) + d (y, Tx)]

1 + d (x, Tx) + d (y, Ty)

}
.

By means of these numbers, we give a new solution to the Rhoades’ question in the following theorem.

Theorem 2.1 Let (X, d) be a complete metric space and γ = α+ β + µ > 0 for some α, β, µ ∈ R+ ∪ {0} . If
T is a self-mapping on X satisfying the following conditions,

1. There exists a function ψ : R+ → R+ such that ψ (t) < t for each t > 0 and
γd (Tx, Ty) ≤ ψ (Nd (x, y)) ,
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2. For a given ε > 0 there exists a δ = δ (ε) > 0 such that ε < 1
γMd (x, y) < ε+ δ implies d (Tx, Ty) ≤ ε ,

then T has a unique fixed point z ∈ X and Tnx → z for each x ∈ X . Additionally, T is continuous at
z if and only if lim

x→z
Md (x, z) = 0 .

Proof Let x0 ∈ X be any point such that x0 /∈ Fix(T ) and the sequence {xn} in X be defined by the rule
xn+1 = Txn for n = 0, 1, 2, 3, ... . Using the condition (1) and definition of the number Nd (x, y) we get

γd (xn, xn+1) = γd (Txn−1, Txn) ≤ ψ (Nd (xn−1, xn)) < Nd (xn−1, xn) (2.1)

= αmax {d (xn−1, xn) , d (xn, xn+1)}

+βmax

{
d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1) ,

θ [d (xn−1, xn+1) + d (xn, xn)] /2

}

+µmax

{
d (xn−1, xn) , d (xn, xn+1) ,

d(xn−1,xn)d(xn,xn+1)
1+d(xn−1,xn)

, d(xn−1,xn)d(xn,xn+1)
1+d(xn,xn+1)

}
= αmax {d (xn−1, xn) , d (xn, xn+1)}+ βmax {d (xn−1, xn) , d (xn, xn+1)}

+µmax {d (xn−1, xn) , d (xn, xn+1)} .

Assume that d (xn−1, xn) ≤ d (xn, xn+1) . Using the inequality (2.1) we get

d (xn, xn+1) < d (xn, xn+1) ,

which is a contradiction. So we find d (xn, xn+1) < d (xn−1, xn) and

Nd (xn−1, xn) = (α+ β + µ) d (xn−1, xn) = γd (xn−1, xn) .

If we put d (xn, xn+1) = sn then by the inequality (2.1) we get

sn < sn−1, (2.2)

and so, {sn} is a strictly decreasing sequence of positive real numbers. The sequence {sn} tends to a limit
s ≥ 0 . Suppose s > 0 . Then there exists a positive integer k such that n ≥ k implies

s < sn < s+ δ (s) . (2.3)

Combining the condition (2) and the inequality (2.2), we have

d (Txn−1, Txn) = d (xn, xn+1) = sn < s, (2.4)

for n ≥ k . But, the inequality (2.4) contradicts to the inequality (2.3) and hence we obtain s = 0 .
Let us fix an ε > 0 to show that {xn} is a Cauchy sequence. We may assume that δ = δ (ε) < ε without

loss of generality. Since sn → 0 , there exists a positive integer k satisfying the following inequality for n ≥ k :

d (xn, xn+1) = sn <
δ

2
(0 < δ < 1) .

Following Jachymski’s technique (see [11, 12]), we use the mathematical induction to show that

d (xk, xk+n) < ε+
δ

2
, (2.5)
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for any n ∈ N . Since we have

d (xk, xk+1) = sk <
δ

2
< ε+

δ

2
,

inequality (2.5) holds for n = 1 . Suppose that the inequality (2.5) is true for some n . Using the triangle
inequality, we get

d (xk, xk+n+1) ≤ d (xk, xk+1) + d (xk+1, xk+n+1) .

If we show

d (xk+1, xk+n+1) ≤ ε,

then we deduce that the inequality (2.5) holds for n+ 1 . Now we show that

Md (xk, xk+n) ≤ ε+ δ,

where

Md (xk, xk+n) = αmax {d (xk, Txk) , d (xk+n, Txk+n)} (2.6)

+βmax

{
d (xk, xk+n) , d (xk, Txk) , d (xk+n, Txk+n) ,

[d (xk, Txk+n) + d (xk+n, Txk)] /2

}

+µmax

{
d (xk, xk+n) , d (xk, Txk) , d (xk+n, Txk+n) ,

d(xk+n,Txk+n)[d(xk,Txk+n)+d(xk+n,Txk)]
1+d(xk,Txk)+d(xk+n,Txk+n)

}
.

Then by the mathematical induction hypothesis, we obtain

d (xk, xk+n) < ε+
δ

2
, (2.7)

d (xk, xk+1) <
δ

2
,

d (xk+n, xk+n+1) <
δ

2
,

[d (xk, xk+n+1) + d (xk+n, xk+1)] /2 < ε+ δ,

d (xk+n, xk+n+1) [d (xk, xk+n+1) + d (xk+n, xk+1)]

1 + d (xk, xk+1) + d (xk+n, xk+n+1)
< ε+ δ.

Using (2.6) and (2.7), we get Md (xk, xk+n) < ε+ δ and considering the condition (2) , we find

d (Txk, Txk+n) = d (xk+1, xk+n+1) ≤ ε.

Consequently, the inequality (2.5) indicate that {xn} is a Cauchy sequence. Then there exists a point z ∈ X

such that xn → z as n → ∞ by the completeness hypothesis on the metric space X . Furthermore, we have
Txn → z .
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Now assume Tz ̸= z , that is, z is not a fixed point of T . Using the condition (1) we have

γd (Tz, Txn) ≤ ψ (Nd (z, xn)) < Nd (z, xn)

= αmax {d (z, Tz) , d (xn, Txn)}

+βmax

{
d (z, xn) , d (z, Tz) , d (xn, Txn) ,
θ [d (z, Txn) + d (xn, T z)] /2

}

+µmax

{
d (z, Tz) , d (xn, Txn) ,

d(z,xn)d(xn,Txn)
1+d(z,Tz)

d(z,xn)d(xn,Txn)
1+d(Tz,Txn)

}

and taking limit for n→ ∞ we obtain

γd (Tz, z) < (α+ β + µ) d (z, Tz) = γd (Tz, z) ,

a contradiction. Hence, we get Tz = z , that is, z is a fixed point of T .
Now, assume that w is another fixed point of T such that z ̸= w . Using the condition (1) , we find

γd (Tz, Tw) = γd (z, w) ≤ ψ (Nd (z, w))

< Nd (z, w) = αmax {d (z, Tz) , d (w, Tw)}

+βmax

{
d (z, w) , d (z, Tz) , d (w, Tw) ,
θ [d (z, Tw) + d (w, Tz)] /2

}

+µmax

{
d (z, Tz) , d (w, Tw) ,

d(z,w)d(w,Tw)
1+d(z,Tz) , d(z,w)d(w,Tw)

1+d(Tz,Tw)

}
< (α+ β + µ) d (z, w) = γd (z, w) ,

which is a contradiction. This shows that z is the unique fixed point of the self-mapping T .
For the last part of the proof, assume that T is continuous at the fixed point z . If xn → z then

Txn → Tz = z and
d (xn, Txn) ≤ d (xn, z) + d (Txn, z) → 0.

Hence we get lim
xn→z

Md (xn, z) = 0 . Conversely, if lim
xn→z

Md (xn, z) = 0 then d (xn, Txn) → 0 as xn → z . This

implies Txn → z = Tz , that is, T is continuous at z . 2

Corollary 2.2 Let γ = α + β + µ > 0 for some α, β, µ ∈ R+ ∪ {0} and T be a self-mapping on a complete
metric space (X, d) . If T satisfies the following conditions,

1. γd (Tx, Ty) < Nd (x, y) , for any x, y ∈ X and Nd (x, y) > 0 ,

2. For a given ε > 0 there exists a δ = δ (ε) > 0 such that ε < 1
γMd (x, y) < ε+ δ implies d (Tx, Ty) ≤ ε ,

then T has a unique fixed point z ∈ X and Tnx → z for each x ∈ X . Also, T is continuous at z if
and only if lim

x→z
Md (x, z) = 0 .

Corollary 2.3 Let (X, d) be a complete metric space and T a self-mapping on X satisfying the following
conditions :
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1. There exists a function ψ : R+ → R+ such that ψ (d (x, y)) < d (x, y) for each d (x, y) > 0 and
d (Tx, Ty) ≤ ψ (d (x, y)) ,

2. For a given ε > 0 , there exists a δ = δ (ε) > 0 such that ε < t < ε+ δ implies ψ (t) ≤ ε for any t > 0 .

Then T has a unique fixed point z ∈ X and Tnx→ z for each x ∈ X .

Now we give an example for α = β = 0 and µ = 1 .

Example 2.4 Let X = [0, 2λ] (λ ∈ R+) , d be the usual metric on X and T be the self-mapping defined by

Tx =

{
λ ; x ≤ λ
0 ; x > λ

.

It is easy to verify that T satisfies the conditions of Theorem 2.1 with the functions

ψ (t) =

{
λ ; t > λ
t
3 ; t ≤ λ

and

δ (ε) =

{
2λ ; ε ≥ λ

2λ− ε ; ε < λ
.

Then T has the unique fixed point x = λ . T is discontinuous at the fixed point x = λ since the limit
lim
x→λ

Md (x, λ) does not exist.

Remark 2.5 1) In Theorem 2.1, if we take α = 1 and β = µ = 0 , we obtain Theorem 1.1 and if we take
β = 1 and α = µ = 0 , we obtain Theorem 1.2.

2) We note that Tm has also a fixed point under the hypothesis of Theorem 2.1. This fixed point can be
unique. For example, if we consider the self-mapping T defined in Example 2.4, we find Tmx = λ (m ≥ 2) for
all x ∈ X and hence Tm has a unique fixed point x = λ .

Theorem 2.6 Let γ = α + β + µ > 0 for some α, β, µ ∈ R+ ∪ {0} and T be a self-mapping on a complete
metric space (X, d) . If T satisfies the following conditions

1. There exits a function ψ : R+ → R+ such that ψ (t) < t for each t > 0 , γ = α+ β + µ and
γd (Tmx, Tmy) ≤ ψ (N∗

d (x, y)) , where

N∗
d (x, y) = αmax {d (x, Tmx) , d (y, Tmy)}

+βmax {d (x, y) , d (x, Tmx) , d (y, Tmy) , θ [d (x, Tmy) + d (y, Tmx)] /2}

+µmax

{
d (x, Tmx) , d (y, Tmy) ,

d (x, y) d (y, Tmy)

1 + d (x, Tmx)
,
d (x, y) d (y, Tmy)

1 + d (Tmx, Tmy)

}
,
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2. For a given ε > 0 , there exists a δ = δ (ε) > 0 such that ε < 1
γM

∗
d (x, y) < ε+δ implies d (Tmx, Tmy) ≤ ε ,

where

M∗
d (x, y) = αmax {d (x, Tmx) , d (y, Tmy)}

+βmax {d (x, y) , d (x, Tmx) , d (y, Tmy) , [d (x, Tmy) + d (y, Tmx)] /2}

+µmax

{
d (x, y) , d (x, Tmx) , d (y, Tmy) ,

d (y, Tmy) [d (x, Tmy) + d (y, Tmx)]

1 + d (x, Tmx) + d (y, Tmy)

}
,

then T has a unique fixed point z ∈ X . Also, T is continuous at z if and only if lim
x→z

M∗
d (x, z) = 0 .

Proof From Theorem 2.1, it is clear that the function Tm has a unique fixed point z , that is, Tmz = z .
Consequently, we have

Tz = TTmz = TmTz,

and so Tz is a fixed point of Tm . From the uniqueness of the fixed point, then we get Tz = z . Hence, T has
a unique fixed point. 2

3. Fixed points of discontinuous activation functions and an extended version of the Rhoades’
open problem

In the previous section, our obtained results imply the uniqueness of the fixed point and hence the set Fix(T )
is a singleton. In this section, we deal with the geometric properties of the set Fix(T ) in case that it is not a
singleton. We note that the number Md (x, y) can be also used to determine discontinuity (or continuity) of a
self-mapping T on its fixed points without any hypothesis on the metric space and the self-mapping. We give
the following proposition.

Proposition 3.1 Let (X, d) be a metric space and T a self-mapping on X . Then T is continuous at
z ∈ Fix(T ) if and only if limx→zMd (x, z) = 0 .

Corollary 3.2 Let (X, d) be a metric space and T a self-mapping on X . Then T is discontinuous at z ∈
Fix(T ) if and only if limx→zMd (x, z) ̸= 0 when the limit limx→zMd (x, z) exists. If the limit limx→zMd (x, z)

does not exist then T is discontinuous at z .

It is known that the structures of activation functions are important in the dynamical analysis of recurrent
neural networks [10]. In recent years, discontinuous functions and fixed points of self-mappings are gained
importance in the study of several types of neural networks (see for example [8–10, 16, 17, 33] and the references
therein).

In [16], a general class of discontinuous activation functions were considered to discuss the stability
problem of multiple equilibria for delayed neural networks with discontinuous activation functions. Any member
of this class has the form

f (x) =


u ; −∞ < x < p

l1x+ c1 ; p ≤ x ≤ r
l2x+ c2 ; r < x ≤ q

v ; q < x < +∞

,
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- 1 x < - 3

x + 2 - 3 ≤ x ≤ - 2

- x - 2 - 2 < x ≤ - 1

1 x > - 1

-5 -4 -3 -2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure 1. The discontinuous activation function g .

where p , r , q , u , v , l1 , l2 , c1 , c2 are constants with −∞ < p < r < q < +∞ , l1 > 0 , l2 < 0 , u = f (p) = f (q) ,
f (r) = l2r + c2 and v > f (r) .

It was shown that the storage capacity of the neural networks can be considerably expanded by use of
discontinuous activation functions (see [16] for more details and the usage of the Brouwer’s fixed point theorem).
By choosing u = −1 , l1 = 1 , l2 = −1 , c1 = 2 , c2 = −2 , p = −3 , r = −2 , q = −1 , v = 1 , we obtain the
following discontinuous activation function g (x) belonging to this class:

g (x) =


−1 ; −∞ < x < −3
x+ 2 ; −3 ≤ x ≤ −2
−x− 2 ; −2 < x ≤ −1

1 ; −1 < x < +∞

.

Notice that the fixed point set of g is not a singleton, especially we have Fix(g) = {−1, 1} . We determine the
continuity of g at its fixed points by use of the number Md (x, y) . Since limx→−1Md (x,−1) does not exit, g is
discontinuous at x = −1 . We have limx→1Md (x, 1) = 0 and hence g is continuous at x = 1 . Let us consider
the circle C0,1 . Clearly, we have C0,1 = Fix(g) and the function g fixes the circle C0,1 by a different point of
view (see figure which is drawn by Mathematica [34]). This is the basis of a recent problem called fixed-circle
problem. A circle Cx0,r is called the fixed circle of a self-mapping T if Tx = x for all x ∈ Cx0,r . For more
details about this problem on metric (resp. generalized metric) spaces, one can see [14, 15, 18–23, 26, 27, 30, 31].

We have observed that the fixed point set of the discontinuous activation function g is a circle and g

is not continuous on its fixed circle. At this point, we extend the Rhoades’ question to the case where the set
Fix(T ) contains a circle for any self-mapping T on a metric space X as follows:

Is there a contractive condition which is strong enough to generate a fixed circle but which does not force
the map to be continuous on its fixed circle?

Now, we give a solution to this extended version of the Rhoades’ problem using the number Md (x, y) .
To do this, we fix the second variable y as y = x0 in the definition of the number Md (x, y) . Then we have

Md (x, x0) = αmax {d (x, Tx) , d (x0, Tx0)}

+βmax {d (x, x0) , d (x, Tx) , d (x0, Tx0) , [d (x, Tx0) + d (x0, Tx)] /2}

+µmax

{
d (x, x0) , d (x, Tx) , d (x0, Tx0) ,

d (x0, Tx0) [d (x, Tx0) + d (x0, Tx)]

1 + d (x, Tx) + d (x0, Tx0)

}
.
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Definition 3.3 Let T be a self-mapping on a metric space (X, d) . If there exists a point x0 ∈ X and a function
ψ : R+ → R+ such that ψ(t) < t for each t > 0 satisfying

d(x, Tx) > 0 ⇒ γd(x, Tx) ≤ ψ(Md (x, x0)),

for all x ∈ X , then T is called an Mx0
-type contraction.

Using the Mx0
-type contractive property of the self-mapping and a geometric condition, we prove the

following fixed-circle theorem without any assumption on X .

Theorem 3.4 Let (X, d) be a metric space, T a self-mapping on X and the number ρ defined as follows:

ρ = inf {d (x, Tx) : x ∈ X,x /∈ Fix(T )} .

If T is an Mx0
-type contraction with x0 ∈ X and d (x0, Tx) = ρ for all x ∈ Cx0,ρ then the circle Cx0,ρ

is a fixed circle of T , that is, the set Fix(T ) contains the circle Cx0,ρ . T is continuous at any z ∈ Cx0,ρ if
and only if limx→zMd (x, z) = 0 .

Proof At first, suppose x0 /∈ Fix(T ) . Then considering the definition of an Mx0 -type contraction, we get

γd(x0, Tx0) ≤ ψ(Md(x0, x0)) < Md(x0, x0) = (α+ β + µ) d(x0, Tx0),

a contradiction since we have γ = α+ β + µ .
Let x ∈ Cx0,ρ be any point such that x ̸= x0 . Assume x /∈ Fix(T ) and hence d(Tx, x) > 0 . By the

definitions of an Mx0 -type contraction and the number ρ , we get

γd(x, Tx) ≤ ψ(Md(x, x0)) < Md(x, x0)

= αmax {d (x, Tx) , 0}+ βmax {d (x, x0) , d (x, Tx) , 0, [d (x, x0) + d (x0, Tx)] /2}

+µmax {d (x, x0) , d (x, Tx) , 0, 0}

= αmax {d (x, Tx) , 0}+ βmax {ρ, d (x, Tx) , 0, ρ}+ µmax {ρ, d (x, Tx) , 0, 0}

< (α+ β + µ) d(x, Tx) = γd(x, Tx),

which is a contradiction. Consequently, we have Tx = x for all x ∈ Cx0,ρ and hence Cx0,ρ is a fixed circle of
T .

The last part of the proof is clear by Proposition 3.1. 2

Corollary 3.5 Let (X, d) be a metric space, T a self-mapping on X and the number ρ defined as follows :

ρ = inf {d (x, Tx) : x ∈ X,x /∈ Fix(T )} .

If T is an Mx0
-type contraction with x0 ∈ X and d (x0, Tx) ≤ ρ for all x ∈ Dx0,ρ then the disc Dx0,ρ is a

fixed disc of T , that is, the set Fix(T ) contains the disc Dx0,ρ .

Corollary 3.6 Let (X, d) be a metric space, T a self-mapping on X and the number ρ defined as follows :

ρ = inf {d (x, Tx) : x ∈ X,x /∈ Fix(T )} .
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If there exists x0 ∈ X such that d (x0, Tx) ≤ ρ for all x ∈ Dx0,ρ and

d(x, Tx) > 0 implies γd(x, Tx) < Md (x, x0) ,

for all x ∈ X , then the set Fix(T ) contains the circle Cx0,ρ and the disc Dx0,ρ .

We note that any circle Cx0,r (r ≤ ρ) is fixed by the self-mapping T in Theorem 3.4 (resp. Corollary
3.5 and Corollary 3.6). Also, the converse statement of Theorem 3.4 (resp. Corollary 3.5 and Corollary 3.6) is
not true everywhen (see Example 3.7).

Now, we give some examples.

Example 3.7 Let (C, d) be the usual metric space with the metric d (u, v) = |u− v| . Let us consider the
self-mapping T : C −→ C defined by

Tz =

{
z
2 ; |z| ≥ 2
z ; |z| < 2

,

for all z ∈ C . We have

ρ = inf {d (z, Tz) : z ̸= Tz} = inf

{
|z|
2

: |z| ≥ 2

}
= 1.

Then, it is easy to verify that the self-mapping T satisfies the conditions of Theorem 3.4 with z0 = 0 , ψ(t) = 9
13 t ,

α = µ = 1
2 , β = 1

3 and γ = 4
3 . Consequently, Fix(T ) contains the circle C0,1 and the disc D0,1 .

If we define another self-mapping Tr : C −→ C by

Trz =

{
z0 ; |z − z0| > r
z ; |z − z0| ≤ r

,

for all z ∈ C with r ∈ (0,∞) , then self-mapping Tr is not an Mz0 -type contraction with z0 ∈ C . But Tr fixes
the circle Cz0,r and the disc Dz0,r .

Example 3.8 Let (R, d) be the usual metric space with d(x, y) = |x− y| . Let us define the self-mapping
S : R → R as

Sx =

{
x+ 1 ; x > 1
x ; x ≤ 1

,

for all x ∈ R . Clearly, ρ = 1 and it is easy to check that the self-mapping S satisfies the conditions of Theorem
3.4 with x0 = 0 , ψ(t) = 6

7 t , α = 0 , µ = β = 1
2 and γ = 1 .

Then the circle C0,1 = {−1, 1} is a fixed circle of S (particularly, Fix (S) contains the disc D0,1 =

[−1, 1]) . Furthermore, we have limx→−1Md (x,−1) = 0 and hence S is continuous at the fixed point −1 . Since
the limit limx→1Md (x, 1) does not exist, S is discontinuous at the fixed point 1 (we have limx→1− Md (x, 1) = 0

while limx→1+ Md (x, 1) ̸= 0) .
S is also an Mx0

-type contraction with x0 = −1 , ψ(t) = 3
4 t , α = 1

4 , β = 0 , µ = 1
2 and γ = 3

4 . Clearly,
the circle C−1,1 = {−2, 0} is a fixed circle of S and also we have D−1,1 ⊂ Fix (S) . It is easy to see that
limx→−2Md (x,−2) = 0 and limx→0Md (x, 0) = 0 and hence S is continuous on the fixed circle C−1,1 .

From this last example, we deduce that the radius ρ of the fixed circle (resp. fixed disc) is independent
from the center x0 in Theorem 3.4 (resp. Corollary 3.5 and Corollary 3.6).
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