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Abstract: In this article, we define and study new domain for analytic functions which is named as cardioid domain
for being of cardioid structure. Analytic functions producing cardioid domain are defined and studied to some extent.
The Fekete–Szegö inequality is also investigated for such analytic functions.
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1. Introduction and definitions
Let A be the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

analytic in the open unit disk U = {z : |z| < 1} . The function f is said to be subordinate to the function g,

written symbolically as f ≺ g, if there exists a function w such that

f (z) = g (w (z)) , z ∈ U ,

where w (0) = 0, |w (z)| < 1 for z ∈ U . Using this concept of subordination, several subclasses of analytic
functions are defined on the basis of geometrical interpretation of their image domains. It is worthwhile here
to consider some following classes of analytic functions having renowned and interesting geometrical structures
as their image domains and their causal leading analytic functions.

1. The domain p (U) = {w ∈ C : ℜ(w) > 0} is the right half plane due to analytic function p (z) = 1+z
1−z , for

details, see [4].

2. The domain p (U) = {w ∈ C : ℜ(w) > α, 0 ≤ α < 1} is a plane, to the right of line ℜ(w) = α, due to

analytic function p (z) = 1+(1−2α)z
1−z , for details, see [4].
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3. The domain p (U) =
{
w ∈ C :

∣∣∣w − 1−AB
1−B2

∣∣∣ < A−B
1−B2 , −1 < B < A ≤ 1

}
is a disk due to analytic function

p (z) = 1+Az
1+Bz , for details, see [5].

4. The domain p (U) = {w ∈ C : ℜ(w) > k |w − 1| , k ≥ 0} represents conic regions, like right half plane for
k = 0, hyperbolic regions for 0 < k < 1, parabolic region for k = 1 and elliptic regions when k > 1, due
to the analytic function

pk(z) =



1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2
1−k2 sinh

2
[(

2
π arccos k

)
arctanh

√
z
]

, 0 < k < 1,

1 + 1
k2−1 sin

 π
2R(t)

u(z)√
t∫

0

1√
1−x2

√
1−(tx)2

dx

+ 1
k2−1 , k > 1,

(1.2)

where u(z) = z−
√
t

1−
√
tz

, t ∈ (0, 1) , z ∈ E and z is chosen such that k = cosh
(

πR′(t)
4R(t)

)
, R(t) is the

Legendre’s complete elliptic integral of the first kind and R′(t) is complementary integral of R(t) , for
more detail, see [6, 7]. These conic regions are fixed in size.

5. The domain p (U) =
{
u+ iv : (u− a)

2
> k2

[
(u− a+ b− 1)

2
+ v2 + 2b (1− b)

]}
gives a number of conic

regions of any size by assigning suitable values to parameters a and b , due to the analytic function
pk (a, b; z) = a+ b+ (1− b) pk(z), where pk(z) is defined by (1.2) and a, b must be chosen accordingly,
as:

(i) For k = 0, we take b = 0,

(ii) For k ∈
(
0, 1√

2

)
, we take b ∈

[
1

2k2−1 , 1
)
,

(iii) For k ∈
[

1√
2
, 1
]
, we take b ∈ (−∞, 1) ,

(iv) For k ∈ (1,∞) , we take b ∈
(
−∞, 1

2k2−1

]
.


and

k2(1−b)
1−k2 − σ ≤ a < 1− k2(1−b)

k2−1 + σ, 0 ≤ k < 1,

− 1+b
2 ≤ a < 1−b

2 , k = 1,

max
(

k2(1−b)
1−k2 − σ, 1− k2(1−b)

k2−1 − σ
)
≤ a < 1− k2(1−b)

k2−1 + σ, k > 1,


where σ =

k
√

k2(1−b)2+(1−k2)(1−b2)

k2−1 . For more details, see [9].

6. The domain

Ωk [A,B] =
{
u+ iv :

[(
B2 − 1

) (
u2 + v2

)
− 2 (AB − 1)u+

(
A2 − 1

)]2
> k2

[(
−2 (B + 1)

(
u2 + v2

)
+ 2 (A+B + 2)u− 2 (A+ 1)

)2
+4 (A−B)

2
v2
]}

.

1128



MALIK et al./Turk J Math

gives oval and petal type regions due to the analytic function p (z) = (A+1)pk(z)−(A−1)
(B+1)pk(z)−(B−1) , where pk(z) is

defined by (1.2) and −1 ≤ B < A ≤ 1. For further details, see [10].

7. The domain p (U) =
{
w ∈ C : |wα − β| < β, Argw ≤ π

2α , α ≥ 1, β ≥ 1
2

}
is a leaf-like domain due to the

analytic function p (z) =

(
1+z

1+ 1−β
β z

)1/α

, for details, see [11].

8. The motivational geometrical structure is shell-like curves, upon which our present work is based. The

shell-like curve is caused by the function p (z) = 1+τ2z2

1−τz−τ2z2 , where τ = 1−
√
5

2 . The image of unit circle

under the function p (z) = 1+τ2z2

1−τz−τ2z2 gives the conchoid of Meclaurin, also named as shell-like curve.
That is,

p
(
eiφ
)
=

√
5

2 (3− 2 cosφ)
+ i

sinφ (4 cosφ− 1)

2 (3− 2 cosφ) (1 + cosφ)
, 0 ≤ φ < 2π.

The function p (z) = 1+τ2z2

1−τz−τ2z2 has the following series representation

p (z) =
1 + τ2z2

1− τz − τ2z2

= 1 +

∞∑
n=1

(un−1 + un+1) τ
nzn, where un =

(1− τ)
n − τn√
5

, τ =
1−

√
5

2
.

This generates a Fibonacci series of coefficient constants which made it closer to Fibonacci numbers. For
more details, we refer the readers to [1–3, 12].

Getting inspiration from the concept of shell-like curves and the Janowski functions, we define and
consider a new geometrical structure as image domain. Before that, first we state the following lemma that is
useful in our main results.

Lemma 1.1 [8] If p (z) = 1 +
∑∞

n=1 hnz
n is a function with positive real parts in U , then for v, a complex

number ∣∣h2 − vh2
1

∣∣ ≤ 2max {1, |2v − 1|} .

2. Main Results
We define a class of analytic functions as follows.

Definition 2.1 Let CP [A,B] be the class of functions p (z) which are defined by the subordination relation

p (z) ≺ p̃ (A,B; z) ,

where p̃ (A,B; z) is defined by

p̃ (A,B; z) =
2Aτ2z2 + (A− 1) τz + 2

2Bτ2z2 + (B − 1) τz + 2
, (2.1)

with −1 < B < A ≤ 1 and τ = 1−
√
5

2 , z ∈ U .
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For in-depth understanding of the class CP [A,B], it would be worthwhile here to have a geometrical
description of the function p̃ (A,B; z) defined by (2.1) . If we denote ℜp̃

(
A,B; eiθ

)
= u and ℑp̃

(
A,B; eiθ

)
= v,

then the image p̃
(
A,B; eiθ

)
of the unit circle is a cardioid like curve defined by the following parametric form

as

u =
4 + (A− 1) (B − 1) τ2 + 4ABτ4 + 2λ cos θ + 4 (A+B) τ2 cos 2θ

4 + (B − 1)
2
τ2 + 4B2τ4 + 4 (B − 1) (τ +Bτ3) cos θ + 8Bτ2 cos 2θ

,

(2.2)

v = (A−B)

(
τ − τ3

)
sin θ + 2τ2 sin 2θ

4 + (B − 1)
2
τ2 + 4B2τ4 + 4 (B − 1) (τ +Bτ3) cos θ + 8Bτ2 cos 2θ

,

where λ = (A+B − 2) τ + (2AB −A−B) τ3, −1 < B < A ≤ 1 , τ = 1−
√
5

2 and 0 ≤ θ < 2π.

Furthermore, we note that

p̃ (A,B; 0) = 1 and p̃ (A,B; 1) =
AB + 9 (A+B) + 1 + 4 (B −A)

√
5

B2 + 18B + 1
.

The cusp of the cardioid-like curve, defined by (2.2) , is given by

γ (A,B) = p̃
(
A,B; e±i arccos(1/4)

)
=

2AB − 3 (A+B) + 2 + (A−B)
√
5

2 (B2 − 3B + 1)
.

The above discussed cardioid-like curve with different values of parameters can be seen in Figure 1.

Figure 1. The curve (1.7) with A = 0.8; B = 0.6 and curve (1.7) with A = 0.5; B=-0.5
The parameters A, B are related by the relation B < A. Its violation flips over the cardioid curve as

shown in Figure 2.
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Figure 2. The curve (1.7) with A = 0.6; B = 0.8, and curve (1.7) with A=-0.5; B = 0.5

The parameter B is bounded below by relation −1 < B. Its violation does not result in the cardioid
curve. Figure 3 can better explain this fact.

Figure 3. The curve (1.7) with A = 0.6; B = 0.8 and the curve (1.7) with A =-0.5; B = 0.5

If we consider the open unit disk U as the collection of concentric circles having origin as center, then
we have the following image of open unit disk U , shown in Figure 4.

Figure 4 shows the images of certain concentric circles. The image of each inner circle is a nested
cardioid-like curve. Therefore, the function p̃ (A,B; z) maps the open unit disk U onto a cardioid region. That
is, p̃ (A,B;U) is a cardioid domain.
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Figure 4. The curve (1.7) with A = 0.6; B = 0.8 and the curve (1.7) with A =-0.5; B = 0.5

If we set p̃ (A,B; z) = 1 +
∑∞

n=1 pnz
n, then it can be found that

pn =


(A−B) τ

2 , for n = 1

(A−B) (5−B) τ2

22 , for n = 2

1−B
2 τpn−1 −Bτ2pn−2, for n = 3, 4, 5, ...

Theorem 2.2 Let p (z) ∈ CP [A,B] . Then p (z) ∈ P (α) , with

α =
2 (A+B − 2) τ + 2 (2AB −A−B) τ3 + 16 (A+B) τ2η

4 (B − 1) (τ +Bτ3) + 32Bτ2η
, (2.3)

where η =
4+τ2−B2τ2−4B2τ4−(1−Bτ2)

√
5(2Bτ2−(B−1)τ+2)(2Bτ2+(B−1)τ+2)

4τ(1+B2t2) , −1 < B < A ≤ 1 and τ = 1−
√
5

2 .

Proof As we know that

α = min
{
ℜp̃
(
A,B; eiθ

)}
= minu (θ) ,

where u (θ) is defined by the relation (2.2) . The minu (θ) is attained at θ = φ, where φ is one of the roots of
d
dθu(θ) = 0. A little simplification leads us to the value of φ, which is

φ = arccos

(
4 + τ2 −B2τ2 − 4B2τ4 − (1−Bτ2)

√
5(2Bτ2 − (B − 1)τ + 2)(2Bτ2 + (B − 1)τ + 2)

4τ(1 +B2t2)

)
.
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That is,

α = lim
θ→φ

u (θ)

= lim
θ→φ

4 + (A− 1) (B − 1) τ2 + 4ABτ4 + 2λ cos θ + 4 (A+B) τ2(2 cos2 θ − 1)

4 + (B − 1)
2
τ2 + 4B2τ4 + 4 (B − 1) (τ +Bτ3) cos θ + 8Bτ2(2 cos2 θ − 1)

= lim
cos θ→η

4 + (A− 1) (B − 1) τ2 + 4ABτ4 + 2λ cos θ + 4 (A+B) τ2(2 cos2 θ − 1)

4 + (B − 1)
2
τ2 + 4B2τ4 + 4 (B − 1) (τ +Bτ3) cos θ + 8Bτ2(2 cos2 θ − 1)

,

where

η =
4 + τ2 −B2τ2 − 4B2τ4 − (1−Bτ2)

√
5(2Bτ2 − (B − 1)τ + 2)(2Bτ2 + (B − 1)τ + 2)

4τ(1 +B2t2)

and
λ = (A+B − 2) τ + (2AB −A−B) τ3.

This limit gets the form of 0
0 when parameters A and B are set 1 and −1 respectively. That is, this limit

expression is not stable. Applying L.Hopital’s rule, we have

α = lim
cos θ→η

d
d(cos θ)

(
4 + (A− 1) (B − 1) τ2 + 4ABτ4 + 2λ cos θ + 4 (A+B) τ2(2 cos2 θ − 1)

)
d

d(cos θ)

(
4 + (B − 1)

2
τ2 + 4B2τ4 + 4 (B − 1) (τ +Bτ3) cos θ + 8Bτ2(2 cos2 θ − 1)

)

= lim
cos θ→η

2λ+ 16 (A+B) τ2 cos θ

4 (B − 1) (τ +Bτ3) + 32Bτ2 cos θ

=
2 (A+B − 2) τ + 2 (2AB −A−B) τ3 + 16 (A+B) τ2η

4 (B − 1) (τ +Bτ3) + 32Bτ2η
.

2

Corollary 2.3 When A = 1, B = −1. Then, the order α defined by (2.3) reduces to

α =
1

2

1 + τ2

1− τ2 + 4τη
,

where η = − 1
2

2τ2−2+
√
5
√

(τ2−τ−1)(τ2+τ−1)

τ . Taking τ = 1−
√
5

2 , we get α =
√
5

10 .

This result is proved in [3].

Theorem 2.4 The function p̃ (A,B; z) defined by (2.1) is univalent in the disk |z| < τ2, where τ = 1−
√
5

2 .

Proof For z, w ∈ U , we consider that

p̃ (A,B; z) = p̃ (A,B;w) .
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This implies that
2 + (A− 1) τz + 2Aτ2z2

2 + (B − 1) τz + 2Bτ2z2
=

2 + (A− 1) τw + 2Aτ2w2

2 + (B − 1) τw + 2Bτ2w2
.

A little simplification leads us to

τ (B −A) (z − w)

(
w − 2τz + 1

τ2z2 − 2τ

)
= 0.

Now using similar argument as discussed in [3], we can conclude the required result. 2

Theorem 2.5 Let p (z) ∈ CP [A,B] and of the form p (z) = 1 +
∑∞

n=1 pnz
n. Then, for a complex number µ

∣∣p2 − µp21
∣∣ ≤ (A−B) τ

2
max

{
1,
∣∣∣τ
2
(µA+ (1− µ)B − 5)

∣∣∣} .

Proof For h (z) ∈ P and of the form h (z) = 1 +
∑∞

n=1 cnz
n, consider

h (z) =
1 + w (z)

1− w (z)
,

where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that

w (z) =
h (z)− 1

h (z) + 1

=

(
1 + c1z + c2z

2 + c3z
3 + ...

)
− 1

(1 + c1z + c2z2 + c3z3 + ...) + 1

= =
1

2

(
c1z + c2z

2 + c3z
3 + ...

) (
1 +

(c1
2
z +

c2
2
z2 +

c3
2
z3 + ...

))−1

.

A little simplification reduces the above expression to

w (z) =
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2 + .... (2.4)

Since p (z) ∈ CP [A,B] ; therefore,

p (z) =
2Aτ2w2 + (A− 1) τw + 2

2Bτ2w2 + (B − 1) τw + 2
.

This implies that

1 +

∞∑
n=1

pnz
n =

2Aτ2
(
1
2c1z +

(
1
2c2 −

1
4c

2
1

)
z2 + ....

)2
+ (A− 1) τ

(
1
2c1z +

(
1
2c2 −

1
4c

2
1

)
z2 + ....

)
+ 2

2Bτ2
(
1
2c1z +

(
1
2c2 −

1
4c

2
1

)
z2 + ....

)2
+ (B − 1) τ

(
1
2c1z +

(
1
2c2 −

1
4c

2
1

)
z2 + ....

)
+ 2

which reduces to

1 +

∞∑
n=1

pnz
n =

1 + 1
4 (A− 1) τc1z +

1
4

{
Aτ2c21 + 2τ (A− 1)

(
1
2c2 −

1
4c

2
1

)}
z2 + ...

1 + 1
4 (B − 1) τc1z +

1
4

{
Bτ2c21 + 2τ (B − 1)

(
1
2c2 −

1
4c

2
1

)}
z2 + ...

.

1134



MALIK et al./Turk J Math

After reducing right hand side of above equation to its series form and then comparing corresponding coefficients,
we have the following relations.

p1 =
1

4
(A−B) τc1

p2 =
1

2
(A−B) τ

(
1

2
c2 −

1

4
c21

)
+

1

16
τ2c21 (A−B) (5−B) .

Now, for complex number µ, consider

p2 − µp21 =
1

2
(A−B) τ

(
1

2
c2 −

1

4
c21

)
+

1

16
τ2c21 (A−B) (5−B)− µ

16
(A−B)

2
τ2c21

=
1

4
(A−B) τ

{
c2 −

(
1

2
− (5−B)

4
τ +

µ

4
(A−B) τ

)
c21

}
≤ 1

4
(A−B) τ (2max (1, |2v − 1|)) ,

where

v =
1

2
− (5−B)

4
τ +

µ

4
(A−B) τ.

Therefore, ∣∣p2 − µp21
∣∣ ≤ (A−B) τ

2
max

{
1,
∣∣∣τ
2
(µA+ (1− µ)B − 5)

∣∣∣} .

2
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