
Turk J Math
(2020) 44: 1137 – 1145
© TÜBİTAK
doi:10.3906/mat-1906-63

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Gradient Weyl-Ricci Soliton

Cornelia-Livia BEJAN1,∗, Şemsi EKEN MERİÇ2, Erol KILIÇ3
1Department of Mathematics, ”Gh. Asachi” Technical University of Iasi, Iasi, Romania

2Department of Mathematics, Faculty of Sciences and Arts, Mersin University, Mersin, Turkey
3Department of Mathematics, Faculty of Sciences and Arts, İnönü University, Malatya, Turkey

Received: 19.06.2019 • Accepted/Published Online: 04.05.2020 • Final Version: 08.07.2020

Abstract: The classical notion of gradient Ricci soliton is extended here to the gradient Weyl-Ricci soliton. A Weyl
structure of the base manifold M is lifted to its tangent bundle TM , by using the Sasaki metric. We give some necessary
and sufficient conditions such that the Weyl structure on TM to be a gradient Weyl-Ricci soliton.
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1. Introduction
Over the years, the notion of conformality has shown its importance in both mathematics and theoretical
physics. A Weyl structure on a manifold M consists of a class of conformal Riemannian metrics [g] on M ,
and the Weyl connection, which is a special torsion-free connection that preserves the conformal class [g] . The
Weyl connection is an example of a non-Riemannian connection. The role played by the Weyl connection for
the Weyl structure is, in a sense, similar with the role played by the Levi-Civita connection for a Riemannian
metric. Roughly speaking, a Weyl manifold is a conformal manifold equipped with a Weyl connection which
is a torsion-free connection preserving the conformal structure. The physical motivation and some historical
notes for which H. Weyl introduced Weyl’s structure (mainly as a generalization of Riemannian geometry), are
described in [8].

In the present paper we focus on the tangent bundle TM of a manifold M , which proves to be rich in
geometrical structures. One of the most used Riemannian metric on the total space of TM is the Sasaki metric,
introduced by Sasaki in [14]. Since the Sasaki metric is rather rigid, several extensions of the Sasaki metric
were constructed on TM . We recall here only some, including those obtained by Abbassi and Sarih in [1, 2],
Janyska [10], Kowalski and Sekizawa [11], Oproiu and Papaghiuc [13], Bejan and Druta-Romaniuc [5].

A Weyl manifold is said to be Einstein-Weyl if the symmetric part of the Ricci tensor is proportional
to the conformal metric. In particular, Einstein-Weyl manifolds appear as the natural background for static
Yang-Mills-Higgs theory. In [6], Bejan and Gül first obtain the behavior of the Sasaki metric on TM under
the gauge transformations of the metrics in the conformal class [g] and then the authors characterize (in terms
of the Sasaki metric) both Weyl structures on M and on TM to be simultaneously Einstein-Weyl. The Weyl
structures were previously studied by the first author in [3].
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The notion of Ricci solitons generalizes the one of Einstein manifolds. In the present paper, we first
introduce a new notion, namely the gradient Weyl-Ricci soliton (see Definition 2.1). Then we deal with the
vertical and horizontal lifts from the base manifold M to its tangent bundle TM . As it was noticed in [15], an
interesting research task is to compare the geometric structures between two manifolds. In our work, starting
with a Weyl structure on the base manifold M , we construct a Weyl structure on the total space of the tangent
bundle whose conformal class of metrics contains the Sasaki metric on TM . We provide here the expression of
the Ricci tensor field of the Weyl structure on TM and also that of its symmetrical part. Our main result (see
Theorem 3.9) characterizes (in terms of Sasaki metric) the Weyl structure on TM to be a gradient Weyl-Ricci
soliton.

2. Preliminaries
Let (M, [g]) be an m-dimensional manifold endowed with a conformal class of Riemannian metrics. A Weyl
connection is defined as a torsion-free connection D preserving the conformal class [g] . If we fix a Riemannian
metric g ∈ [g] , then D determines a 1-form ω by Dg = −2w⊗ g and conversely, D is determined by a 1-form
ω as follows:

DXY = ∇XY + ω(Y )X + ω(X)Y − g(X,Y )ξ, ∀X,Y ∈ Γ(TM), (2.1)

where ∇ is the Levi-Civita connection of g and ξ is the dual vector field of ω with respect to g (i.e. ω = g(ξ, .)).
It follows that the squared length ∥ξ∥2 of ξ with respect to g is given by ∥ξ∥2 = g(ξ, ξ) = ω(ξ) .
The Weyl connection D is called closed (resp. exact) according as ω is closed (resp. exact). This

definition is independent of the conformal change of the Riemannian metric g , since any conformal change
e → e2λg determines the following transformation x → ω − dλ , which shows that ω is closed (resp. exact) if
and only if ω − dλ is so.

Let Rg = [∇,∇]−∇[,] and R[g] = [D,D]−D[,] be the curvature tensor fields of the Levi-Civita connection
of ∇ and the Weyl connection D , respectively. Hence, they are related by:

R[g](X,Y ) = Rg(X,Y )Z + dω(X,Y )Z − ((∇Y ω)(Z))X + ((∇Xω)(Z))Y

+ω(Y )ω(Z)X − g(Y, Z)∇Xξ − g(Y, Z)ω(ξ)X

+g(Y, Z)ω(X)ξ − ω(X)ω(Z)Y + g(X,Z)∇Y ξ

+g(X,Z)ω(ξ)Y − g(X,Z)ω(Y )ξ, ∀X,Y, Z ∈ Γ(TM).

Consequently, the relation between the Ricci tensor fields Ricg and Ric[g] of the Levi-Civita connection ∇ and
respectively the Weyl connection D is given by

Ric[g](X,Y ) = Ricg(X,Y ) + dω(X,Y ) + (δω − (m− 2)∥ξ∥2)g(X,Y )

−(m− 2)(∇Xω)Y + (m− 2)ω(X)ω(Y ),∀X,Y, Z ∈ Γ(TM).

where the co-differential δω of ω is defined by

δω = −traceg{(U, V ) → (∇Uω)V }.
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If Ricsym[g] denotes the symmetrical part of Ric[g] , then

Ricsym[g] (X,Y ) = Ricg(X,Y ) + (δω − (m− 2)∥ξ∥2)g(X,Y )

−1

2
(m− 2)[(∇Xω)Y + (∇Y ω)X] (2.2)

+(m− 2)ω(X)ω(Y ), ∀X,Y ∈ Γ(TM).

To introduce our main notion, we denote as usually the Hessian (with respect to the metric g ) of any
smooth function f on M , by

(Hessgf)(X,Y ) = XY f − (∇XY )f, ∀X,Y ∈ Γ(TM) (2.3)

Definition 2.1 We define a gradient Weyl-Ricci soliton to be a manifold M endowed with a triple (g, ω, f) ,
where (g, ω) is a Weyl structure with the Weyl connection D and f is a smooth function satisfying

Ricsym[g] +Hessg(f) = αg, (2.4)

for some real function α .

The gradient Weyl-Ricci soliton equation we defined above is a conformally invariant generalization of
the gradient Ricci soliton introduced by R. S. Hamilton in [9].

Remark 2.2

(i) If in the above definiton f vanishes identically, then one obtains the notion of Einstein-Weyl manifold (which
provides a natural generalization of Einstein geometry), see [7].

(ii) Since not every Weyl connection is Levi-Civita, it follows that gradient Weyl-Ricci solitons provide a natural
generalization of gradient Ricci solitons.

3. The Tangent Bundle Carrying the Sasaki Metric

To fix notations, let (xi) be the local coordinates on any Riemannian manifold (M, g) and let (xi, yi) be the
induced local coordinates on its tangent bundle π : TM → M . By using vertical and horizontal lifts, one can
lift some geometric objects from the base manifold M to its tangent bundle TM (see [16]), as follows:

(i) For any smooth function f on M , the vertical lift fv of f is defined by fv = f ◦ π .

(ii) For any vector field X on M , (given locally by X = Xi ∂
∂xi ), its vertical and horizontal lifts Xv and

Xh are given locally on TM , respectively by Xv = Xi ∂
∂yi and Xh = Xi ∂

∂xi − yjΓi
jkX

k ∂
∂yk , where Γi

jk are the
Christoffel symbols of the Levi-Civita connection of g .

Under the notation (i) and (ii), one has

Xvfv = 0, Xhfv = (Xf)v, (3.1)

(see [16]).
Convention: Note that if not otherwise stated, all functions on M are identified with their vertical lift on TM .
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From [14], if (M, g) is a Riemannian manifold, then the Sasaki metric G on TM is defined at any point
(x, u) ∈ TM by

G(x,u)(X
h, Y h) = (gx(X,Y ))v = G(x,u)(X

v, Y v), (3.2)

G(x,u)(X
h, Y v) = 0, ∀X,Y ∈ Γ(TM).

Hence, at any point (x, u) ∈ TM , the curvature tensor field R̄G of the metric G is related to the
curvature tensor field Rg of the metric g on M (see [4]) by

R̄G(X
h, Y h)Zh = (Rg(X,Y )Z)h +

1

4

[
Rg(u,Rg(X,Z)u)Y

−Rg(u,Rg(Y, Z)u)X + 2Rg(u,Rg(X,Y )u)Z
]h

+
1

2

[
(∇ZRg)(X,Y )u

]v
,

R̄G(X
h, Y h)Zv =

[
Rg(X,Y )Z +

1

4
Rg(Y,Rg(u,Z)X)u

−1

4
Rg(X,Rg(u,Z)Y )u

]v
+

1

2

[
(∇XRg)(u,Z)Y

−(∇Y Rg)(u,Z)X
]h
,

R̄G(X
h, Y v)Zh =

1

2

[
(∇XRg)(u, Y )Z

]h
+

1

2

[
Rg(X,Z)Y (3.3)

−1

2
Rg(X,Rg(u, Y )Z)u

]v
,

R̄G(X
h, Y v)Zv = −1

2

[
Rg(Y, Z)X

]h − 1

4

[
Rg(u, Y )Rg(u,Z)X

]h
,

R̄G(X
v, Y v)Zh = (Rg(X,Y )Z)h +

1

4

[
Rg(u,X)Rg(u, Y )Z

−Rg(u, Y )Rg(u,X)Z
]h
,

R̄G(X
v, Y v)Zv = 0, ∀X,Y, Z ∈ Γ(TM).

Let Ricg(X,Y ) =
∑m

i=1 g(Rg(X, ei)ei, Y ) be the Ricci tensor field of (M, g) and similarly, let RicG be
the Ricci tensor field of (TM,G) , where {ei}i=1,m is an orthonormal frame around an arbitrary point x ∈ M .

Since {E1 = eh1 , ..., Em = ehm, Em+1 = ev1, ..., E2m = evm} is an orthonormal frame around (x, u) ∈ TM , one has

RicG(U, V ) =

2m∑
i=1

G(R̄G(U,Ei)Ei, V )

=

m∑
i=1

G(R̄G(U, e
h
i )e

h
i , V ) +

m∑
i=1

G(R̄G(U, e
v
i )e

v
i , V ),∀U, V ∈ Γ(TM).
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Hence, from (3.2) and (3.3), it follows that at any point (x, u) ∈ TM , the Ricci curvature RicG of G is
related by the Ricci curvature Ricg of g on M by

RicG(X
h, Y h) =

[
Ricg(X,Y )− 3

4

m∑
i=1

g(Rg(X, ei)u,Rg(Y, ei)u)

−1

4

m∑
i=1

Rg(u, ei, Rg(u, ei)X,Y )
]v

(3.4)

=
[
Ricg(X,Y )− 3

4

m∑
i=1

g(Rg(X, ei)u,Rg(Y, ei)u)

+
1

4

m∑
i=1

g(Rg(u, ei)X,Rg(u, ei)Y )
]v

RicG(X
v, Y v) =

[1
4

m∑
i=1

g(Rg(u,X)ei, Rg(u, Y )ei)
]v
,∀X,Y ∈ Γ(TM). (3.5)

Proposition 3.1 [6] The Sasaki metrics on TM , corresponding to any representative of the conformal class
[g] on M , form a class which is invariant under the vertical conformal change. That is, if g is a metric on the
manifold M and G is its corresponding Sasaki metric on TM , then to any conformal change g → eλg on M ,
will correspond the change of the Sasaki metric G → (eλ)vG on TM .

Lemma 3.2 [6] Let M be an m−dimensional manifold (m > 2) endowed with the Weyl structure (g, ω) and
let G be the Sasaki metric on TM induced by g . Then:

(i) (G,ωv) is the induced Weyl structure on TM ;

(ii) The symmetric part Ric
sym

[G] of the Ricci tensor field of the Weyl structure (G,ωv) on TM satisfies:

Ric
sym

[G] (Xh, Y h) = RicG(X
h, Y h)− m

m− 2
δωg(X,Y ) (3.6)

+
2(m− 1)

m− 2
(Ricsym[g] (X,Y )−Ricg(X,Y ))

Ric
sym

[G] (Xv, Y h) =
1

2

m∑
i=1

g((∇eiR)(X, ei)u, Y ) +
1

2
ω(R(u,X)Y ), (3.7)

Ric
sym

[G] (Xv, Y v) =
1

4

m∑
i=1

g(R(u,X)ei, R(u, Y )ei) (3.8)

+(δω − 2(m− 1)∥ξ∥2)g(X,Y ),∀X,Y ∈ Γ(TM),
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where {ei}i=1,m , ∇, R,Ricg, RicG, Ricsym[g] are respectively an orthonormal frame with respect to g , the Levi-

Civita connection of g , the curvature of g , the Ricci tensor field of g and G , and the symmetric part of Ric[g] ,
(here we used the above convention).

Lemma 3.3 Let f be a smooth function on a Riemannian manifold (M, g) . Then, the Hessian (with respect
to the Sasaki metric G) of its vertical lift is expressed by:

HessGf
v(Xh, Y h) = XhY hfv − (∇XhY h)fv

= XhY hfv − (∇XY )hfv +
1

2
(Rg(X,Y )u)vfv

= (XY f)v − ((∇XY )f)v +
1

2
(Rg(X,Y )u)vfv

= (Hessgf(X,Y ))v

HessGf
v(Xh, Y v) = XhY vfv − (∇XhY v)fv

= −(∇XY )vfv − 1

2
(Rg(u, Y )X)hfv (3.9)

= −1

2
((Rg(u, Y )X)f)v

HessGf
v(Xv, Y h) = XvY hfv − (∇XvY h)fv

= Xv(Y f)v − 1

2
(Rg(u,X)Y )hfv

= −1

2
((Rg(u,X)Y )f)v

HessGf
v(Xv, Y v) = XvY vfv − (∇XvY v)fv = 0.

Now we obtain our main result:

Theorem 3.4 Let M be an m-dimensional manifold endowed with a Weyl structure (g, ω) whose induced Weyl
structure on TM is (G,ωv) . For any smooth function f on M , the triple (G,ωv, fv) is a gradient Weyl-Ricci
soliton on TM if and only if (M, g) is flat and

Hessgf(X,Y ) = (m− 1){(∇Xω)Y + (∇Y ω)X − 2ω(X)ω(Y )}, (3.10)

∀X,Y ∈ Γ(TM).

Proof Suppose that the triple (G,ωv, fv) is a gradient Weyl-Ricci soliton, that is

Ric
sym

[G] +HessGf
v = ᾱG. (3.11)
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If in (3.8), (3.6), (3.4) and (3.5) we take X = Y = ej , j ∈ {1, ...,m} , where {ei}i=1,m is an orthonormal basis
on (M, g) around any point x ∈ M , then at any point (x, u) ∈ TM we obtain:

ᾱ =
1

4

m∑
i=1

∥Rg(u, ej)ei∥2 + δω − 2(m− 1)∥ξ∥2

= RicG(e
h
j , e

h
j )−

m

m− 2
δω +

2(m− 1)

m− 2

[
Ricsym[g] (ej , ej)−Ricg(ej , ej)

]
+HessGf

v(ehj , e
h
j )

=
−m

m− 2
Ricg(ej , ej)−

3

4

m∑
i=1

∥Rg(ej , ei)u∥2 +
1

4

m∑
i=1

∥Rg(u, ei)ej∥2

− m

m− 2
δω +

2(m− 1)

m− 2
Ricsym[g] (ej , ej) +Hessgf(ej , ej),

(no summation over j), j ∈ {1, ...,m}.

From the last equalities, by restricting to the zero section of TM , it follows:

Ricsym[g] (ej , ej) =
m− 2

2(m− 1)

{
δω − 2(m− 1)∥ξ∥2 + m

m− 2
Ricg(ej , ej)

+
m

m− 2
δω −Hessgf(ej , ej)

}
,

(no summation over j), j ∈ {1, ...,m}.

Hence

Ricsym[g] (ej , ej) = δω − (m− 2)∥ξ∥2 + m

2(m− 1)
Ricg(ej , ej)

− m− 2

2(m− 1)
Hessgf(ej , ej), (3.12)

(no summation over j), j ∈ {1, ...,m}.

From the last equality and the above expressions of ᾱ , it follows that

m∑
i,j=1

∥Rg(ei, ej)u∥2 = 0,

for any (x, u) ∈ TM. If we replace u by ek and summing over k , we obtain

m∑
i,j,k=1

∥Rg(ei, ej)ek∥2 = 0,

which gives us Rg(ei, ej)ek = 0 , ∀i, j, k ∈ {1, 2, ...,m} . Therefore (M, g) is flat.
If we replace (3.12) in (2.2), we obtain (3.10).
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Conversely, if we suppose (3.10), then from (2.2) we deduce:

Ricsym[g] (X,Y ) = Ricg(X,Y ) + (δw − (m− 2)∥ξ∥2)g(X,Y ) (3.13)

− m− 2

2(m− 1)
Hessgf(X,Y ),∀X,Y ∈ Γ(TM).

Assuming that (M, g) is flat, then from (3.13), the relations (3.6)-(3.8) reduce to

Ric
sym

[G] (Xh, Y h) = (δw − 2(m− 1)∥ξ∥2)g(X,Y )−Hessgf(X,Y );

Ric
sym

[G] (Xv, Y h) = 0; (3.14)

Ric
sym

[G] (Xv, Y v) = (δw − 2(m− 1)∥ξ∥2)g(X,Y ),∀X,Y ∈ Γ(TM).

From (3.9) and (3.14) we obtain (3.11), where

ᾱ = δw − 2(m− 1)∥ξ∥2,

which complete the proof. 2
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1958; 10 (3): 338-354. doi:10.2748/tmj/1178244668

[15] Şahin B. Biharmonic Riemannian maps, Annales Polonici Mathematici; 2011: 102 (1): 39-49. doi: 10.4064/ap102-
1-4

[16] Yano K, Ishihara S. Tangent and Cotangent Bundles, Marcel Dekker, Inc. New York, 1973.

1145


	Introduction
	Preliminaries
	The Tangent Bundle Carrying the Sasaki Metric

