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Abstract: In this paper, we study the problem of finding a common solution to split generalized mixed equilibrium
problem and fixed point problem for quasi-φ -nonexpansive mappings in 2-uniformly convex and uniformly smooth
Banach space E1 and a smooth, strictly convex, and reflexive Banach space E2 . An iterative algorithm with Armijo
linesearch rule for solving the problem is presented and its strong convergence theorem is established. The convergence
result is obtained without using the hybrid method which is mostly used when strong convergence is desired. Finally,
numerical experiments are presented to demonstrate the practicability, efficiency, and performance of our algorithm in
comparison with other existing algorithms in the literature. Our results extend and improve many recent results in this
direction.
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1. Introduction
Let E be a Banach space and C be a nonempty, closed, and convex subset of E. Let T : C → C be a nonlinear
mapping, a point x ∈ C is called a fixed point of T if x = Tx. We denote the set of fixed points of T by F (T ).

The split feasibility problem (SFP) in the sense of Censor and Elfving [10] is to find a point

x̄ ∈ C such that ȳ = Lx̄ ∈ Q,

where C and Q are nonempty, closed, and convex subsets of real Banach spaces E1 and E2 respectively
and L is a bounded linear operator from E1 to E2. The SFP provides a unified framework for the study of
many important real-life problems such as signal processing, medical image reconstruction, intensity modulated
radiation therapy and so on ([3, 6, 22]).

For solving the SFP in finite dimensional Euclidean spaces, Bryne [6] proposed a CQ algorithm defined
as follows:

xk+1 = PC(x
k + µLT (PQ − I)Lxk),
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where I is the identity mapping, PC and PQ are projections onto C and Q respectively and LT is the transpose
of L. However, in the infinite dimensional Hilbert spaces, Xu [45] proposed a CQ algorithm given by:

xk+1 = PC(x
k + µL∗(PQ − I)Lvk),

where µ ∈ (0, 2
||L||2 ) and L∗ is the adjoint of L. The SFP where C and Q are sets of fixed points or sets of

common fixed points of mappings and solutions of variational inequality problems have been studied in some
recent research papers, see for example [16].

Let Θ : C × C → R be a bifunction Ψ : C → E∗ nonlinear mapping and φ : C → R be a real-valued
function, where C is a nonempty, closed and convex subset of a real Banach space E with E∗ its dual. We
consider the following generalized mixed equilibrium problem (GMEP):

Find x ∈ C such that

Θ(x, y) + 〈Ψx, y − x〉+ φ(y) ≥ φ(x), y ∈ C.

The set of such x ∈ C is denoted by GMEP (Θ,Ψ, φ) i.e.

GMEP (Θ,Ψ, φ) = {x ∈ C : Θ(x, y) + 〈Ψx, y − x〉+ φ(y) ≥ φ(x),∀y ∈ C}.

Similar problems have been extensively studied recently in different frameworks. In the case Ψ = 0, the problem
(1) reduces to the mixed equilibrium problem (MEP) with solution set MEP (Θ, φ). In the case φ = 0, then
(1) reduces to generalized equilibrium problem (GEP) with solution set GEP (Θ,Ψ). However, if Ψ = φ = 0,

then problem (1) becomes the classical equilibrium problem in the sense of Blum and Oetlli [5].
The equilibrium problem (EP) is also referred to as Ky Fan inequality since the first result on the existence

of its solution was proposed by Fan (see [17]). It has been extensively studied in recent years thanks to its vast
applications (see for e.g., [5, 9, 19, 21, 24, 37]). The EP includes as special cases numerous problems in physics,
economics, and optimization theory. For approximating the solution of EP and related optimization problems,
many authors have proposed several iterative methods (see [11, 20, 23, 26, 33, 38]) and the references therein.

The split generalized mixed equilibrium problem (SGMEP) (see [25, 34]) consists of finding a point x̄ ∈ C

such that

g1(x̄, x) + h1(x̄, x) + 〈Ψ1x, x− x̄〉+ φ(x) ≥ φ(x̄), ∀x ∈ C such that

ȳ = Lx̄ solves g2(ȳ, y) + h2(ȳ, y) + 〈Ψ2y, y − ȳ〉+ φ(y) ≥ φ(ȳ), ∀y ∈ Q, (1.1)

where g1, h1 : C × C → R, g2, h2 : Q × Q → R, Ψ1 : C → E∗
1 , Ψ2 : Q → E∗

2 are nonlinear mappings,
φ : C → R∪{+∞}, φ : Q → R∪{+∞} are proper lower semicontinuous and convex functions and L : E1 → E2

a bounded linear operator with adjoint L∗ : E∗
2 → E∗

1 . We remark that the bifunctions g1, g2, h1 , and h2 in the
SGMEP (1.1) are monotone, and Θ has been written as a sum of two different bifunctions (i.e. Θ = g + h).

In 1980, Cohen [13] introduced a useful tool for obtaining the solutions of some optimization problems,
termed the auxiliary problem principle. This was later extended to variational inequality problem (see [14]).
In auxiliary problem principle, a sequence {xk} is generated as follows: xk+1 ∈ C is a unique solution of the
strongly convex problem

min{λkf(x
k, y) +

1

2
||xk − y||}, (1.2)

1147



OYEWOLE et al./Turk J Math

where λk > 0. Mastroeni [31], extended the auxiliary problem principle to EP under the assumptions that the
bifuntion f is strongly monotone on C × C and that f satisfies the following Lipschitz type condition

f(x, y) + f(y, z) ≥ f(x, z)− c1||y − x||2 − c2||z − y||2

for all x, y, z and c1, c2 > 0. To dispense with the monotone condition on f, Tran et al. [39], motivated by the
research of Antipin [4] used an extrapolation step in each iteration for obtaining the solutions of (1.2). They
assumed that f is pseudomonotone on C × C which is a weaker assumption. They also assumed that {yk} is
a solution of (1.2) and the unique solution of the strongly convex problem

min{λkf(y
k, y) +

1

2
||y − xk||}

is denoted by {xk+1}.
In recent years, many authors have proposed extragradient algorithms for solving EP in Hilbert spaces

where convergence of the proposed algorithms required the bifunction f to satisfy a certain Lipschitz-type
condition [32, 39, 40]. Lipschitz-type condition depends on parameters c1, c2 > 0, which in many cases are
unknown or difficult to estimate. To avoid this requirement, several authors have proposed the use of linesearch
technique for obtaining convergent algorithms for solving EP (see [32, 39, 40]).

The problem of finding a common element of the set of fixed points of a nonlinear mapping and the solution
set of an equilibrium problem have been studied by many authors in the framework of the Hilbert spaces and
Banach spaces (see [9, 18, 25, 29, 34]). In solving problems of this type when pseudomonotone bifunction is
involved, there have been several works in the framework of Hilbert spaces where linesearch algorithms have
been employed. Interest in the use of extragradient and linesearch algorithms for solving these problems is
growing in the Banach spaces.

In 2016, Dinh et al. [15] studied the split equilibrium problem involving pseudomonotone and monotone
equilibrium bifunctions and fixed point of nonexpansive mappings in real Hilbert spaces. The statement of the
problem is given as follows:

Let f : C ×C → R be a pseudomonotone bifunction, g : Q×Q → R a monotone bifunction, S : C → C

and T : Q → Q nonexpansive mappings. The split equilibrium problem for nonexpansive mappings (SEPNM)
consists of finding a point x̄ ∈ C such that

x̄ ∈ EP (C, f) ∩ F (S) and Lx̄ ∈ EP (Q, g) ∩ F (T )

where F (S) and F (T ) are the sets of fixed points of S and T respectively. In solving the (SEPNM), the
authors in [15] proposed an extragradient method incorporated with the Armijo linesearch rule for solving the
EP and the Mann method for finding a fixed point of the nonexpansive mapping.

Other results in these directions in real Hilbert space setting include the result of Rattanaseeha et al.
(2017) (see [36]) and the references therein.

However, it is well known that most real life problems do not naturally live in Hilbert spaces. Jouymandi
and Moradlou [27] extended this study to Banach space setting albeit to a single EP involving a pseudomonotone
bifunction. They proposed an extragradient and linesearch algorithm for finding a common element of the set
of solutions of an EP and the fixed point of a relatively nonexpansive mapping.

In this paper, inspired and motivated by the ongoing interest and research in this direction, we study a
split generalized mixed equilibrium involving three bifunctions, one being a pseudomonotone bifunction and the
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other two monotone bifunctions satisfying some mild conditions. We introduce a linesearch algorithm which
does not require projection onto the set Ck+1 for its strong convergence. Using this algorithm, we obtain a
strong convergence result for finding a common element of the solutions of EP and the set of fixed points of
quasi-φ -nonexpansive mappings in the framework of a 2-uniformly convex and uniformly smooth Banach space
E1 and a smooth, strictly convexü and reflexive Banach space E2 .
2. Preliminaries
In this section, we give some definitions and important results which will be useful in establishing our main
results. We denote the weak and strong convergence of a sequence {xk} to a point x by xk ⇀ x and xk → x

respectively. Let C be a nonempty, closed and convex subset of a real Banach space E with norm || · || and
dual space E∗.

A continuous strictly increasing function φ : R+ → R+ such that φ(0) = 0 and limt→∞ φ(t) = ∞ is
called a gauge function. Given a gauge function φ , the mapping JE

φ : E → 2E
∗ defined by

JE
φ (x) = {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖∗, ‖u∗‖∗ = φ(‖x‖)}

is called the duality mapping with gauge function φ . It is known that JE
φ (x) is nonempty for any x ∈ E . In the

particular case where φ(t) = tp−1 where p > 1 , the duality mapping JE
φ = JE

p is called the generalized duality

mapping from E to 2E
∗ . For φ(t) = t , (i.e. p = 2), the duality map J = JE

2 = is called the normalized duality
map, (see [12, 35]) for more details. Alber [2], introduced a generalized projection operator ΠC which is an
analogue of the metric projection PC : H → C in the Hilbert space H . The generalized projection ΠC : E → C

is defined by

ΠC(x) = inf
y∈C

{φ(y, x), ∀x ∈ E}.

If H is a real Hilbert space, then PC(x) ≡ ΠC(x).

Consider the Lyapunov functional φ : E × E → R+ defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2, ∀x, y ∈ E.

In the real Hilbert space, we observe that φ(x, y) = ||x− y||2. It is obvious from the definition of the functional
φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2.

The functional φ also satisfies the following important properties:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉 (2.1)

and

2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w). (2.2)

Note: If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0 if
and only if x = y, see [12].
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We also define the functional V : E × E∗ → R by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2 (2.3)

for all x ∈ E and x∗ ∈ E∗. That is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. It is well known that
if E is a reflexive, strictly convex, and smooth Banach space, then

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉 (2.4)

for all x ∈ E and all x∗, y∗ ∈ E∗, see [42].
Let C be a nonempty, closed, and convex subset of E and T : C → C be a mapping. A point p ∈ C is

called an asymptotic fixed point of T if C contains a sequence {xk} such that xk ⇀ p and ||xk − Txk|| → 0

as k → ∞. We denote by F̂ (T ) the set of asymptotic fixed points of T. A mapping T : C → C is said to be

relatively nonexpansive if F̂ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ) (see [7, 8, 10]).
T is said to be φ -nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for all x, y ∈ C and quasi-φ -nonexpansive if F (T ) 6= ∅
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ) .

It is known that the class of quasi-φ -nonexpansive mappings is more general than the class of relatively

nonexpansive mapping which requires the strict condition F (T ) = F̂ (T ), see ([7, 8, 10]).
Let E be a real Banach space. The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined

by

δE(ϵ) = inf{1− 1

2
||x+ y|| : ||x|| = ||y|| = 1, ||x− y|| ≥ ϵ}. (2.5)

Recall that E is said to be uniformly convex if δE(ϵ) > 0 for any ϵ ∈ (0, 2]. E is said to be strictly convex if
||x+ y||

2
< 1 for all x, y ∈ E with ||x|| = ||y|| = 1 and x 6= y. Also, E is p -uniformly convex if there exists a

constant cp > 0 such that δE(ϵ) > cpϵ
p for any ϵ ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup{1
2
(||x+ ty|| − ||x− ty||)− 1 : ||x|| = ||y|| = 1}. (2.6)

E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is q -uniformly smooth if there

exists cq > 0 such that ρE(t) ≤ cqt
q for t > 0. It is known that E is p -uniformly convex if and only if E∗ is

q -uniformly smooth, where (p−1 + q−1 = 1). It is also known that every q -uniformly smooth Banach space is
uniformly smooth.

It is widely known that if E is uniformly smooth, then the duality mapping J is norm-to-norm continuous
on each bounded subset of E. For more properties of J, (see [1, 12, 35]). We now give the following useful and
important lemmas that are needed in establishing our main results.

Lemma 2.1 [44] Given a number s > 0 . A real Banach space E is uniformly convex if and only if there exists
a continuous strictly increasing function g : [0,∞) → [0,∞) with g(0) = 0 such that

||tx+ (1− t)y||2 ≤ t||x||2 + (1− t)||y||2 − t(1− t)g(||x− y||),
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for all x, y ∈ E, t ∈ [0, 1], with ||x|| < s and ||y|| < s.

Lemma 2.2 [28] Let E be a smooth and uniformly convex real Banach space and let {xk} and {yk} be two
sequences in E. If either {xk} or {yk} is bounded and φ(xk, yk) → 0 as k → ∞, then ||xk − yk|| → 0 as
k → ∞.

Lemma 2.3 [2] Let C be a nonempty, closed, and convex subset of a reflexive, strictly convex, and smooth
Banach space E . If x ∈ E and q ∈ C, then

q = ΠCx ⇐⇒ 〈y − q, Jx− Jq〉 ≤ 0, ∀y ∈ C (2.7)

and

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C, x ∈ E. (2.8)

Lemma 2.4 [44] Let E be a 2-uniformly convex and smooth Banach space. Then, for all x, y ∈ E, we have

||x− y|| ≤ 2

c2
||Jx− Jy|| (2.9)

where 1

c
, c ∈ (0, 1] is the 2-uniformly convex constant of E.

Lemma 2.5 [44] Let E be a 2-uniformly smooth Banach space with the best smoothness constant d > 0. Then,
the following inequality holds:

||x+ y||2 ≤ ||x||2 + 〈y, Jx〉+ 2||dy||2, ∀x, y ∈ E.

Lemma 2.6 [43] Let {ak} be a sequence of nonnegative real numbers satisfying the following relation

ak+1 ≤ (1− bk)ak + bkck, k ≥ 0

where {bk} ⊂ (0, 1) and {ck} ⊂ R satisfy the conditions
∞∑
k=0

bk = ∞ and lim sup
k→∞

ck ≤ 0. Then, lim
k→∞

ak = 0.

Lemma 2.7 [30] Let {ak} be a sequence of real numbers such that there exists a subsequence {nj} of {n}
such that anj < anj+1 for all j ∈ N. Then, there exists a nondecreasing subsequence {mk} ⊂ N such that

mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈ N : am
k

< am
k+1 and

ak < am
k+1. In fact, mk = max{i ≤ k : ai < ai+1}.

For solving the EPs, we will assume the bifunctions f, g and h satisfy the following:
Assumption A: The bifunction f : C × C → R satisfies the following:

A1. f(x, x) = 0 for all x ∈ C ;

A2. f is pseudomonotone on C, that is, f(x, y) ≥ 0 implies f(y, x) ≤ 0 for all x, y ∈ C ;

A3. f(x, ·) is convex, lower semicontinuous and subdifferentiable on C for all x ∈ C ;
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A4. f is jointly weakly continuous on C ×C in the sense that, if x, y ∈ C and {xk} and {yk} in C converge
weakly to x and y, respectively, then f(xk, yk) → f(x, y) as k → ∞.

Assumption B: The bifunction g : Q×Q → R satisfies the following conditions:

B1. g(x, x) = 0 for all x ∈ Q ;

B2. g is monotone, i.e. g(x, y) + g(y, x) ≤ 0 for all x, y ∈ Q ;

B3. lim sup
t↓0

g(x+ t(z − x), y) ≤ g(x, y), ∀x, y, z ∈ Q ;

B4. the function y 7→ g(x, y) is convex and lower semicontinuous.

Assumption C: The bifunction h : Q×Q → R satisfy the conditions

C1. h(x, x) ≥ 0, for all x ∈ Q ;

C2. for each fixed y ∈ Q, the function x 7→ h(x, y) is upper semicontinuous;

C3. for each fixed x ∈ Q, the function y 7→ h(x, y) is convex and lower semicontinuous.

Assumption D: For fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset K of E1

and x ∈ C ∩K such that

f(x, y) + h(y, x) +
1

r
〈y − x, Jx− Jz〉 <, ∀y ∈ C/K.

Lemma 2.8 [41] Let E2 be a smooth, strictly convex, and reflexive Banach space and Q be a nonempty, closed,
and convex subset of E2. Let Ψ : C → E∗

2 be a continuous and monotone mapping, φ : Q → R be a lower
semicontinuous and convex function and g : Q×Q → R be a bifunction satisfying the conditions B1-B4 . Let
r > 0 be any given number and x ∈ E2 be any given point. Then, the following hold:

i there exists z ∈ Q, such that

g(z, y) + 〈Ψz, y − z〉+ φ(y) +
1

r
〈y − z, Jz − Jx〉 ≥ φ(z), ∀ y ∈ Q;

ii the mapping Kg,h
r : E2 → Q defined by

Kg,h
r (x) = {z ∈ Q : g(z, y) + h(z, y) + 〈Ψz, y − z〉+ φ(y) +

1

r
〈z − y, Jz − Jx〉 ≥ φ(z), ∀y ∈ Q},

x ∈ E2, has the following properties:

(a) for all x ∈ E2, Kg,h
r (x) 6= ∅.

(b) Kg,h
r is single valued
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(c) Kg,h
r is firmly nonexpansive-type, i.e.

〈Kg,h
r z −Kg,h

r y, JKg,h
r z − JKg,h

r y〉 ≤ 〈Kg,h
r z −Kg,h

r y, Jz − Jy〉, ∀ z, y ∈ E2;

(d) F (Kg,h
r ) = GMEP (g, h,A,Q) ;

(e) F (Kg,h
r ) is closed and convex;

(f) φ(p,Kg,h
r z) + φ(Kg,h

r z, z) ≤ φ(p, x), ∀p ∈ F (Kg,h
r ), z ∈ E2.

Lemma 2.9 [27] Let f : C × C → R be a pseudomonotone bifunction satisfying Assumption A. Define

yk := miny∈C{f(xk, y) +
1

2ρk
φ(xk, y)}, where ρk ⊆ (ρ, 1), 0 < ρ ≤ 1. Then, for every p ∈ EP (C, f) and

k ∈ R, it holds that

〈Jxk − Jyk, y − yk〉 ≤ ρk[f(x
k, y)− f(xk, yk)], ∀y ∈ C.

Lemma 2.10 Let S : Q → Q be a quasi-φ-nonexpansive mapping and let Kg,h
r : E2 → Q be defined as in

Lemma 2.8. Then, F (SKg,h
r ) = F (S) ∩ F (Kg,h

r ).

Proof Clearly, F (S)∩ F (Kg,h
r ) ⊆ F (SKg,h

r ). We are left to show that F (SKg,h
r ) ⊆ F (S)∩ F (Kg,h

r ). Indeed,
let x̄ ∈ F (SKg,h

r ) and ȳ ∈ F (S) ∩ F (Kg,h
r ), then

φ(ȳ, x̄) = φ(ȳ, SKg,h
r x̄)

≤ φ(ȳ, Kg,h
r x̄). (2.10)

Now by Lemma 2.8(f) and (2.10), we have

φ(Kg,h
r x̄, x̄) ≤ φ(ȳ, x̄)− φ(ȳ, Kg,h

r x̄)

≤ φ(ȳ, x̄)− φ(ȳ, x̄)

= 0. (2.11)

Hence, φ(Kg,h
r x̄, x̄) = 0, and by the strict convexity of E, we obtain x̄ ∈ F (Kg,h

r ). Next we show that x̄ ∈ F (S).

Since by assumption x̄ ∈ F (SKg,h
r ) and x̄ ∈ F (Kg,h

r ), we have

φ(x̄, Sx̄) = φ(x̄, SKg,h
r x̄)

= φ(x̄, x̄)

= 0.

Hence, x̄ ∈ F (S). This implies that x̄ ∈ F (S) ∩ F (Kg,h
r ). Therefore, F (SKg,h

r ) = F (S) ∩ F (Kg,h
r ). 2
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3. Main result
In this section we prove our main result. Firstly, we explicitly state the problem considered in this paper, then
we introduce a linesearch algorithm for obtaining the solution of this problem and finally discuss its convergence
analysis.

Let C be a nonempty, closed, and convex subset of a 2-uniformly convex and uniformly smooth Banach
space E1, Q be a nonempty, closed, and convex subset of a smooth, strictly convex, and reflexive Banach space
E2 and L : E1 → E2 be a bounded linear operator with L∗ : E∗

2 → E∗
1 its adjoint. Let f : C × C → R be

a pseudomonotone bifunction satisfying assumptions A. Let g, h : Q × Q → R be two monotone bifunctions
satisfying assumptions B, C respectively and D . Let φ : Q → R ∪ {+∞} be a proper lower semicontinuous
convex function and Ψ : Q → E∗

2 be a continuous and monotone mapping. Let T : C → C and S : Q → Q be
quasi-φ -nonexpansive mappings such that I − T and I −SKg,h

r are demiclosed at zero, where Kg,h
r is defined

as in Lemma 2.8 (ii). We consider the problem of finding a point p ∈ C such that

p ∈ EP (C, f) ∩ F (T ) : Lp ∈ GMEP (Q, g, h,Ψ, φ) ∩ F (S). (3.1)

Assume Γ 6= ∅, where Γ denotes the solution set of problem (3.1). To obtain the solution of (3.1), we consider
the following iterative algorithm:

Algorithm 3.1. Pick x0, u ∈ C and choose the parameter η, θ ∈ (0, 1) and suppose that {αk} ⊂ [a, e]

for some 0 < a < e < 1, {βk} ⊆ [d, b] for some 0 < d < b < 1, {ρk} ⊆ [ρ, 1], 0 < ρ ≤ 1, r > 0, 0 < γk <
c2

2
,

where 1

c
, c ∈ (0, 1] is the 2-uniformly convexity constant of E1 and µ ∈ (0,

1

d2||L||2
), d is the best smoothness

constant of E1.

We pick two sequences {αk} and {βk} in (0, 1) such that the following conditions are satisfied.

(i) lim
k→∞

αk = 0,
∞∑

k→∞
αk = ∞;

(ii) lim inf
k→∞

βk(1− βk) > 0.

For each k > 0. Having the k -iterate {xk}, compute the following steps:

Step I: Solve the following strongly convex program

yk = CP (xk) = argmin{f(xk, y) +
1

2ρk
φ(xk, y) : y ∈ C}

to obtain its optimal solution yk. If yk = xk, then set uk = xk and go to Step IV. Otherwise, go to Step
II.

Step II: (Armijo linesearch rule) Find the smallest nonnegative number m such thatf(zk,m, xk)− f(zk,m, yk) ≥ θ

2ρk
φ(yk, xk),

zk,m = (1− ηm)xk + ηmyk.
(3.2)

Set ηk = ηmk , zk = zk,m.
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Step III: Take tk ∈ ∂2f(z
k, xk) and compute uk = ΠCJ

−1
E1

(JE1
xk − γkσkt

k), where σk =
f(zk, xk)

||tk||2
.

Step IV: Compute

vk = J−1
E1

(βkJE1Tu
k + (1− βk)JE1u

k),

wk = J−1
E1

(JE1
vk + µL∗JE2

(SKg,h
r − I)Lvk),

xk+1 = J−1
E1

(αkJE1
u+ (1− αk)JE1

wk). (3.3)

Step V: Set k := k + 1 and go to step I.

Remark 3.1 Note that if xk = yk = Txk, SLxk = Lxk , and Kg,h
r Lxk = Lxk, we have arrived at the desired

solution of our proposed problem. However, we will implicitly assume in our convergence analysis that this does
not occur after finitely many iterations so that our algorithm generates an infinite sequence.

Lemma 3.2 [27] Suppose that p ∈ EP (C, f), f(x, ·) is convex and subdifferentiable on C for all x ∈ C and
that f is pseudomonotone on C. Assume that yk 6= xk for some k ∈ N. Then,

(i) There exists a positive integer m such that the Armijo linesearch rule (3.2) is well defined;

(ii) f(zk, xk) > 0 ;

(iii) 0 /∈ ∂2f(z
k, xk).

Proposition 3.3 For all p ∈ EP (C, f) and all k ∈ N, we get

φ(p, uk) ≤ φ(p, xk)− 2γk

(
1− 2

c2
γk

)
σ2
k||tk||2.

Proof Using (2.3), inequality (2.4) and (2.9), we have

φ(p, uk) = φ(ΠCp,ΠCJ
−1
E1

(J1x
k − γkσkt

k))

≤ φ(p, J−1
E1

(JE1
xk − γkσkt

k))

= V (p, JE1
xk − γkσkt

k)

≤ V (p, JE1
xk − γkσkt

k + γkσkt
k)− 2〈J−1

E1
(JE1

xk − γkσkt
k)− p, γkσkt

k〉

= V (p, JE1
xk)− 2〈J−1

E1
(JE1

xk − γkσkt
k)− J−1

E1
(JE1

xk), γkσkt
k〉 − 2〈xk − p, γkσkt

k〉

= φ(p, xk)− 2〈J−1
E1

(JE1
xk − γkσkt

k)− J−1
E1

(JE1
xk), γkσkt

k〉 − 2〈xk − p, γkσkt
k〉. (3.4)

Using condition A2 , we get from tk ∈ ∂2f(z
k, xk) , that

〈tk, xk − p〉 ≥ f(zk, xk)− f(zk, p) ≥ f(zk, xk) = σk||tk||2.

Therefore, we obtain

−2γkσ
2
k||tk||2 ≥ −2γkσk〈tk, xk − p〉.
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On the other hand, from Lemma 2.4, we get

2〈γkσkt
k, J−1

E1
(JE1x

k − γkσkt
k)− J−1

E1
(JE1x

k)〉 ≤ 2||γkσkt
k||||J−1

E1
(JE1x

k − γkσkt
k)− J−1

E1
(JE1x

k)||

≤ 4

c2
γ2
kσ

2
k||tk||2, (3.5)

Thus, from (3.4), we get

φ(p, uk) = φ(x, xk)− 2γkσ
2
k||tk||2 +

4

c2
γ2
kσ

2
k||tk||2

≤ φ(p, xk)− 2γk

(
1− 2

c2
γk

)
σ2
k||tk||2. (3.6)

2

Lemma 3.4 Let {xk} be defined as in Algorithm 3 with the parameters on it. Then, the sequence {xk} is
bounded. Consequently, the sequences {vk}, {wk} , and {zk} are bounded.

Proof Let p ∈ Γ. Then p ∈ EP (C, f)∩F (T ) and Lp ∈ GMEP (Q, g, h,Ψ, φ)∩F (S). From (3.3) and Lemma
2.1, we have

φ(p, vk) = φ(p, J−1
E1

((1− βk)JE1u
k + βkJE1Tu

k))

= ||p||2 − 2〈p, (1− βk)JE1
uk + βkJE1

Tuk〉+ ||(1− βk)JE1
uk + βkJE1

Tuk||2

= ||p||2 − 2βk〈p, JE1Tu
k〉 − 2(1− βk)〈p, JE1u

k〉+ (1− βk)||uk||2 + βk||Tuk||2

−βk(1− βk)g(||JE1
uk − JE1

Tuk||)

= βkφ(p, Tu
k) + (1− βk)φ(p, u

k)− βk(1− βk)g(||JE1
uk − JE1

Tuk||)

≤ βkφ(p, u
k) + (1− βk)φ(p, u

k)− βk(1− βk)g(||JE1u
k − JE1Tu

k||) (3.7)

≤ φ(p, uk).

Again, from (3.3) and Lemma 2.1, we have

φ(p, wk) = φ(p, J−1
E1

(JE1
vk + µL∗JE2

(SKg,h
r − I)LvK))

= ||p||2 − 2〈p, JE1v
k + µL∗JE2(SK

g,h
r − I)Lvk〉+ ||JE1v

k + µL∗JE2(SK
g,h
r − I)Lvk||2

= ||p||2 − 2〈p, JE1
vk〉 − 2µ〈Lp, JE2

(SKg,h
r − I)Lvk〉+ ||vk||2

+2µ〈Lvk, JE2
(SKg,h

r − I)Lvk〉+ 2µ2d2||L||2||(SKg,h
r − I)Lvk||2

= φ(p, vk)− 2µ〈Lp− Lvk, JE2(SK
g,h
r − I)Lvk〉+ 2µ2d2||L||2||(SKg,h

r − I)Lvk||2.

We estimate the second term of the equation above as follows:

〈Lp− Lvk, JE2
(SKg,h

r − I)Lvk〉 = 〈Lp− SKg,h
r Lvk, JE2

(SKg,h
r − I)Lvk〉+ ||(SKg,h

r − I)Lvk||2

= ||Lp− SKg,h
r Lvk||||(SKg,h

r − I)Lvk||2 + ||(SKg,h
r − I)Lvk||2

≥ ||(SKg,h
r − I)Lvk||2.
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Hence,

φ(p, wk) = φ(p, vk)− 2µ||(SKg,h
r − I)Lvk||2 + 2µ2c2||L||2||(SKg,h

r − I)Lvk||2

= φ(p, vk)− 2µ(1− d2||L||2µ)||(SKg,h
r − I)Lvk||2 (3.8)

≤ φ(p, vk).

Furthermore,

φ(p, xk+1) = φ(p, J−1
E1

(αkJE1u+ (1− αk)JE1w
k))

= ||p||2 − 2〈p, αkJE1u+ (1− αk)JE1w
k〉+ ||αkJE1u+ (1− αk)JE1w

k||2

= ||p||2 − 2αk〈p, JE1
u〉 − 2(1− αk)〈p, JE1

wk〉+ αk||u||2 + (1− αk)||wk||2

−αk(1− αk)g(||JE1
wk − JE1

u||)

≤ αkφ(p, u) + (1− αk)φ(p, w
k)

≤ αkφ(p, u) + (1− αk)φ(p, v
k)

≤ αkφ(p, u) + (1− αk)φ(p, x
k)

≤ max{φ(p, u), φ(p, xk)}

...
≤ max{φ(p, u), φ(p, x0)} k ≥ 0, (3.9)

which implies {φ(p, xk)} is bounded. Consequently, {xk}, {uk}, {vk}, {yk} , and {wk} are bounded. 2

Lemma 3.5 Assume p ∈ EP (C, f) and {xk} be defined as in Algorithm 3 such that {φ(p, xk)} is monotonically
nonincreasing for all k ≥ k0. Then lim

k→∞
σ2
k||tk||2 = 0.

Proof: By hypothesis, we have that {φ(p, xk)} converges as k → ∞ and hence, φ(p, xk)−φ(p, xk+1) → 0

as k → ∞.

Observe from (3.7), (3.9), and Proposition 3.3 that

φ(p, xk+1) ≤ αkφ(p, u) + (1− αk)[φ(p, x
k)− 2γk

(
1− 2

c2
γk

)
σ2
k||tk||2],

which implies

2γk(1− αk)

(
1− 2

c2
γk

)
σ2
k||tk||2 ≤ φ(p, xk)− φ(p, xk+1)− αkφ(p, x

k) + αkφ(p, u).

Therefore,

lim
k→∞

σ2
k||tk||2 = 0. (3.10)

Lemma 3.6 Let {xk} be the sequence given by Algorithm 3, given a subsequence of {xkj} of {xk} such that
xkj ⇀ p. Then p ∈ EP (C, f).
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Proof First, we show that f(zkj , xkj ) → 0 as j → ∞. Indeed, if xkj = ykj , then we have f(zkj , xkj ) = 0 and
σkj

= 0. Suppose xkj 6= ykj , then by the definition of σkj
and Lemma 3.5, we have that

lim
j→∞

f(zkj , xkj ) = lim
j→∞

σkj
||tkj ||2 = 0. (3.11)

Again, if ykj = xkj , then it follows from Lemma 2.9, that

ρkj
f(xkj , y) ≥ 0. (3.12)

By letting j → ∞ in inequality 3.12 and using (A4), we get f(p, y) ≥ 0 since 0 < ρ < ρkj ≤ 1, p ∈ EP (C, f).

Now, Suppose ykj 6= xkj , since f(zkj , ·) is convex, we obtain

ηkj
f(zkj , ykj ) + (1− ηkj

)f(zkj , xkj ) ≥ f(zkj , ηkj
ykj + (1− ηkj

)xkj )

= f(zkj , zkj ) = 0.

Therefore,

ηkj
[f(zkj , xkj )− f(zkj , ykj )] ≤ f(zkj , xkj ) → 0 as j → ∞. (3.13)

From (3.2) and (3.13), we have

θηkj

2ρkj

φ(ykj , xkj ) ≤ ηkj
[f(zkj , xkj )− f(zkj , ykj )] ≤ f(zkj , xkj ) → 0. (3.14)

Now we consider two cases:
Case 1: lim sup

j→∞
ηkj

> 0. In this case there exists η̄ > 0 and a subsequence of {ηkj
}, say {ηkj

} such

that ηkj
→ η̄, since 0 < η < ηkj

≤ 1, from (3.14), we can conclude that φ(ykj , xkj ) → 0. Thus, by Lemma 2.2,
we have ||ykj − xkj || → 0. By this and xkj ⇀ p, we obtain, ykj ⇀ p.

Case 2: lim
j→∞

ηkj
= 0. From the boundedness of {ykj}, without loss of generality, we may assume that

ykj ⇀ q as j → ∞. Let m be the smallest nonnegative integer such that (3.2) is satisfied, i.e.

f(zkj ,m, xkj )− f(zkj ,m, ykj ) ≥ θ

2ρkj

φ(ykj , xkj ),

where
zkj ,m = (1− ηm)xkj + ηmykj . (3.15)

Thus,

f(zkj ,m−1, xkj )− f(zkj ,m−1, ykj ) <
θ

2ρkj

φ(ykj , xkj ). (3.16)

If we set y = xkj in Lemma 2.9, condition (A1) and equality (2.2), imply that

−ρkj
f(xkj , ykj ) ≥ 〈JE1

ykj − JE1
xkj , ykj − xkj 〉 = 1

2
φ(ykj , xkj ) +

1

2
φ(xkj , ykj ).
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Therefore,
1

2
φ(ykj , xkj ) ≤ −ρkj

f(xkj , ykj ). (3.17)

From inequalities (3.16) and (3.17), we have

f(zkj ,m−1, xkj )− f(zkj ,m−1, ykj ) < −θf(xkj , ykj ). (3.18)

From the algorithm, we have zkj ,mkj
−1 = (1− ηmkj

−1)xkj + ηmkj
−1ykj . Since ηmkj

−1 = ηkj−1 → 0, {xkj} ⇀ p

and ykj ⇀ q, we get, zkj ,m−1 ⇀ p. Taking limit as j → ∞ in (3.18) and using conditions (A1) and (A4), we
get

−f(p, q) ≤ −θf(p, q).

Thus, since θ ∈ (0, 1), we have f(p, q) ≥ 0. Hence, if we take limits as j → ∞ in inequality (3.17), then we
have φ(ykj , xkj ) → 0. Again, by Lemma 2.2, we have ||ykj − xkj || → 0 which implies ykj ⇀ p. By Lemma 2.9,
we have

ρkj [f(x
kj , y)− f(xkj , ykj )] ≥ 〈JE1y

kj − JE1x
kj , ykj − xkj 〉,

for all y ∈ C. By letting j → ∞ in the inequality above, it follows that f(p, y) ≥ 0, since 0 < ρ ≤ ρkj
< 1.

This implies that p ∈ EP (C, f). 2

We now state our Main theorem.

Theorem 3.7 Let C be nonempty, closed and convex subset of a 2-uniformly convex, uniformly smooth Banach
space E1, Q a nonempty, closed, and convex subset of a smooth, strictly convex, and reflexive Banach space
E2 and L : E1 → E2 a bounded linear operator with L∗ : E∗

2 → E∗
1 its adjoint. Let f : C × C → R be

a pseudomonotone bifunction satisfying assumptions A. Let g, h : Q × Q → R be two monotone bifunctions
satisfying assumptions B, C respectively and D . Let φ : Q → R ∪ {+∞} be a proper lower semicontinuous
convex function and Ψ : Q → E∗

2 be a continuous and monotone mapping. Assume that T : C → C and
S : Q → Q are quasi-φ-nonexpansive mapping such that I − T and I − SKg,h

r are demiclosed at zero. Let
Γ = {p : EP (C, f) ∩ F (T ) : Lp ∈ GMEP (Q, g, h,Ψ, φ) ∩ F (S)} 6= ∅. Then, the sequence {xk} generated by
Algorithm 3 converges strongly to p ∈ Γ.

Proof We shall divide the proof into two cases.
Case 1: Suppose there exists k0 ∈ N such that {φ(p, xk)} is monotonically nonincreasing for all k ≥ k0.

Then, {φ(p, xk)} converges as k → ∞ and hence, φ(p, xk)− φ(p, xk+1) → 0 as k → ∞.

From (3.7), we have that

βk(1− αk)(1− βk)g(||JE1
uk − JE1

Tuk||) ≤ αkφ(p, u)− αkφ(p, x
k) + φ(p, xk)− φ(p, xk+1).

Since lim
k→∞

βk(1−βk) > 0 , using the property of the function g and the uniform continuity of J−1
E1

on bounded

subsets of E∗
1 , we obtain

lim
k→∞

||uk − Tuk|| = 0. (3.19)
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Observe from (3.3), that

φ(uk, vk) = φ(uk, J−1
E1

((1− βk)JE1
uk + βkJE1

Tuk))

= ||uk||2 − 2〈uk, (1− βk)JE1
uk + βkJE1

Tuk〉+ ||(1− βk)JE1
uk + βkJE1

Tuk||2

= ||u||2 − 2(1− βk)〈uk, JE1
uk〉 − 2βk〈uk, JE1

Tuk〉+ (1− βk)||JE1
||2 + βk||JE1

Tuk||2

−βk(1− βk)g(||JE1u
k − JE1Tu

k||)

= (1− βk)φ(u
k, Tuk)βkφ(u

k, Tuk)− βk(1− βk)g(||JE1
uk − JE1

Tuk||).

Thus, by (3.19), we obtain

lim
k→∞

φ(uk, vk) = 0.

Lemma 2.2 implies
lim
k→∞

||uk − vk|| = 0.

Further, set δk = J−1
E1

(JE1
xk − γkσkt

k), then

||JE1
δk − JE1

xk|| = ||γkσkt
k|| → 0 as k → ∞.

By the uniform continuity of J−1
E1

on bounded subsets of E∗
1 , we obtain

lim
k→∞

||δk − xk|| = 0. (3.20)

Using the property of the generalized projection ΠC , we obtain

φ(p, uk) ≤ φ(p, δk)− φ(uk, δk)

≤ φ(p, xk)− φ(uk, δk). (3.21)

Substituting (3.21) into (3.9), we have

φ(p, xk+1) ≤ αkφ(p, u) + (1− αk)φ(p, u
k)

≤ αkφ(p, u) + (1− αk)[φ(p, x
k)− φ(uk, δk)], (3.22)

which implies
(1− αk)φ(u

k, δk) ≤ αkφ(p, u) + (1− αk)φ(p, x
k)− φ(p, xk+1).

Therefore, φ(uk, δk) → 0 as k → ∞. This implies by Lemma 2.2 that

lim
k→∞

||uk − δk|| = 0. (3.23)

By (3.20) and (3.23), we have

lim
k→∞

||uk − xk|| = lim
k→∞

(||uk − δk||+ ||δk − xk||) = 0. (3.24)
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Now, we show that ||(SKg,h
r − I)Lvk|| → 0 as k → ∞. Using equation (3.8) in the expansion of φ(p, xk+1), we

obtain

φ(p, xk+1) ≤ αkφ(p, u) + (1− αk)φ(p, w
k)

≤ αkφ(p, u) + (1− αk)[φ(p, v
k)− 2µ(1− d2||L||2µ)(||SKg,h

r − I)Lvk||2],

that is,

2µ(1− αk)(1− d2||L||2µ)||(SKg,h
r − I)Lvk|| ≤ αkφ(p, u)− φ(p, xk+1) + (1− αk)φ(p, x

k).

Hence,
||(SKg,h

r − I)Lvk|| → 0 as k → ∞. (3.25)

Next, we show that lim
k→∞

||vk − wk|| = 0 . Indeed,

φ(vk, wk) = φ(vk, J−1
E1

(JE1v
k + µL∗JE2(SK

g,h
r − I)Lvk))

= ||vk||2 − 2〈vk, JE1v
k + µL∗JE2(SK

g,h
r − I)Lvk〉

+||JE1v
k + µL∗JE2(SK

g,h
r − I)Lvk||2

= ||vk||2 − 2〈vk, JE1
vk〉 − 2µ〈Lvk, JE2

(SKg,h
r − I)Lvk〉+ ||vk||2

+2µ〈Lvk, JE2
(SKg,h

r − I)Lvk〉

+2d2µ2||L||2||(SKg,h
r − I)Lvk||

= φ(vk, vk) + 2µ2d2||L||2||(SKg,h
r − I)Lvk||2,

which by (3.25) implies
lim
k→∞

φ(vk, wk) = lim
k→∞

||vk − wk|| = 0, (3.26)

where we have used Lemma 2.2.
Moreover, we show that ||xk+1 − xk|| → 0 as k → ∞. Observe that

lim
k→∞

||xk − wk|| = lim
k→∞

(||xk − uk||+ ||uk − vk||+ ||vk − wk||) = 0.

Then, we obtain

φ(xk, xk+1) = φ(xk, J−1
E1

(αkJE1
u+ (1− αk)JE1

wk))

= ||xk||2 − 2〈xk, αkJE1
u〉 − 2(1− αk)〈xk, JE1

wk〉+ αk||u||2 + (1− αk)||wk||2

−αk(1− αk)g(||JE1
wk − JE1

u||)

= αk(x
k, u) + (1− αk)φ(x

k, wk)− αk(1− αk)g(||JE1w
k − JE1u||). (3.27)

Thus, we obtain φ(xk, xk+1) → 0 as k → ∞ and Lemma 2.2 ensures

lim
k→∞

||xk+1 − xk|| = 0.
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Since {xk} is bounded, there exists a subsequence {xki} of {xk} such that xki ⇀ q. We have by (3.24), (3.25),
and (3.26) that {uk}, {wk} and {vk} converge to q. Hence, by (3.19) and the demiclosedness assumption on
I − T , we have that q ∈ F (T ). Thus, by this fact and Lemma 3.6, we have that q ∈ EP (C, f) ∩ F (T ). On the
other hand, by the linearity of L, we obtain Lvk ⇀ Lq. By Lemma 2.10 and the demiclosedness assumption
on I − SKg,h

r , we obtain that Lq ∈ F (SKg,h
r ) = GMEP (Q, g, h,Ψ, φ) ∩ F (S).

Next, we show that {xk} converges strongly to p. To do this, by applying (2.3) in (3.3) we have

φ(p, xk+1) = φ(p, J−1
E1

(αkJE1u+ (1− αk)JE1w
k))

= V (p, αkJE1
u+ (1− αk)JE1

wk)

≤ V (p, αkJE1u+ (1− αk)JE1w
k − αk(JE1u− JE1p))

+ 2〈J−1
E1

(αkJE1
u+ (1− αk)JE1

wk)− p, αk(JE1
u− JE1

p)〉

= αkV (p, JE1
u) + (1− αk)V (p, JE1

wk) + 2αk〈xk+1 − p, JE1
u− JE1

p〉

= (1− αk)φ(p, w
k) + 2αk〈xk+1 − p, JE1u− JE1p〉

≤ (1− αk)φ(p, x
k) + 2αk〈xk+1 − p, JE1

u− JE1
p〉.

Now, we need to show that lim sup
k→∞

〈xk+1 − p, JE1u − JE1p〉 ≤ 0. To see this, choose a subsequence {xki} of

{xk} such that xki ⇀ q and

lim sup
k→∞

〈xk+1 − p, JE1u− JE1p〉 = lim
i→∞

〈xki+1 − p, JE1u− JE1p〉.

Since ||xk+1 − xk|| → 0 as k → ∞, we obtain xki+1 ⇀ q. From (2.7) in Lemma 2.3, we have

lim sup
k→∞

〈xk+1 − p, JE1
u− JE1

p〉 = lim
i→∞

〈xki+1 − p, JE1
u− JE1

p〉

= 〈q − p, JE1
u− JE1

p〉

≤ 0. (3.28)

By using Lemma 2.3, 2.6 and (3.28), we obtain that {xk} converges strongly to p.

Case 2: Assume {Φk = ||xk − p||2} is monotonically nondecreasing. For some k0 large enough, define
a mapping

τ(k) := max{j ∈ N : j ≤ k,Φj ≤ Φj+1}.

Clearly, τ is a nondecreasing sequence, τ(k) → 0 as k → ∞ and

0 ≤ Φτ(k) ≤ Φτ(k)+1, ∀k ≥ k0.

By the same argument as in Case 1, we have ||uτ(k) − Tuτ(k)|| → 0, ||(SKg,h
r − I)Lvτ(k)|| → 0 , and

||xτ(k)+1 − xτ(k)|| → 0 as k → ∞ and lim sup
k→∞

〈xk+1 − p, JE1
u− JE1

p〉 ≤ 0. Since xτ(k) is bounded, there exists

a subsequence {xτ(kj)} such that {xτ(kj)} ⇀ q̄ ∈ C. Also by the linearity of L, we have Lvτ(kj) ⇀ Lq̄ ∈ Q.

Following similar arguments as in the first case, we can conclude q̄ ∈ Γ. By applying Lemma 2.6, we have

Φτ(k)+1 ≤ (1− bτ(k))Φτ(k) + bτ(k)cτ(k),
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where bτ(k) = ατ(k), cτ(k) = 2〈xτ(k)+1 − p, JE1u−JE1p〉. Note that bτ(k) → 0 as k → ∞ and lim sup
k→∞

cτ(k) ≤ 0.

Since Φτ(k) ≤ Φτ(k+1) and bτ(k) > 0, we have

||xτ(k) − p|| ≤ cτ(k).

This implies
lim sup
k→∞

||xτ(k) − p||2 ≤ 0;

hence
lim
k→∞

||xτ(k) − p|| = 0. (3.29)

By using lim
k→∞

||xτ(k)+1 − xτ(k)|| = 0 and (3.29), we have that

lim
k→∞

||xτ(k)+1 − p|| ≤ lim
k→∞

(||xτ(k)+1 − xτ(k)||+ ||xτ(k) − p||) = 0. (3.30)

Furthermore, for k ≥ k0, it is easy to see that Φτ(k) ≤ Φτ(k)+1 if k 6= τ(k) (that is τ(k) < k ), because
Φj ≥ Φj+1 for τ(k) + 1 ≤ j ≤ k. As a consequence, we obtain for all k ≥ k0, that

0 ≤ Φk ≤ max{Φτ(k),Φτ(k)+1} = Φτ(k)+1.

By using (3.30), we can conclude that lim
k→∞

Φk = 0, that is {xk} converges strongly to p thereby completing

the proof. 2

4. Numerical example
In this section, we present some numerical examples to illustrate the performance of our algorithm.

Example 4.1 Let E1 = E2 = ℓ2(R) be the linear spaces whose elements are all 2-summable sequences {xi}∞i=1

of scalars in R , that is

ℓ2(R) :=

{
x = (x1, x2 · · · , xi · · · ), xi ∈ R and

∞∑
i=1

|xi|2 < ∞

}
,

with the inner product 〈·, ·〉 : ℓ2 × ℓ2 → R defined by 〈x, y〉 :=
∞∑
i=1

xiyi and the norm || · || : ℓ2 → R by

||x|| :=
√

∞∑
i=1

|xi|2, where x = {xi}∞i=1, y = {yi}∞i=1. Let L : ℓ2 → ℓ2 be given by Lx =
(x1

5
,
x2

5
, · · · , xi

5
, · · · ,

)
for all x = {xi}∞i=1 ∈ ℓ2. Then L∗y =

(y1
5
,
y2
5
, · · · , yi

5
, · · · ,

)
for each y = {yi}∞ ∈ ℓ2. Define the sets

C := {x ∈ ℓ2 : ||x|| ≤ 1} and Q := {y ∈ ℓ2 : ||y|| ≤ 1}. Let the mappings g, h : Q × Q → R be defined by
g(w, u) = uw − w2, h(w, u) = 5u − 5w. Let φ(w) := w, for all u = {ui}∞i=1 ∈ ℓ2 and w = {wi}∞i=1 ∈ ℓ2. It is
easy to check that

Kg,h
r L(v) =

v − 30r

5(r + 1)
.
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Now define f : C×C → R by f(x, y) = 2x2+5xy−7y2, for x = {xi}∞i=1, y = {yi}∞i=1 ∈ ℓ2. It is easy to see that

f satisfies conditions (A1)−(A4). Now define T : C → C and S : Q → Q by Tx =

(
2x1

3
,
2x2

3
, · · · , 2xi

3
, · · · ,

)
for all x = {xi}∞i=1 ∈ ℓ2 and Sy =

(
3y1
5

,
3y2
5

, · · · 3yi
5

, · · · ,
)

for all y = {yi}∞i=1 ∈ ℓ2. It is easy to show that

F (T ) = F (S) = {0}.

We choose αk = 1
k+1 , βk = 1

3 + 2k−1
3k+5 , ρk = 1

2k , γk = 1
k , η = 0.03, θ = 0.03,

u = (−0.2345, 0.8943, 0, . . . , 0, . . . )′. Using ||xk+1−xk||ℓ2
||x2−x1||ℓ2

< 10−5 as the stopping criterion, we test our algorithm

3 for different values of x1 as follows:

Case (i) x1 = (3.2158,−5.8091, 0, . . . , 0, . . . )T ,

Case (ii) x1 = (1.7601,−2.6457, 0, . . . , 0, . . . )T .

We then plot the graphs of error ’ ||xk+1 − xk||ℓ2 ’ against the number of iteration in each case. The
computational results can be found for Case (i) in Table 1, Figure 1a and those for Case (ii) in Table 2 and
Figure 1b. These show that the change in the initial value does not have a significant effect on the performance
of the algorithm.

Table 1. Computational results for Example 4.1, Case (i); Time: 0.0537 s.

Iteration xk+1 ||xk+1 − xk||ℓ2
1 (−0.3385, 0.2259, 0, . . . , 0, . . . ) 4.0957

2 (−0.3386, 0.2258, 0, . . . , 0, . . . ) 1.1491e−4

3 (−0.3387, 0.2257, 0, . . . , 0, . . . ) 9.1926e−5

4 (−0.3388, 0.2256, 0, . . . , 0, . . . ) 7.5212e−5

5 (−0.3389, 0.2255, 0, . . . , 0, . . . ) 6.2677e−5

10 (−0.3389, 0.2255, 0, . . . , 0, . . . ) 3.0417e−5

15 (−0.3390, 0.2255, 0, . . . , 0, . . . ) 1.7708e−5

20 (−0.3390, 0.2254, 0, . . . , 0, . . . ) 1.1785e−5

...
...

...
23 (−0.3390, 0.2254, 0, . . . , 0, . . . ) 9.5096e−6

Next, we give another numerical example and compare the performance of our Algorithm 3 with Algorithm
3 in [15] and Algorithm 2 in [27].

Example 4.2 Let E1 = R2 and E2 = R5 . Let L : R2 → R5 be defined by

L(x) = (2x1 + x2, x1 + 2x2,−x2, 0,−3x1 − x2) x = (x1, x2).

Also let C := [−5, 5] × [−5, 5] and Q = [−10, 10] × [−10, 10] × [−10, 10] × [−10, 10] × [−10, 10] . Define the
mappings g, h : Q×Q → R by g(x, y) = x2 +2xy+ y2, h(x, y) = 2(xy− x2), and φ : Q → Q by φ(x) = x2. It
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Table 2. Computational results for Example 4.1, Case (ii); Time: 0.0479 s.

Iteration xk+1 ||xk+1 − xk||ℓ2
1 (−1.0025,−1.4691, 0, . . . , 0, . . . ) 3.0027

2 (−1.0026,−1.4691, 0, . . . , 0, . . . ) 6.7432e−5

3 (−1.0026,−1.4691, 0, . . . , 0, . . . ) 5.6321e−5

4 (−1.0026,−1.4692, 0, . . . , 0, . . . ) 4.5212e−5

5 (−1.0027,−1.4692, 0, . . . , 0, . . . ) 3.6715e−5

10 (−1.0027,−1.4693, 0, . . . , 0, . . . ) 1.7818e−5

12 (−1.0028,−1.4693, 0, . . . , 0, . . . ) 1.0489e−5

...
...

...
16 (−1.0028,−1.4693, 0, . . . , 0, . . . ) 9.5096e−6

is easy to see that conditions B and C are satisfied and Kg,h
r (w) =

w

6r + 1
∀ x ∈ Q . Now let f : C × C → R

be defined by f(x, y) = x2 + 4xy − 4y2. It is easy to see that f satisfies conditions (A1)− (A4).

We define T : C → C and S : Q → Q by Tx =
2x

3
and Sy =

3y

5
respectively, for all x ∈ C and

y ∈ Q respectively. It is easy to see that Γ 6= ∅. For each k = 0, 1, · · · , choose the sequences αk =
3k

2k2 + 3
,

βk =
2k

3k + 1
, u = 1, η = 0.3 , θ = 0.5 ,γk = 0.95, µ = 0.25 and ρk =

1

log(k + 1)
. We use the optimization tool

box in MATLAB to find the argmin element and we let ||xk+1−xk||
||x2−x1|| < 5 × 10−4 be our stopping criterion. We

compare the performance of our Algorithm 3 with Algorithm 3 in [15] and Algorithm 2 in [27] using different
initial values as follows:

1. Case (i) x1 = (−3, 2)T , u = (1, 5)T ,

2. Case (ii) x1 = (−4, 0)T , u = (−3,−2)T ,

3. Case (iii) x1 = (−5, 1)T , u = (0, 5)T .

The numerical results for these cases can be seen in Table 3, Figure 2a–2c respectively below.

Table 3. Comparison between Algorithm 3, Algorithm 3 in [15] and Algorithm 2 in [27], for Example 4.2.

Algorithm 3 Algorithm 3 in [15] Algorithm 2 in [27]
Case (i) CPU time (s) 0.0073 0.0118 0.3725

No. of iter. 9 13 21
Case (ii) CPU time (s) 0.0043 0.0133 0.0114

No. of iter. 11 12 15
Case (iii) CPU time (s) 0.0057 0.0330 0.0263

No. of iter. 11 13 19
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Figure 1. Example 4.1, a: Case (i); b: Case (ii).
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Figure 2. Example 4.2, a: Case (i); b: Case (ii); c: Case (iii).

5. Conclusion

In this article, we considered the problem of approximating a common element in the solution set of split
generalized mixed equilibrium problem involving both monotone and pseudomonotone bifunctions which is
also a fixed point of a quasi-φ -nonexpansive mapping. We introduced an extragradient algorithm based on
the Armijo line search rule and established a strong convergence theorem in the framework of 2-uniformly
convex and uniformly smooth Banach space E1 and a smooth, strictly convex, and reflexive Banach space E2 .
Furthermore, we gave some numerical examples in both finite and infinite dimensional spaces to illustrate the
performance and behavior of our method as well as comparing it with some related methods in the literature.
The results presented in this paper generalizes many recent and related results in the literature.
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