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Abstract: In this work, we study max CS, min CS, max-min CS modules and their endomorphism rings. Under certain
conditions (e.g., related to nonsingularity and duo-ness), we prove that a module is max CS if and only if it is min CS,
and that direct sums of min (max) CS modules is again min (max) CS. Finally, symmetry of max-min CS property on
the endomorphism rings of max-min CS modules is investigated.
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1. Introduction
In this paper, we consider an associative ring R with identity, and a right R−module M with the endomorphism

ring S = End(MR). We denote X ↪→ M (resp. X
∗
↪→ M) for a submodule (resp. an essential submodule) X

of M. We write rX(Y ) and lX(Y ) for the right annihilator and the left annihilator of Y in X, respectively.
We denote the uniform dimension of the module MR by u-dim(MR). For a submodule X of M, we write
IX := {f ∈ S|f(M) ⊆ X}. For a subset K of S, we write KM = K(M) :=

∑
f∈K

f(M). It is clear that IX is a

right ideal of S and KM is a submodule of M.

A closed submodule X of M means X
∗
↪→ Y ⇒ X = Y for any submodule Y of M. A submodule

X ↪→ M is fully invariant if f(X) ⊆ X for every f ∈ S. M is called a duo module (resp. weak duo module) if
every submodule (resp. every direct summand) is fully invariant. R is called a right duo ring (resp. right weak
duo ring) if RR is a duo module (resp. weak duo module), equivalently, every right ideal (resp. every right ideal
generated by an idempotent) of R is 2-sided.

We adopt the notions of primeness and semiprimeness in module category introduced by Sanh et al. in
[7]. Recall that a min CS module (or uniform extending module) provides that every minimal (i.e. uniform)
closed submodule is a direct summand. M is called a max CS module if every maximal closed submodule with
nonzero left annihilator in S is a direct summand. M is a max-min CS module if it is both max CS and min
CS. A ring R is a right min CS (resp. right max CS, right max-min CS) ring if RR is a min CS (resp. max CS,
max-min CS) module. Left min CS, left max CS and left max-min CS rings are defined analogously. Readers
can find more details in [2] and [8].
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The concepts of nonsingular modules and nonsingular rings are understood as usual. According to [5],

M is a nonsingular module if and only if for any X ↪→ M, rR(X)
∗
↪→ RR implies X = 0. M is said to be

cononsingular if for any X ↪→ M, lS(X)
∗
↪→S S implies X = 0. Clearly, R is right (left) nonsingular if and only

if every essential right (left) ideal of R has zero left (right) annihilator. Therefore, R is right (left) nonsingular
if and only if RR is a nonsingular (cononsingular) module. M is a Utumi module if every submodule X with

lS(X) = 0 implies X
∗
↪→ M , where S = End(MR) . It is easy to see that M is Utumi if and only if every proper

closed submodule X ⫋ M has nonzero left annihilator in S .
Extending and its generalizations are important and attractive properties in ring and module theory

which has been extensively investigated by many authors. In 2016, Tercan and Yücel published a beautiful
monograph [10] that comprehensively presents their works and others in the topics: extending properties under
certain classes of submodules, related concepts and generalizations, then addresses open problems for further
research. Hadi and Majeed [3] (2012) studied max CS and min CS modules over commutative rings, especially
equivalence of the max CS and min CS conditions. To enrich the field, in this paper, we investigate max CS
and min CS modules over associative (generally not commutative) rings. Section 2 presents results on max CS
and min CS modules. With the aid of duo-ness and retractability, Theorem 2.3 proves that a semiprime (or
nonsingular and Utumi) module is max CS if and only if it is min CS. In Theorem 2.8 and Theorem 2.9 , we take
advantage of distribution, duo-ness and Utumi condition on modules to show that direct sums of min (max)
CS modules are again min (max) CS. In subsequence, 2 examples are discussed to see strict necessity of those
conditions. Section 3 studies symmetry of max-min CS property and uniform dimension on the endomorphism
rings of max-min CS modules. There, we generalize the results of Jain et al. in [2].

2. Max CS modules and min CS modules

We observe that if M is a nonsingular module, then for any f ∈ S, rM (f)
∗
↪→ M implies f = 0. Furthermore,

any essential submodule of M has zero left annihilator in S. If M is a cononsingular module, then for any left

ideal K of S,K
∗
↪→S S implies rM (K) = 0. The following lemma on nonsingularity is elementary (also see [5,

Examples]).

Lemma 2.1 If M is a nonsingular CS module, then M is cononsingular. In particular, a right nonsingular
right CS ring is left nonsingular.

For any X ↪→ M , there always exists a maximal submodule Y ↪→ M with respect to Y ∩X = 0. Such
a submodule Y is called a complement of X in M. It is easy to verify that every complement is a closed
submodule and every closed submodule is a complement of another.

Lemma 2.2 [8, Lemma 3.2] Let X be a closed submodule of M , and Y be complement of X in M . Then X

is a maximal (resp. minimal) closed if and only if Y is minimal (resp. maximal) closed.

A module M is retractable if for any nonzero submodule X of M, IX 6= 0. [8, Theorem 3.3] proved that
for a finitely generated, quasi-projective self-generator M , if M is semiprime weak duo, then M is max CS
if and only if it is min CS. We are going to study other classes of modules in which the max CS and min CS
conditions are equivalent. Note that in the next results, we do not require every submodule of M to be fully
invariant, although taking duo-ness into account.
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Theorem 2.3 Let M be a retractable, duo module with respect to all maximal and minimal closed submodules
(i.e. if X is a minimal or maximal closed submodule, then X is fully invariant). Assume that M satisfies one
of the following conditions:

• (i) M is a semiprime module;

• (ii) M is a nonsingular module.

Then M is max CS if and only if M is min CS. In this case, M is a max-min CS module.

Proof For nonzero submodules A and B of M , since M is retractable, we have IA 6= 0 and IB 6= 0 , and
IA ∩ IB = 0 ⇔ A ∩B = 0. We need some claims as elementary preparation.

• Claim 1. If X is fully invariant, then IX is a 2-sided ideal of S . For any s ∈ S, since X is fully invariant,
we have sIX(M) ⊂ s(X) ⊂ X . Thus, sIX ⊂ IX so IX is 2-sided.

• Claim 2. For some e = e2 ∈ S, if Y = eM is fully invariant, then IY = eS and Se ⊆ eS. It is clear
that eS ⊆ IY . As a counterclaim, we assume that eS ⫋ IY , i.e. there exists 0 6= f ∈ IY but f 6∈ eS.

Since f ∈ S = eS ⊕ (1 − e)S, f = eg + (1 − e)h for some h, g ∈ S and (1 − e)h 6= 0. Then, we have
fM = eg(M) + (1 − e)h(M) so 0 6= (1 − e)h(M) ⊆ (fM ∩ (1− e)M) ⊆ (eM ∩ (1− e)M) . This is a
contradiction because fM ⊆ eM and eM ∩ (1− e)M = 0. Therefore, it must hold eS = IY . It is clearly
Se ⊆ IY = eS because IY is 2-sided and e ∈ IY .

(i) M is a semiprime module.
Let M be a max CS module, X be a minimal closed submodule, and Y is a complement of X in M.

Then Y is maximal closed by Lemma 2.2 . By assumption, X and Y are fully invariant submodules.

• Claim 3. rM (IX) is the unique complement of X. We assume that rM (IX) ∩X = A. Then IX(A) = 0

so IXIA(M) = 0. This implies IXIA = 0 . By [7, Theorem 2.9], S is a semiprime ring, and hence
IX ∩ IA = 0 . Thus, by retractability of M, we have X ∩ A = 0 so A = 0. Now we observe that
IX(Y ) ⊂ Y and IX(Y ) ⊂ X , hence IX(Y ) ⊂ (Y ∩X) = 0. This means Y ⊂ rM (IX) . By maximality of
Y , we obtain Y = rM (IX) . This implies that rM (IX) is the unique complement of X.

Now we see that lS(Y ) = lSrM (IX) ⊃ IX 6= 0 . Therefore, we have Y = eM for some e = e2 ∈ S , since
M is max CS. Arguing similarly to Claim 3, rM (IY ) is again the unique complement of Y in M, and hence
X = rM (IY ) . But e ∈ IY so rM (IY ) ⊆ rM (e) and X = rM (IY ) ⊂ rM (e) = (1 − e)M . Seeing that (1 − e)M

is also a complement of Y so it is minimal closed. By minimality, we induce X = (1− e)M, a direct summand
of M. This shows that M is min CS.

Conversely, let M be min CS and X be a maximal closed submodule with nonzero left annihila-
tor in S. Then Y , a complement of X in M , is minimal closed and Y = fM for some f = f2 ∈ S .
Again, we see that rM (IY ) is again the unique complement of Y in M, and hence X = rM (IY ). Moreover,
X = rM (IY ) ⊂ rM (e) = (1− e)M and hence X = (1− f)M (because of maximality of X ). This implies that
X is a direct summand, and hence M is max CS.

(ii) M is a nonsingular module.
Let M be max CS and X be a minimal closed submodule of M . Then Y , a complement of X in M ,

is maximal closed by Lemma 2.2 .
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• Claim 4. lS(Y ) 6= 0. We observe that IX(Y ) ⊂ Y and IX(Y ) ⊂ X , hence IX(Y ) ⊂ (Y ∩X) = 0. This
means 0 6= IX ⊂ lS(Y ) .

Since M is max CS, Y is a direct summand of M,Y = eM for some e = e2 ∈ S . Since M is weak
duo, Y is a fully invariant submodule and hence IY = eS is a 2-sided ideal. Therefore, IXIY ⊂ (IX ∩ IY ) = 0 ,
and hence IX ⊂ lS(IY ) ⊆ lS(e) = S(1 − e) ⊂ (1 − e)S (note that (1 − e)S is 2-sided as (1 − e)M is fully
invariant). Therefore, IX(M) ⊂ (1− e)M and 0 6= IX(M) ⊂ (X ∩ (1− e)M). Since M is nonsingular, IX(M)

has a unique closure, namely U. Then we have U ⊂ (1− e)M and U ⊂ X , so X = (1− e)M = U because of
minimality of X and (1− e)M . This implies that M is min CS.

Conversely, let M be min CS and X be a maximal closed submodule with nonzero left annihilator
in S. Then Y , a complement of X in M , is minimal closed and hence Y = fM for some f = f2 ∈ S .
Since M is weak duo, Y is a fully invariant submodule and hence IY = fS is a 2-sided ideal. We observe
that IXIY ⊂ (IX ∩ IY ) = 0. Thus, we have IX ⊂ lS(IY ) = lS(f) = S(1 − f) ⊂ (1 − f)S. Therefore,
IX(M) ⊂ (1− f)M and 0 6= IX(M) ⊂ (X ∩ (1− f)M). Since M is nonsingular, there is a unique essentially
closed submodule of (X ∩ (1− f)M) , namely U, that contains IX(M). We assume that V is a complement of
U in X. Then V ∩ (1− f)M = 0 and IV ∩ (1− f)S = 0, but IV (1− f)S ⊂ (IV ∩ (1− f)S) so IV (1− f)S = 0

and IV ⊂ lS(1 − f) = Sf ⊂ fS. On the other hand, IV ⊂ IX ⊂ (1 − f)S so IV ⊂ (fS ∩ (1 − f)S) = 0.

Consequently, we have IV = 0 so V = 0 by retractability of M . Therefore, U = X and X ⊂ (1 − f)M , and
hence X = (1− f)M because of maximality of X . This implies that M is max CS.

The proof is now complete. 2

Thuat et al. [8, Theorem 3.2] implies that a semiprime, right weak duo ring is right max CS if and only if
it is right min CS. Note that the class of right nonsingular rings includes reduced rings, right hereditary rings,
right semihereditary rings, von Neumann regular rings, right Rickart rings, Baer rings, domains, and semisimple
rings. Moreover, every prime ring is semiprime. Therefore, Theorem 2.3 and [8, Theorem 3.2] give us various
broad classes of rings in which being right max CS and right min CS are equivalent.

Corollary 2.4 Let R be a right weak duo ring. If R is either semiprime or right nonsingular, then R is right
max CS if and only if R is right min CS. In this case, R is right max-min CS.

[3, Theorem 1.33] (which proved that a commutative nonsingular ring is max CS if and only if it is min
CS) is simply a special case of our corollary above. It is well-known that a commutative ring is semiprime if
and only if it is nonsingular.

Example 2.5 Let F be a field. Considering a right F−module R = {(x, y, z)|x, y, z ∈ F}. We do have:

• (i) R is a nonsingular but not weak duo module.

• (ii) R is a max CS but not min CS.

Proof (i) It is easy to see that RF is nonsingular. We observe that A = {(x, 0, 0)|x ∈ F} is a direct summand
of R. Considering the homomorphism f : R → R, f(x, y, z) 7→ (0, 0, x). Clearly f(A) is not contained in A so
A is not a fully invariant of R . This shows that R is not weak duo.
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(ii) Clearly {(x, y, 0)|x, y ∈ F}, {(0, y, z)|y, z ∈ F} and {(x, 0, z)|x, z ∈ F} are the all maximal submod-
ules of R . Therefore, R is a max CS module. However, R is not a min CS module. It is not hard to verify
that B = {(x, x, 0)|x ∈ F} is a minimal closed submodule of R but it is not a direct summand.

This example shows that there exists a max CS module which is not min CS. Moreover, the duo (weak
duo) condition in Theorem 2.3 cannot be dropped. 2

[8, Proposition 3.8] proved that every closed submodule inherit the min CS property. However, we do
not know whether a similar situation happens in the case of the max CS property. An affirmative answer is
presented in the following proposition.

Proposition 2.6 Let M be a max CS module with the endomorphism ring S.

(1) If X is a direct summand of M . Then M/X and X are max CS modules.
(2) Assume that M is a duo module with respect to all closed submodules. If X is a closed submodule

generated by M , then X is a max CS module.

Proof (1) Firstly, we will show that M/X is max CS. Let A/X be a maximal closed submodule of M/X .
We will prove that A is maximal closed in M . Assume that A is essential in B ↪→ M . By [1, Proposition 1.4],

we have A/X
∗
↪→ B/X so A/X = B/X . This implies that A = B and A is closed in M . Let C be a closed

submodule of M containing A . By [1, Exercise 16, p20], A/X is closed in C/X , and C/X is closed in M/X .
By maximality of A/X , we obtain A/X = C/X so A = C. Therefore, A is a maximal closed submodule of
M .

Now assume that lT (A/X) 6= 0 , where T = EndR(M/X). Then there is 0 6= f : M/X → M/X such
that f(A/X) = 0. Let p : M → M/X be the canonical projection, i.e. p(m) = m + X for every m ∈ M.

Since X is a direct summand of M, we can decompose M = X ⊕ Y, and define the R−homomorphism
g : M/X → M,m + X 7→ y, where m = x + y, x ∈ X, y ∈ Y. Then we have gfp(M) = gf(M/X) 6= 0 and
gfp(A) = gf(A/X) = 0. Therefore, 0 6= gfp ∈ lS(A) ⊆ S.

Since M is max CS, A is a direct summand of M , so M = A ⊕ B. It is obvious to claim that
A/X ⊕ (B +X)/X = M/X. This shows that M/X is a max CS module.

Because M = X ⊕ Y , it is clear that Y is isomorphic to M/X . This implies that Y is again a max CS
module, so is X.

(2) Let X be a closed submodule of M . Assume that A is a maximal closed submodule of X with
lSX

(A) 6= 0 , where SX = EndR(X) . We will show that A⊕Y is maximal closed in M, where Y is a complement

of X in M. Since A is closed in X , there is a complement of A in X , namely B, so that A⊕B
∗
↪→ X . Thus,

Y ⊕A⊕B
∗
↪→ is essential in M . This shows that Y ⊕A is closed in M . By Lemma 2.2 , B is minimal closed

in X so is minimal closed in M , and hence Y ⊕A is maximal closed in M .
Because lSX

(A) 6= 0 , there exists a nonzero R−homomorphism f : X → X such that f(A) = 0. Since
X is generated by M , we have X =

∑
Λ g(M) , where g ∈ Λ is a subset of S , hence (f

∑
Λ g) ∈ S . Since every

closed submodule of M is fully invariant,
∑

Λ g(A) ⊆ A so f
∑

Λ g(A) ⊆ f(A) = 0. On the other hand, we have
f
∑

Λ g(M) = f(X) 6= 0 , and
∑

Λ g(Y ) ⊆ (Y ∩ X) = 0. Therefore, f
∑

Λ g(A ⊕ Y ) = 0 and 0 6= (f
∑

Λ g) ∈
lS(A⊕ Y ) . Since M is max CS, A⊕ Y is a direct summand of M , hence M = (A⊕ Y )⊕B = A⊕ (Y ⊕B).

Now we have X = X ∩M = X ∩ (A⊕ (Y ⊕B)) = A⊕ (X ∩ (Y ⊕B)) by modular law. This means that A is
a direct summand of X and X is max CS. 2
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Unlikely min CS modules, we require the condition of nonzero annihilator for max CS property. This
makes trouble sometimes. In Proposition 2.6 , it is not easy to construct an R−homomorphism from M to X

to show that lS(A) 6= 0 in (1) or lS(A⊕ Y ) 6= 0 in (2). Note that a direct sum of min CS (max CS) modules
may not be min CS (max CS), for instance (Z/2Z)⊕ (Z/8Z). Next, we aim to determine when direct sums of
min CS (max CS) modules are again min CS (max CS). In the 2 next theorems, we consider direct sums of 2
min CS (max CS) modules only. However, this can be generalized to any finite direct sum of min CS (max CS)
modules. A module M is so called a distributive module if A ∩ (B + C) = (A ∩B) + (A ∩ C) for submodules
A,B,C of M . In the following theorem, we only need distribution with respect to a certain decomposition
instead of any sum of submodules.

Lemma 2.7 Let M1 and M2 be right R−modules and M = M1 ⊕M2 . Then we have either (X ∩M1) = 0

or (X ∩M2) = 0 for every minimal closed submodule X of M .

Proof It is clear since X is uniform. 2

Theorem 2.8 Let M1 and M2 be right R−modules and M = M1 ⊕M2 . Assume that M is distributive with
respect to M1 ⊕M2 , i.e. X ∩ (M1 ⊕M2) = (X ∩M1)⊕ (X ∩M2) for every X ↪→ M.

(1) M is min CS if and only if M1 and M2 are min CS.
(2) If M1 and M2 are Utumi modules, then M is max CS if and only if M1 and M2 are max CS.

Proof (1) The necessity is induced by [8, Proposition 3.8]. We only need to prove the sufficiency. Let M1

and M2 be min CS. We will prove that M is also min CS.
Assume that X is a minimal closed submodule of M. Since M is distributive with respect to M1 ⊕M2 ,

we have X ∩ (M1 ⊕M2) = (X ∩M1)⊕ (X ∩M2) . By Lemma 2.7 , we suppose (X ∩M2) = 0 without loss of
generality. Then we have X = X ∩M1 , hence X is a minimal closed submodule of M1 .

Since M1 is min CS, we have decomposition M1 = X ⊕C. Therefore, M = M1 ⊕M2 = (X ⊕C)⊕M2 .
We can re-arrange these terms to obtain M = X ⊕ (C ⊕M2) . This shows that X is a direct summand of M.

Thus M is a min CS module.
(2) The necessity is induced by Proposition 2.6 . We will prove the sufficiency for the sake of completeness.

Let M1 and M2 be max CS. We will show that M is again max CS.
Let K be a maximal closed submodule of M with lS(K) 6= 0 . Since M is distributive, we have

K = K ∩ (M1 ⊕M2) = (K ∩M1)⊕ (K ∩M2) . We will show that (K ∩M1) and (K ∩M2) are maximal closed
submodules of M1 and M2 , respectively. Let K∩M1 be essential in X ↪→ M1. Then K = (K∩M1)⊕(K∩M2)

is essential in X⊕(K∩M2). Since K is closed in M , (K∩M1)⊕(K∩M2) = X⊕(K∩M2) , so (K∩M1) = X .
This means that (K∩M1) is closed in M1 . Suppose that Y ↪→ M1 is a closed submodule containing (K∩M1) .
Then Y ⊕(K∩M2) is a closed submodule of M containing K. By maximality of K, we have K = Y ⊕(K∩M2) .
Consequently, (K∩M1) = Y so (K∩M1) is maximal closed in M1 . Similarly, we see that (K∩M2) is maximal
closed in M2 .

Now, since M1 and M2 are Utumi, the left annihilators lS1
(K ∩M1) and lS2

(K ∩M2) are all nonzero,
where S1 = EndR(M1) and S2 = EndR(M2) . Since M1 and M2 are max CS, we have decompositions
M1 = (K ∩ M1) ⊕ X and M2 = (K ∩ M2) ⊕ Y . Therefore, M = ((K ∩ M1) ⊕ X) ⊕ ((K ∩ M2) ⊕ Y ) =

((K ∩M1)⊕ (K ∩M2))⊕ (X ⊕ Y ) = K ⊕ (X ⊕ Y ). This shows that K is a direct summand of M and M is
max CS. 2
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Theorem 2.9 Let M1 and M2 be right R−modules and M = M1 ⊕M2 .
(1) Assume that M is duo with respect to all minimal closed submodules. Then M is min CS if and only

if M1 and M2 are min CS.
(2) Assume that M is duo with respect to all maximal closed submodules, and M1 and M2 are Utumi

modules. Then M is max CS if and only if M1 and M2 are max CS.

Proof Let πi : M → Mi be the natural projection, i = 1, 2. In particular, we have π1(M) = M1, π2(M) = M2.

For any X ↪→ M and any x ∈ X, we have x = m1 + m2, where mi ∈ Mi, i ∈ {1, 2} . It is obvious that
x = π1(m1) + π2(m2) = π1(x) + π2(x).

(1) The necessity follows from [8, Proposition 3.8]. For the sufficiency, let X be a minimal closed
submodule of M . Since X is fully invariant, πi(x) ∈ X for i ∈ {1, 2} . Thus πi(x) = mi ∈ (X ∩ Mi) for
i ∈ {1, 2} . By Lemma 2.7 , we assume that (X ∩M2) = 0 so π2(x) = 0 . This implies x = π1(x) = m1 ∈ M1 ,
hence X ⊆ M1 . It is clear that X is also minimal closed in M1 so M1 = X ⊕ Y. Now we see that
M = M1 ⊕ M2 = (X ⊕ Y ) ⊕ M2 = X ⊕ (Y ⊕ M2) . This means that X is a direct summand of M , and
hence M is min CS.

(2) The necessity follows from Proposition 2.6 . For the sufficiency, let X be a maximal closed submodule
of M with lS(X) 6= 0 . Since X is fully invariant, πi(x) ∈ X for i ∈ {1, 2} . Thus πi(x) = mi ∈ (X ∩Mi) for
i ∈ {1, 2} . Therefore, we have X ⊆ ((X ∩ M1) ⊕ (X ∩ M2)) ⊆ X so X = (X ∩ M1) ⊕ (X ∩ M2) . Arguing
similarly to the proof of Theorem 2.8 , we claim that M is max CS. 2

Example 2.10 Let Z be the set of all integers. Consider Z−module M = (Z/Z2)⊕ (Z/Z8). We observe that
M is a sum of max-min CS modules A = Z(1 + 2Z, 0) and B = Z(0, 1 + 8Z) . However, M is neither min CS
nor max CS, since the minimal (also maximal) closed submodule C = Z(1+2Z, 2+8Z) is not a direct summand.
It is clear that M is not distributive with respect to A ⊕ B. This shows that the condition of distribution in
Theorem 2.8 is indispensable. We easily see that C is not fully invariant. Therefore, the requirement that M

is duo with respect to the class of all maximal (resp. minimal) closed submodules of M in Theorem 2.9 cannot
be dropped.

3. On symmetry of the max-min CS condition

Jain et al. [2] studied the right-left symmetry of max-min CS condition on prime rings. In this section, we aim
to generalize such the results to prime modules. We consider 2 conditions introduced in [6]:

• (I) For submodules X,Y of M,X
∗
↪→ Y if and only if IX

∗
↪→ IY ;

• (II) For right ideals K,L of S,K
∗
↪→ L if and only if KM

∗
↪→ LM.

Lemma 3.1 For a module M, we have the following statements.
(1) If M is nonsingular, then M is retractable if and only if (I) holds.

(2) Given (I), then (II) holds if and only if K
∗
↪→ IKM for every right ideal K ↪→ SS .

(3) Given (II), then (I) holds if and only if IX(M)
∗
↪→ X for every submodule X ↪→ M.

(4) Given (I) and (II), then M is retractable.
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(5) If M is a self-generator possessing (II), then (I) holds.
(6) Let M be a nonsingular retractable module with (II). Then X is a uniform submodule of M if and

only if IX is a uniform right ideal of S .

Proof We refer readers to [6, Corollary 2.3] for (1), and to [6, Theorem 2.5] for (2) and (3).

(4) Given (I) and (II). For every nonzero submodule X ↪→ M , we have IX(M)
∗
↪→ X by (3). This implies

IX(M) 6= 0 so IX 6= 0 . Thus M is retractable.
(5) It follows from (3) and IX(M) = X for every submodule X ↪→ M.

(6) Let X be a uniform submodule of M . By retractability of M , we have IX 6= 0 . Let H be a nonzero

right ideal contained in IX . Then HM is a nonzero submodule contained in X , and hence HM
∗
↪→ X . Since

M is a nonsingular retractable module, M has (I), hence IHM
∗
↪→ IX . By (II) and (2), H ∗

↪→ IHM so H
∗
↪→ IX .

This shows that IX is a right uniform ideal.
Conversely, let IX be a uniform right ideal, and A be a nonzero submodule of X. Since M is retractable,

IA is nonzero, hence IA
∗
↪→ IX and A

∗
↪→ X by (I). This implies that X is a uniform submodule. 2

Lemma 3.2 [9, Theorem 12]
Let M be a nonsingular and retractable module which possesses the condition (II). Then, the following

statements hold.
(1) M is min CS if and only if S is right min CS.
(2) M is max CS if and only if S is right max CS.
(3) M is max-min CS if and only if S is right max-min CS.

Proposition 3.3 Let M be a nonsingular prime retractable module with (II) and have a uniform submodule.
Then the following statements hold.

(1) If M is a min CS, then S is right min CS, right and left nonsingular.
(2) If M is a max CS cononsingular module, then S is right max CS and left min CS.
(3) If M is a CS, then S is right CS and left min CS.
(4) If R is a nondomain ring, and M is a min CS, then S is a right min CS ring with uniform right

and left ideals.

Proof
By [4, Theorem 3.1], S is right nonsingular, and by [7, Theorem 2.4], S is a prime ring. Since M has a

uniform submodule, S has a uniform right ideal by (6) of Lemma 3.1 .
(1) By Lemma 3.2 , S is right min CS. Since S is a right nonsingular, right min CS, prime ring with a

uniform right ideal, S is left nonsingular by [2, Lemma 3.1].
(2) By Lemma 3.2 , S is right max CS. By [5, Proposition 1], since M is cononsingular, S if left

nonsingular so is nonsingular. Since S is a nonsingular, right max CS, prime ring with a uniform right ideal,
S is left min CS by [2, Theorem 3.1].

(3) Obviously, M is a min CS module. Therefore, (1) implies that S is left nonsingular. Thus, M is
cononsingular by [5, Proposition 1]. Now, it follows from (2) that S is left min CS. Clearly, S is right CS by
[6, Theorem 3.2].
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(4) It is clear that S is right min CS by Lemma 3.2 , and S has a uniform right ideal by (6) of Lemma
3.1 . Consequently, S has a uniform left ideal by [2, Lemma 3.4]. Note that in this statement, S is not a
domain, especially S is not a commutative ring. 2

Theorem 3.4 Let R be a nondomain ring, and M be a nonsingular prime retractable module with (II). Then
the following conditions are equivalent:

(1) M is max-min CS with a uniform submodule;
(2) S is right max-min CS with a uniform right ideal;
(3) S is left max-min CS with a uniform left ideal.

Proof (1)⇔ (2) follows from Lemma 3.1 and Lemma 3.2 . By [7, Theorem 2.4], S is a prime ring. By (1)
of Proposition 3.3 , S is right and left nonsingular. Now (2)⇔ (3) follows from [2, Theorem 3.4]. The proof is
complete. 2

Recall that a CS module is provided that every closed submodule is a direct summand. It is well-known
that a module with finite uniform dimension is CS if and only if it is min CS.

Proposition 3.5 Let M be a nonsingular prime retractable module possessing (II). If M is CS with a uniform
submodule, then the following statements hold:

(1) S is left CS if and only if u-dim(SS) < ∞;

(2) u-dim(MR) = n > 1 is equivalent to u-dim(SS) = n.

In these cases, M is a Goldie module, S is a right and left Goldie, right and left CS ring, and
u-dim(MR) = u-dim(SS) = u-dim(SS).

Proof Since M is nonsingular and retractable, Lemma 3.1 says (I) held. By [7, Theorem 2.4], S is a prime
ring, and by [4, Theorem 3.1], S is right nonsingular. In addition, S is right CS by [6, Theorem 3.2]. Since
M has a uniform submodule, S has a uniform right ideal by Lemma 3.1 . By (1) of Proposition 3.3 , S is left
nonsingular, so is nonsingular.

(1) Firstly, let S be left CS. Since S is right and left CS, every closed 1-sided ideal of S is a direct
summand, hence is an annihilator. This, by [1, Theorem 2.38], implies that the maximal right and the maximal
left quotient rings of S coincide, namely Q. Since S is a nonsingular prime ring with a minimal closed right
ideal, Q is semisimple artinian. As a consequence, since SS is essential in SQ, S has finite left uniform
dimension. Conversely, we assume that S has finite left uniform dimension. By (3) of Proposition 3.3 , S is
left min CS. This implies that S is left CS.

(2) Note that S is prime so is semiprime. If u-dim(MR) = n , by [9, Lemma 6], we have u-dim(MR) =

n = u-dim(SS). Since S is a nonsingular semiprime ring with finite right uniform dimension (greater than
1), the maximal right quotient ring of S (namely Q) is also the maximal left quotient ring of S . Moreover,

Q is a semisimple artinian ring. Consequently, u-dim(SS) = n because of SS
∗
↪→S Q , indeed, u-dim(SS) =

u-dim(SQ) = u-dim(QS) = u-dim(SS) = n. The converse is argued similarly.
For the last claim, it is clear that u-dim(MR) = u-dim(SS) = u-dim(SS) = n. Recall that an

M−annihilator X of M provides that X = rM (K) for some K ⊆ S. Note that every nonsingular mod-
ule with finite uniform dimension has the ACC on M−annihilators. In particular, every right (left) nonsingular
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ring with finite right (left) uniform dimension satisfies the ACC on right (left) annihilators. Therefore, M is a
Goldie module, and S is a right and left Goldie. 2
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