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Abstract: This paper is devoted to studying the controlled dual K-g-Bessel sequences of controlled K-g-frames. In fact,
we introduce the concept of dual K-g-Bessel sequences of controlled K-g-frames and then, we present some necessary
and/or sufficient conditions under which a controlled g-Bessel sequence is a controlled dual K-g-frame of a given controlled
K-g-frame. Subsequently, we pay attention to investigating the structure of the canonical controlled dual K-g-Bessel
sequence of a Parseval controlled K-g-frame and some other related results.
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1. Introduction
The notion of frame dates back to Gabor [14] and Duffin and Schaeffer [12]. However, the frame theory had
not attracted much attention until the celebrated work by Daubechies et al. [10]. Frames have been used as a
powerful alternative to Hilbert bases because of their redundancy and flexibility. They are also very important
for applications, e.g., in physics [1, 8], signal processing [3, 5, 6], numerical treatment of operator equations
[9, 24], and acoustics [4, 22].

Over the years, various extensions of frame theory have been investigated. Several of these are contained
as special cases of the elegant theory for g-frames that was introduced by Sun in [25]. For example, fusion
frames, bounded quasiprojectors, outer frames, oblique frames, pseudoframes, and a class of time-frequency
localization operators.

Atomic systems for subspaces were first introduced by Feichtinger and Werther in [13] based on examples
arising in sampling theory. In [15], Găvruţa introduced K -frames in Hilbert spaces to study atomic decompo-
sition systems, and discussed some properties of them. K-g-frames, which are more general than g-frames, were
put forward by Zhou et al. in [27].

Weighted and controlled frames, as one of the newest generalizations of frames, have been introduced
to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert
spaces in [2]; however, they are used earlier in [18] for spherical wavelets. Since then, controlled frames have
been generalized to other kinds of frames [17, 19, 21, 23].

Since the frame operator of a controlled K-g-frame may not be invertible, there is no classical canonical
dual for a controlled K-g-frame. Thus, it is interesting to find or even define the canonical dual of a controlled
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K-g-frame. Recently, Guo in [16] proposed the concept of canonical dual K-Bessel sequences from the operator
theoretic point of view. This idea has been developed to K-g-frame in [26]. In this paper, we generalize this
concept to the case of controlled K-g-frames. Indeed, we define the concept of dual and canonical dual of
controlled K-g-frames and then we give several equivalent characterizations of them.

2. Notation and definitions
In this section, we collect the basic notation and some preliminary results. Throughout the paper, H is a
separable Hilbert space and {Hi : i ∈ I} is a sequence of Hilbert spaces, where I is an at most countable index
set. We denote by B(H1,H2) the set of all bounded linear operators from H1 to H2 . For U ∈ B(H1,H2) , we
use the notations U∗ , R(U) and N(U) to denote respectively the adjoint operator, the range, and the null space
of U . We define GL(H1,H2) as the set of all bounded linear operators with a bounded inverse, and similarly
for GL(H) . It is easy to see that if U, V ∈ GL(H) , then U∗ and UV are also in GL(H) . A bounded operator
T is called positive (respectively nonnegative), if ⟨Tf, f⟩ > 0 , for all 0 ̸= f ∈ H , (respectively ⟨Tf, f⟩ ≥ 0 ,
for all f ∈ H). Every nonnegative operator is clearly self-adjoint. If U ∈ B(H) is nonnegative, then there
exists a unique nonnegative operator V such that V 2 = U . This will be denoted by V = U

1
2 . The operator V

commutes with every operator that commutes with U . The set of positive operators in GL(H) will be denoted
by GL+(H) . Notice that U ∈ GL+(H) if and only if U is positive and U

1
2 ∈ GL(H) [2, Proposition 2.4].

Later we will need the following important result from operator theory.

Lemma 2.1 [7] Suppose that U ∈ B (H,K) has closed range. Then there exists a unique operator U† ∈
B (K,H) , called the pseudoinverse of U , satisfying

UU†U = U, U†UU† = U†,
(
UU †)∗ = UU†,

(
U†U

)∗
= U†U, (K∗)

†
=
(
K†)∗ ,

N
(
U†) = (R(U))

⊥
= N (U∗) , R

(
U†) = (N(U))

⊥
= R (U∗) .

The following lemma is a key tool for the proofs of our main results.

Lemma 2.2 [11] Let T ∈ B(H1,H) and S ∈ B(H2,H) . The following statements are equivalent:

1. R(T ) ⊂ R(S) .

2. There exists λ > 0 such that TT ∗ ≤ λSS∗ .

3. There exists U ∈ B(H1,H2) such that T = SU .

Moreover, if (1), (2), and (3) are valid, then there exists a unique operator U such that

(a) ∥U∥2 = inf {µ, TT ∗ ≤ µSS∗} .

(b) N(T ) = N(U) .

(c) R(U∗) ⊂ R(S∗) .
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Definition 2.3 [25] A sequence {Λi ∈ B(H,Hi) : i ∈ I} is called a generalized frame, or simply a g-frame, for
H with respect to {Hi : i ∈ I} if there exist constants 0 < A ≤ B < ∞ , such that

A∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B∥f∥2, (f ∈ H). (2.1)

The numbers A and B are called g-frame bounds. The family {Λi}i∈I is called a tight g-frame if A = B and
Parseval g-frame if A = B = 1 . If in (2.1), only the second inequality holds, then the sequence is called a
g-Bessel sequence.

For each sequence {Hi : i ∈ I} , we define the space

(⊕
i∈I

Hi

)
ℓ2

=

{
{fi}i∈I : fi ∈ Hi, i ∈ I, and

∑
i∈I

∥fi∥2 < ∞

}
,

with the inner product defined by

⟨{fi}i∈I, {gi}i∈I⟩ =
∑
i∈I

⟨fi, gi⟩.

It is clear that (
⊕

i∈I Hi)ℓ2 is a Hilbert space.
We define the synthesis operator for a g-Bessel sequence Λ = {Λi}i∈I as follows,

TΛ :

(⊕
i∈I

Hi

)
ℓ2

→ H, TΛ ({fi}i∈I) =
∑
i∈I

Λ∗
i (fi).

It is easy to show that the adjoint operator of TΛ is achieved as follows,

T ∗
Λ : H →

(⊕
i∈I

Hi

)
ℓ2

, T ∗
Λ(f) = {Λif}i∈I.

The operator T ∗
Λ is called the analysis operator for {Λi}i∈I . Composing TΛ and T ∗

Λ , the g-frame operator is
obtained as follows,

SΛ = TΛT
∗
Λ : H → H, SΛf =

∑
i∈I

Λ∗
iΛif.

If Λ = {Λi}i∈I is a g-frame for H with respect to {Hi : i ∈ I} with bounds A and B , then the g-frame operator
SΛ : H → H is a bounded, positive, and invertible operator. Moreover, for every f ∈ H , we have

f = SΛS
−1
Λ = S−1

Λ SΛf =
∑
i∈I

Λ∗
iΛiS

−1
Λ f =

∑
i∈I

S−1
Λ Λ∗

iΛif. (2.2)

Let Λ̃i = ΛiS
−1
Λ . Then the above equalities become

f =
∑
i∈I

Λ∗
i Λ̃if =

∑
i∈I

Λ̃∗
iΛif. (2.3)

1183



HOSSEINNEZHAD/Turk J Math

The family {Λ̃i}i∈I , which is a g-frame for H with respect to {Hi : i ∈ I} , is called the canonical dual g-frame
of {Λi : i ∈ I} . Recall that a g-Bessel sequence {Γi}i∈I for H with respect to {Hi : i ∈ I} , is called an alternate
dual g-frame of {Λi}i∈I if for every f ∈ H ,

f =
∑
i∈I

Λ∗
iΓif.

Definition 2.4 [2] Let C ∈ GL(H) . A frame controlled by the operator C or C -controlled frame is a family
of vectors {fi}i∈I in H such that there exist two constants 0 < A ≤ B < ∞ , such that

A∥f∥2 ≤
∑
i∈I

⟨f, fi⟩⟨Cfi, f⟩ ≤ B∥f∥2, (f ∈ H). (2.4)

Definition 2.5 [23] Let C,C ∈ GL+(H) . The family Λ = {Λi ∈ B(H,Hi), i ∈ I} is called a (C,C ′)-controlled
g-frame for H with respect to {Hi : i ∈ I} if Λ is a g-Bessel sequence and there exist constants 0 < A ≤ B < ∞ ,
such that

A∥f∥2 ≤
∑
i∈I

⟨ΛiCf,ΛiC
′f⟩ ≤ B∥f∥2, (f ∈ H). (2.5)

In the first section of [17], it was claimed that any two bounded positive operators can commute with each
other. It seems that this is not true in general. Indeed, it is easy to check that if T, S ∈ B(H) are two positive
operators, then TS = ST if and only if TS is positive. Thus, in the following definition, we assume that two
operators C,C ′ ∈ GL+(H) commute with each other.

Definition 2.6 [17] Suppose that K ∈ B(H) and C,C ′ ∈ GL+(H) , which commute with each other. The
family {Λi ∈ B(H,Hi) : i ∈ I} is called a (C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} if
there exist constants 0 < A ≤ B < ∞ , such that

A∥K∗f∥2 ≤
∑
i∈I

⟨ΛiCf,ΛiC
′f⟩ ≤ B∥f∥2, (f ∈ H). (2.6)

The numbers A,B are called the lower and upper frame bounds for (C,C ′)-controlled K-g-frame, respectively.
Particularly, if

A∥K∗f∥2 =
∑
i∈I

⟨ΛiCf,ΛiC
′f⟩, (f ∈ H),

then we call {Λi}i∈I a (C,C ′)-controlled tight K-g-frame for H with respect to {Hi : i ∈ I} . The (C,C ′)-
controlled tight K-g-frame {Λi}i∈I is said to be Parseval if A = 1 .

If the right-hand side of (2.6) holds, then {Λi}i∈I is called a (C,C ′)-controlled g-Bessel sequence for H
with respect to {Hi : i ∈ I} .

If C ′ = I , then {Λi}i∈I is called a C -controlled K-g-frame for H with respect to {Hi : i ∈ I} and if
C = C ′ , then {Λi}i∈I is called a C2 -controlled K-g-frame for H with respect to {Hi : i ∈ I} .
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Suppose that {Λi}i∈I is a (C,C ′) -controlled g-Bessel sequence for H with respect to {Hi : i ∈ I} . The bounded
linear operator TCΛC′ :

(⊕
i∈I Hi

)
ℓ2

→ H defined as

TCΛC′ ({fi}i∈I) =
∑
i∈I

(CC ′)
1
2Λ∗

i (fi), ({fi}i∈I ∈ (
⊕
i∈I

Hi)ℓ2), (2.7)

is called the synthesis operator. The adjoint operator T ∗
CΛC′ : H →

(⊕
i∈I Hi

)
ℓ2

that is obtained as

T ∗
CΛC′(f) =

{
Λi(CC ′)

1
2 f
}
i∈I

, (f ∈ H), (2.8)

is called the analysis operator. Composing TCΛC′ and T ∗
CΛC′ , the operator SCΛC′ : H → H given by

SCΛC′f = TCΛC′T ∗
CΛC′f =

∑
i∈I

(CC ′)
1
2Λ∗

iΛi(CC ′)
1
2 f, (f ∈ H), (2.9)

is called the (C,C ′) -controlled g-Bessel sequence operator. If {Λi}i∈I is a (C,C ′) -controlled K-g-frame, then
SCΛC′ is called the (C,C ′) -controlled K-g-frame operator.

Remark 2.7 Assume that {Λi}i∈I is a (C,C ′)-controlled g-Bessel sequence for H with respect to {Hi : i ∈ I} ,
SΛ : H → H is the g -frame operator

SΛf =
∑
i∈I

Λ∗
iΛif,

and C and C ′ commute with SΛ . Then, the (C,C ′)-controlled g-Bessel sequence operator SCΛC′ can be
represented in the form

SCΛC′f =
∑
i∈I

(CC ′)
1
2Λ∗

iΛi(CC ′)
1
2 f

= (CC ′)
1
2

∑
i∈I

Λ∗
iΛi(CC ′)

1
2 f

= (CC ′)
1
2SΛ(CC ′)

1
2 f

= C ′SΛCf,

for every f ∈ H .

3. Controlled dual K-g-Bessel sequences

As it was mentioned in [23, Lemma 3.3], the frame operator of a controlled g-frame is invertible, but it is not
the case for a controlled K-g-frame. Let us consider the following example.

Example 3.1 Suppose that {en}6n=1 is the canonical orthonormal basis for H = C6 . Let

Hi = span{e3(i−1)+k ; 1 ≤ k ≤ 3}, i = 1, 2.

Now define the linear bounded operators K : H → H , Λi : H → Hi , C : H → H as follows:

Ke1 = e1, Ke2 = e2, Ken = 0, 3 ≤ n ≤ 6,
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Λ1(f) =

3∑
k=1

⟨f, ek⟩ek, Λ2(f) = 0, C = IH.

It is easy to calculate
K∗e1 = e1, K∗e2 = e2, K∗en = 0, 3 ≤ n ≤ 6.

Clearly, {Λi}2i=1 is a IH -controlled K-g-frame, since

∥K∗f∥2 =

∥∥∥∥∥
6∑

n=1

⟨f, en⟩K∗en

∥∥∥∥∥
2

= |⟨f, e1⟩|2 + |⟨f, e2⟩|2.

On the other hand,

2∑
i=1

⟨ΛiIHf,ΛiIHf⟩ =
2∑

i=1

∥ΛiIHf∥2 =

∥∥∥∥∥
3∑

k=1

⟨f, ek⟩ek

∥∥∥∥∥
2

=

3∑
k=1

|⟨f, ek⟩|2 ≥ ∥K∗f∥2.

Thus, for each f ∈ H we have

∥K∗f∥2 ≤
2∑

i=1

∥ΛiIH∥2 ≤ ∥f∥2.

One can show that the associated frame operator is obtained as

S =

(
[I]3×3 03×3

03×3 03×3

)
,

which is not invertible.

Due to this fact, the classical canonical dual for a controlled K-g-frame is absent. This motivates us in this
section, inspired by the idea of [16], to introduce the concept of (C,C ′) -controlled dual K-g-Bessel sequences
of a (C,C ′) -controlled K-g-frame. Moreover, we give some of their characterizations by some operator theory
tools.

Definition 3.2 Suppose that K ∈ B(H) , C,C ′ ∈ GL+(H) and {Λi}i∈I is a (C,C ′)-controlled K-g-frame for
H with respect to {Hi : i ∈ I} . A (C,C ′)-controlled g-Bessel sequence {Γi}i∈I for H with respect to {Hi : i ∈ I}
is said to be a (C,C ′)-controlled dual K-g-Bessel sequence of {Λi}i∈I if

Kf =
∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f, (f ∈ H). (3.1)

From now on, we consider C,C ′ ∈ GL+(H) and C,C ′ and SΛ mutually commute. In [7], we know that the
duals of a frame are necessarily frames, but it is not the case for a controlled K -g-frame. In the next proposition,
we prove that every controlled dual K-g-Bessel sequence is a controlled K∗ -g-frame. Before proceeding, we need
the following lemma which characterizes (C,C ′) -controlled K-g-frames in terms of a range inclusion property.

Lemma 3.3 Suppose that K ∈ B(H) . A sequence {Λi}i∈I is a (C,C ′)-controlled K-g-frame for H with respect
to {Hi : i ∈ I} if and only if R(K) ⊂ R(TCΛC′) .
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Proof Suppose that {Λi}i∈I is a (C,C ′) -controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then, for
every f ∈ H ,

A⟨KK∗f, f⟩ = A∥K∗f∥2 ≤
∑
i∈I

⟨ΛiCf,ΛiC
′f⟩ = ⟨SCΛC′f, f⟩ = ⟨TCΛC′T ∗

CΛC′f, f⟩ .

Using Lemma 2.2, we obtain R(K) ⊂ R(TCΛC′) . The proof of the opposite direction is similar, and thus
omitted. 2

Proposition 3.4 Suppose that K ∈ B(H) . Then every (C,C ′)-controlled dual K-g-Bessel sequence is a
(C,C ′)-controlled K∗ -g-frame for H with respect to {Hi : i ∈ I} .

Proof Suppose that {Γi}i∈I is a (C,C ′) -controlled dual K-g-Bessel sequence of {Λi}i∈I . According to Lemma
3.3, it is enough to show that R(K∗) ⊂ R(TCΓC′) . For every f ∈ H ,

Kf =
∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f = TCΛC′T ∗

CΓC′f.

Hence, K = TCΛC′T ∗
CΓC′ and so K∗ = TCΓC′T ∗

CΛC′ . This shows that R(K∗) ⊂ R(TCΓC′) , as desired. 2

The following proposition shows that a controlled dual K-g-Bessel sequence can naturally generate a new
controlled K-g-frame, provided K has closed range.

Proposition 3.5 Assume that K ∈ B(H) has closed range such that CK = KC and C ′K = KC ′ . Moreover,
let {Λi}i∈I be a (C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} and {Γi}i∈I is a (C,C ′)-
controlled dual K-g-Bessel sequence of {Λi}i∈I . Then {ΓiK

∗}i∈I is a (C,C ′)-controlled K-g-frame for H with
respect to {Hi : i ∈ I} .

Proof For each f ∈ H ,

∥Kf∥2 = sup
∥h∥=1

|⟨Kf, h⟩|2 = sup
∥h∥=1

∣∣∣∣∣
〈∑

i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f, h

〉∣∣∣∣∣
2

= sup
∥h∥=1

∣∣∣∣∣∑
i∈I

〈
Γi(CC ′)

1
2 f,Λi(CC ′)

1
2h
〉∣∣∣∣∣

2

≤ sup
∥h∥=1

∑
i∈I

∥∥∥Γi(CC ′)
1
2 f
∥∥∥2∑

i∈I

∥∥∥Λi(CC ′)
1
2h
∥∥∥2

≤ BΛ

∑
i∈I

∥∥∥Γi(CC ′)
1
2 f
∥∥∥2 .

It follows that for every f ∈ H ,

B−1
Λ ∥Kf∥2 ≤

∑
i∈I

∥∥∥Γi(CC ′)
1
2 f
∥∥∥2 ≤ BΓ∥f∥2,
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and consequently

B−1
Λ ∥KK∗f∥2 ≤

∑
i∈I

∥∥∥Γi(CC ′)
1
2K∗f

∥∥∥2 ≤ BΓ∥K∗f∥2 ≤ BΓ∥K∥2∥f∥2.

By assumption K∗ has closed range. Hence, for each g ∈ R(K∗) , we get g = K∗(K∗)†g = K†Kg . Therefore,

∥g∥2 = ∥K†Kg∥2 ≤ ∥K†∥2∥Kg∥2.

It is concluded that for each f ∈ H ,

B−1
Λ ∥K†∥−2∥K∗f∥2 ≤

∑
i∈I

∥∥∥Γi(CC ′)
1
2K∗f

∥∥∥2 =
∑
i∈I

∥∥∥ΓiK
∗(CC ′)

1
2 f
∥∥∥2 ≤ BΓ∥K∥2∥f∥2,

and the result follows. 2

The following theorem shows that for any controlled K-g-frame there always exists a controlled dual K-g-Bessel
sequence such that they provide a reconstruction formula for any element in the range of K .

Theorem 3.6 Suppose that K ∈ B(H) . Then every (C,C ′)-controlled K-g-frame admits a (C,C ′)-controlled
dual K-g-Bessel sequence.

Proof Let {Λi}i∈I be a (C,C ′) -controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then for every
f ∈ H ,

A⟨KK∗f, f⟩ = A⟨K∗f,K∗f⟩ ≤
∑
i∈I

⟨ΛiCf,ΛiC
′f⟩ = ⟨SCΛC′f, f⟩ = ⟨TCΛC′T ∗

CΛC′f, f⟩.

Hence, KK∗ ≤ A−1TCΛC′T ∗
CΛC′ . Thus, by Lemma 2.2, there exists U ∈ B(H, (

⊕
i∈I Hi)ℓ2) such that

K = TCΛC′U . Suppose that Pn is the projection on (
⊕

i∈I Hi)ℓ2 that maps each element to its n-th component,

i.e. Pn{fi}i∈I = {0, . . . , 0, fn, 0, . . .}i∈I , for each {fi}i∈I ∈ (
⊕

i∈I Hi)ℓ2 . If we set Γi = PiU(CC ′)
−1
2 , for each

i ∈ I , then for every f ∈ H ,∑
i∈I

⟨ΓiCf,ΓiC
′f⟩ =

∑
i∈I

∥∥∥Γi(CC ′)
1
2 f
∥∥∥2 =

∑
i∈I

∥PiUf∥2

=
∑
i∈I

∥(Uf)i∥2

= ∥Uf∥2 ≤ ∥U∥2∥f∥2.

It follows that {Γi}i∈I is a (C,C ′) -controlled g-Bessel sequence for H with respect to {Hi : i ∈ I} . Moreover,

Kf = TCΛC′Uf =
∑
i∈I

(CC ′)
1
2 Λ∗

i (Uf)i

=
∑
i∈I

(CC ′)
1
2Λ∗

iPiUf

=
∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f.
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2

The following proposition shows that for any controlled K -g-frame, there is a unique controlled dual K-g-Bessel
sequence whose synthesis operator obtains the minimal norm of the set of the norms of synthesis operators of
all controlled dual K-g-Bessel sequences of the controlled K-g-frame.

Proposition 3.7 Suppose that K ∈ B(H) . Moreover, let {Λi}i∈I be a (C,C ′)-controlled K-g-frame for H
with respect to {Hi : i ∈ I} .Then, there exists a unique (C,C ′)-controlled dual K-g-Bessel sequence {Γi}i∈I of
{Λi}i∈I such that ∥TCΓC′∥ ≤ ∥TCΘC′∥ for any (C,C ′)-controlled dual K-g-Bessel sequence {Θi}i∈I of {Λi}i∈I .

Proof Since {Λi}i∈I is a (C,C ′) -controlled K-g-frame, so KK∗ ≤ (A−1
Λ )TCΛC′T ∗

CΛC′ . Therefore, by Lemma
2.2, there exists V ∈ B(H, (

⊕
i∈I Hi)ℓ2) such that K = TCΛC′V and ∥V ∥2 = inf

{
µ : ∥K∗f∥2 ≤ µ∥T ∗

CΛC′∥2
}

.

Define Γi = PiV (CC ′)
−1
2 , for every i ∈ I . Then by Theorem 3.6, {Γi}i∈I is a (C,C ′) -controlled dual K-g-Bessel

sequence of {Λi}i∈I . Since PiT
∗
CΓC′f = Γi(CC ′)

1
2 f = PiV f , for any i ∈ I , so T ∗

CΓC′ = V .
Now, let {Θi}i∈I be any (C,C ′) -controlled dual K-g-Bessel sequence of {Λi}i∈I . Therefore, K =

TCΛC′T ∗
CΘC′ and so K∗ = TCΘC′T ∗

CΛC′ . It follows that ∥K∗∥2 ≤ ∥TCΘC′∥2∥TCΛC′∥2 . Consequently,

∥TCΘC′∥2 ≥ ∥V ∥2 = ∥T ∗
CΓC′∥2 = ∥TCΓC′∥2.

2

The (C,C ′) -controlled dual K-g-Bessel sequence satisfying in Proposition 3.7 is called the canonical (C,C ′) -
controlled dual K-g-Bessel sequence.

4. Canonical controlled Dual K-g-Bessel sequences for Parseval frames

In this section, we give the exact form of the canonical (C,C ′) -controlled dual K -g-Bessel sequences for Parseval
(C,C ′) -controlled K -g-frames under the condition that K has closed range. Therefore, throughout this section,
we will assume that R(K) is closed, since this can assure that the pseudo-inverse K† of K exists. Moreover, it
is worth mentioning that if K ∈ B(H) has closed range and C ∈ B(H) is an arbitrary operator which commutes
with K , then C commutes with K† [20].

Proposition 4.1 Assume that K ∈ B(H) , CK = KC and C ′K = KC ′ . Moreover, let {Λi}i∈I be a Parseval
(C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then

{
Λi(K

†)∗
}
i∈I is a (C,C ′)-controlled

dual g-Bessel sequence of {Λi}i∈I .

Proof Obviously,
{
Λi(K

†)∗
}
i∈I is a (C,C ′) -controlled g-Bessel sequence for H , since for every f ∈ H ,

∑
i∈I

〈
Λi(K

†)∗Cf,Λi(K
†)∗C ′f

〉
=
∑
i∈I

〈
ΛiC(K†)∗f,ΛiC

′(K†)∗f
〉

=
∥∥K∗(K†)∗f

∥∥2
≤ ∥K∥2∥K†∥2∥f∥2.
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By Lemma 2.1, for every g ∈ R(K∗) , g = K∗(K∗)†g = K∗ (K†)∗ g . Thus,

Kg = KK∗(K†)∗g =
∑
i∈I

C ′Λ∗
iΛiC

(
K†)∗ g

=
∑
i∈I

C ′Λ∗
iΛi

(
K†)∗ Cg

= C ′SΛ

(
K†)∗ Cg

= (CC ′)
1
2SΛ(CC ′)

1
2

(
K†)∗ g

=
∑
i∈I

(CC ′)
1
2Λ∗

iΛi

(
K†)∗ (CC ′)

1
2 g.

If h ∈ (R(K∗))⊥ = N(K) , so by Lemma 2.1, h ∈ N((K∗)†) = N((K†)∗) . Therefore,∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗(CC ′)

1
2h =

∑
i∈I

(CC ′)
1
2Λ∗

iΛi(CC ′)
1
2 (K†)∗h = 0 = Kh.

Altogether we have

Kf =
∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗(CC ′)

1
2 f, (f ∈ H),

and the proof is complete. 2

Proposition 4.2 Suppose that K ∈ B(H) , CK = KC and C ′K = KC ′ . Moreover, let {Λi}i∈I be a Parseval
(C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then the sequence {Γi ∈ B(H,Hi) : i ∈ I} is
a (C,C ′)-controlled dual g-Bessel sequence of {Λi}i∈I if and only if there exists U ∈ B(H, (

⊕
i∈I Hi)ℓ2) such

that TCΛC′U = 0 and Γi = Λi(K
†)∗ + PiU(CC ′)

−1
2 , for every i ∈ I .

Proof First, assume that {Γi}i∈I is a a (C,C ′) -controlled dual g-Bessel sequence of {Λi}i∈I . Define
U : H → (

⊕
i∈I Hi)ℓ2 as

(Uf)i := Γi(CC ′)
1
2 f − Λi(K

†)∗(CC ′)
1
2 f.

Then U ∈ B
(
H,
(⊕

i∈I Hi

)
ℓ2

)
since for each f ∈ H ,

∥Uf∥ =

∥∥∥∥{Γi(CC ′)
1
2 f − Λi(K

†)∗(CC ′)
1
2 f
}
i∈I

∥∥∥∥
≤
∥∥∥∥{Γi(CC ′)

1
2 f
}
i∈I

∥∥∥∥+ ∥∥∥∥{Λi(K
†)∗(CC ′)

1
2 f
}
i∈I

∥∥∥∥
=

(∑
i∈I

⟨ΓiCf,ΓiC
′f⟩

) 1
2

+

(∑
i∈I

〈
Λi(K

†)∗Cf,Λi(K
†)∗C ′f

〉) 1
2

=

(∑
i∈I

⟨ΓiCf,ΓiC
′f⟩

) 1
2

+

(∑
i∈I

〈
ΛiC(K†)∗f,ΛiC

′(K†)∗f
〉) 1

2

≤
√
BΓ∥f∥+

∥∥K∗(K†)∗f
∥∥

≤
(√

BΓ + ∥K∥∥K†∥
)
∥f∥.
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Clearly Γi = Λi(K
†)∗ + PiU(CC ′)

−1
2 , for every i ∈ I , and

TCΛC′Uf =
∑
i∈I

(CC ′)
1
2Λ∗

i (Uf)i

=
∑
i∈I

(CC ′)
1
2Λ∗

i (Γi(CC ′)
1
2 f − Λi(K

†)∗(CC ′)
1
2 f)

=
∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f −

∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗(CC ′)

1
2 f

= Kf −Kf = 0.

Conversely, {Γi}i∈I =
{
Λi(K

†)∗ + PiU(CC ′)
−1
2

}
i∈I

is a (C,C ′) -controlled g-Bessel sequence for H with respect

to {Hi : i ∈ I} , since for every f ∈ H ,

∑
i∈I

⟨ΓiCf,ΓiC
′f⟩ =

∑
i∈I

∥∥∥Γi(CC ′)
1
2 f
∥∥∥2

=
∑
i∈I

∥∥∥Λi(K
†)∗(CC ′)

1
2 f + PiUf

∥∥∥2
≤
∑
i∈I

∥∥∥Λi(K
†)∗(CC ′)

1
2 f
∥∥∥2 +∑

i∈I

∥PiUf∥2

≤
(
∥K∥2∥K†∥2 + ∥U∥2

)
∥f∥2.

Moreover, for every f ∈ H ,

∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f =

∑
i∈I

(CC ′)
1
2Λ∗

i

(
Λi(K

†)∗ + PiU(CC ′)
−1
2

)
(CC ′)

1
2 f

=
∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗(CC ′)

1
2 f + TCΛC′Uf

= Kf,

and so the result follows. 2

Corollary 4.3 Suppose that K ∈ B(H) , CK = KC and C ′K = KC ′ . Moreover, let {Λi}i∈I be a Parseval
(C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then {Γi}i∈I is a (C,C ′)-controlled dual
K -g-Bessel sequence of {Λi}i∈I if and only if there exists a (C,C ′)-controlled g-Bessel sequence {Θi}i∈I for H

with respect to {Hi : i ∈ I} such that Γi = Λi(K
†)∗ +Θi and

∑
i∈I(CC ′)

1
2Λ∗

iΘi(CC ′)
1
2 f = 0 , for each f ∈ H .

Proof Suppose that {Γi}i∈I is a a (C,C ′) -controlled dual g-Bessel sequence of {Λi}i∈I . Then by Proposition

4.2, there exists U ∈ B(H, (
⊕

i∈I Hi)ℓ2) such that Γi = Λi(K
†)∗ + PiU(CC ′)

−1
2 , for each i ∈ I , and∑

i∈I(CC ′)
1
2Λ∗

i (Uf)i = 0 , for every f ∈ H . Put Θi = PiU(CC ′)
−1
2 , for each i ∈ I . Then, {Θi}i∈I is a
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(C,C ′) -controlled g-Bessel sequence, since

∑
i∈I

⟨ΘiCf,ΘiC
′f⟩ =

∑
i∈I

∥∥∥Θi(CC ′)
1
2 f
∥∥∥2 =

∑
i∈I

∥PiUf∥2

=
∑
i∈I

∥(Uf)i∥2

= ∥Uf∥2 ≤ ∥U∥2∥f∥2.

Furthermore,∑
i∈I

(CC ′)
1
2Λ∗

iΘi(CC ′)
1
2 f =

∑
i∈I

(CC ′)
1
2Λ∗

i

(
Γi − Λi(K

†)∗
)
(CC ′)

1
2 f

=
∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f −

∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗(CC ′)

1
2 f

= Kf −Kf = 0

Conversely, let {Γi}i∈I = {Λi(K
†)∗ + Θi}i∈I , where {Θi}i∈I is a (C,C ′) -controlled g-Bessel sequence {Θi}i∈I

for H with respect to {Hi : i ∈ I} such that

∑
i∈I

(CC ′)
1
2Λ∗

iΘi(CC ′)
1
2 f = 0,

for every f ∈ H . Then∑
i∈I

(CC ′)
1
2Λ∗

iΓi(CC ′)
1
2 f =

∑
i∈I

(CC ′)
1
2Λ∗

i

(
Λi(K

†)∗ +Θi

)
(CC ′)

1
2 f

=
∑
i∈I

(CC ′)
1
2Λ∗

iΛi(K
†)∗f +

∑
i∈I

(CC ′)
1
2Λ∗

iΘi(CC ′)
1
2 f

= Kf,

from which we conclude that {Γi}i∈I is a (C,C ′) -controlled dual K-g-Bessel sequence of {Λi}i∈I . 2

The next result gives the exact form of the canonical (C,C ′) -controlled dual K -g-Bessel sequence of a Parseval
(C,C ′) -controlled K -g-frame.

Proposition 4.4 Suppose that K ∈ B(H) , CK = KC and C ′K = KC ′ . Moreover, let {Λi}i∈I be a Parseval
(C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} . Then

{
Λi(K

†)∗
}
i∈I is the canonical (C,C ′)-

controlled dual K-g-Bessel sequence of {Λi}i∈I .

Proof By Proposition 4.1, Λ̃ =
{
Λi(K

†)∗
}
i∈I is a (C,C ′) -controlled dual K-g-Bessel sequence of {Λi}i∈I .

Thus, it is enough to show that ∥TCΛ̃C′∥ ≤ ∥TCΓC′∥ , for every (C,C ′) -controlled dual K-g-Bessel sequence
{Γi}i∈I . According to Proposition 4.2, there exists U ∈ B(H, (

⊕
i∈I Hi)ℓ2) such that TCΛC′U = 0 and

Γi = Λi(K
†)∗ + PiU(CC ′)

−1
2 , for every i ∈ I . It is easy to check that T ∗

CΓC′ = T ∗
CΛ̃C′ + U . Now, by the
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fact that TCΛ̃C′ = K†TCΛC′ , we have

∥T ∗
CΓC′f∥2 = ⟨T ∗

CΓC′f, T ∗
CΓC′f⟩

=
〈
T ∗
CΛ̃C′f + Uf, T ∗

CΛ̃C′f + Uf
〉

=
∥∥T ∗

CΛ̃C′f
∥∥2 + 〈T ∗

CΛ̃C′f, Uf
〉
+
〈
Uf, T ∗

CΛ̃C′f
〉
+ ∥Uf∥2

= ∥T ∗
CΛ̃C′f∥2 + ∥Uf∥2 ≥ ∥T ∗

CΛ̃C′f∥2.

This completes the proof. 2

It is concluded from Corollary 4.3 and Proposition 4.4 that the difference between a (C,C ′) -controlled dual
K -g-Bessel {Γi}i∈I and the canonical (C,C ′) -controlled dual g-Bessel {Λi(K

†)∗}i∈I of the Parseval (C,C ′) -
controlled K-g-frame {Λi}i∈I can be considered as a (C,C ′) -controlled g-Bessel sequence {Θi}i∈I which
TCΛC′T ∗

CΘC′ = 0 .

Remark 4.5 (1) The canonical (C,C ′)-controlled dual K-g-Bessel sequence of the Parseval (C,C ′)-controlled
K-g-frame {Λi}i∈I , which will be denoted by {Λ̃i}i∈I later, is actually a Parseval (C,C ′)-controlled g-frame on
(N(K))⊥ , since ∑

i∈I

〈
Λi(K

†)∗Cf,Λi(K
†)∗C ′f

〉
=
∑
i∈I

〈
ΛiC(K†)∗f,ΛiC

′(K†)∗f
〉

=
〈
K∗ (K†)∗ f,K∗ (K†)∗ f〉

=
〈(

K†K
)∗

f,
(
K†K

)∗
f
〉

=
∥∥∥(K†K

)∗
f
∥∥∥2

=
∥∥K†Kf

∥∥2
= ∥f∥2,

for every f ∈ (N(K))⊥ = R(K†) .
(2) The canonical (C,C ′)-controlled dual K-g-Bessel sequence of the Parseval (C,C ′)-controlled K-g-

frame {Λi}i∈I is a Parseval (C,C ′)-controlled K†K -g-frame, since∑
i∈I

〈
Λi(K

†)∗Cf,Λi(K
†)∗C ′f

〉
=
∑
i∈I

〈
ΛiC(K†)∗f,ΛiC

′(K†)∗f
〉

=
〈
K∗(K†)∗f,K∗(K†)∗f

〉
=
〈
(K†K)∗f, (K†K)∗f

〉
=
∥∥(K†K)∗f

∥∥2 .
(3) Although the canonical (C,C ′)-controlled dual K-g-Bessel sequence of the Parseval (C,C ′)-controlled

K-g-frame {Λi}i∈I is not a Parseval (C,C ′)-controlled K-g-frame in general, it can generate a new one in the
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form {Λ̃iK
∗}i∈I , because∑

i∈I

〈
Λ̃iK

∗Cf, Λ̃iK
∗C ′f

〉
=
∑
i∈I

〈
Λi

(
K†)∗ K∗Cf,Λi

(
K†)∗ K∗C ′f

〉
=
∑
i∈I

〈
ΛiC

(
KK†)∗ f,ΛiC

′ (KK†)∗ f〉

=
∥∥∥K∗ (KK†)∗ f∥∥∥2

=
∥∥(KK†K)∗f

∥∥2
= ∥K∗f∥2.

Finally, we give a necessary and sufficient condition for a (C,C ′) -controlled dual K-g-Bessel sequence of a
Parseval (C,C ′) -controlled K-g-frame to be the canonical (C,C ′) -controlled dual K-g-Bessel sequence.

Proposition 4.6 Suppose that K ∈ B(H) , CK = KC and C ′K = KC ′ . Moreover, let {Λi}i∈I be a Parseval
(C,C ′)-controlled K-g-frame for H with respect to {Hi : i ∈ I} and {Γi}i∈I be a (C,C ′)-controlled dual K-
g-Bessel sequence of {Λi}i∈I . Then {Γi}i∈I is the canonical (C,C ′)-controlled dual K-g-Bessel sequence of
{Λi}i∈I if and only if TCΓC′T ∗

CΓC′ = TCΓC′T ∗
CΘC′ , for any (C,C ′)-controlled dual K-g-Bessel sequence {Θi}i∈I

of {Λi}i∈I .

Proof First, assume that {Γi}i∈I = {Λ̃i}i∈I is the canonical (C,C ′) -controlled dual K-g-Bessel sequence of
{Λi}i∈I . A direct calculation can show that T ∗

CΓC′ = T ∗
CΛC′(K†)∗ . On the other hand, for every f ∈ H ,

TCΛC′(T ∗
CΛC′ − T ∗

CΘC′)f = TCΛC′T ∗
CΛC′f − TCΛC′T ∗

CΘC′f = Kf −Kf = 0,

where {Θi}i∈I is any (C,C ′) -controlled dual K-g-Bessel sequence {Θi}i∈I of {Λi}i∈I . From these facts, we
obtain, for any f, g ∈ H ,

⟨TCΓC′ (T ∗
CΓC′ − T ∗

CΘC′) f, g⟩ = ⟨(T ∗
CΓC′ − T ∗

CΘC′) f, T ∗
CΓC′g⟩

=
〈
(T ∗

CΓC′ − T ∗
CΘC′) f, T ∗

CΛC′

(
K†)∗ g〉

=
〈
K†TCΛC′ (T ∗

CΓC′ − T ∗
CΘC′) f, g

〉
= 0.

It follows that TCΓC′ (T ∗
CΓC′ − T ∗

CΘC′) = 0 , or equivalently TCΓC′T ∗
CΓC′ = TCΓC′T ∗

CΘC′ .
Conversely, let TCΓC′T ∗

CΓC′ = TCΓC′T ∗
CΘC′ , for any (C,C ′) -controlled dual K-g-Bessel sequence {Θi}i∈I

of {Λi}i∈I . Then
∥T ∗

CΓC′∥2 = ∥TCΓC′T ∗
CΓC′∥ = ∥TCΓC′T ∗

CΘC′∥ ≤ ∥T ∗
CΓC′∥ ∥T ∗

CΘC′∥ ,

which shows that ∥T ∗
CΓC′∥ ≤ ∥T ∗

CΘC′∥ . This implies that {Γi}i∈I is the canonical (C,C ′) -controlled dual
K-g-Bessel sequence of {Λi}i∈I . 2
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