

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2020) 44: 1520 – 1533 © TÜBİTAK doi:10.3906/mat-1911-67

The Meyer function on the handlebody group

Yusuke KUNO¹, Masatoshi SATO^{2,*}

¹Department of Mathematics, Tsuda University, Tokyo, Japan ²Department of Mathematics, Tokyo Denki University, Tokyo, Japan

Received: 20.11.2019 • Accepted/Published Online: 29.04.2020 • Final Version: 21.09.2020

Abstract: We give an explicit formula for the signature of handlebody bundles over the circle in terms of the homological monodromy. This gives a cobounding function of Meyer's signature cocycle on the mapping class group of a 3-dimensional handlebody, i.e. the handlebody group. As an application, we give a topological interpretation for the generator of the first cohomology group of the hyperelliptic handlebody group.

Key words: Signature cocycle, handlebody group, mapping class groups

1. Introduction

Let Σ_g be a closed connected oriented surface of genus g and $\operatorname{Mod}(\Sigma_g)$ the mapping class group of Σ_g , namely the group of isotopy classes of orientation-preserving self-diffeomorphisms of Σ_g . Unless otherwise stated, we assume that (co)homology groups have coefficients in \mathbb{Z} . The second cohomology of $\operatorname{Mod}(\Sigma_g)$ has been determined for all $g \geq 1$ by works of many people, in particular by the seminal work of Harer [6, 7] for $g \geq 3$. We have $H^2(\operatorname{Mod}(\Sigma_1)) \cong \mathbb{Z}/12\mathbb{Z}$, $H^2(\operatorname{Mod}(\Sigma_2)) \cong \mathbb{Z}/10\mathbb{Z}$, and

$$H^2(\operatorname{Mod}(\Sigma_g)) \cong \mathbb{Z} \text{ for } g \geq 3.$$

There are various interesting constructions of nontrivial second cohomology class of $\operatorname{Mod}(\Sigma_g)$; the reader is referred to the survey article [13]. Among others, the remarkable approach of Meyer [16, 17] was to consider the signature of Σ_g -bundles over surfaces. The central object that Meyer used was a normalized 2-cocycle

$$\tau_q \colon \operatorname{Sp}(2g; \mathbb{Z}) \times \operatorname{Sp}(2g; \mathbb{Z}) \to \mathbb{Z}$$

on the integral symplectic group of degree 2g.

Meyer showed that for $g \geq 3$ the pullback of the cohomology class of τ_g by the homology representation $\rho \colon \operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}(2g; \mathbb{Z})$ is of infinite order in $H^2(\operatorname{Mod}(\Sigma_g))$. On the other hand, if g = 1, 2 then $[\rho^* \tau_g]$ is torsion and there exists a (unique) rational valued cobounding function $\phi_g \colon \operatorname{Mod}(\Sigma_g) \to \mathbb{Q}$ of $\rho^* \tau_g$. This means that

$$\tau_q(\rho(\varphi_1), \rho(\varphi_2)) = \phi_q(\varphi_1) + \phi_q(\varphi_2) - \phi_q(\varphi_1\varphi_2)$$
 for any $\varphi_1, \varphi_2 \in \operatorname{Mod}(\Sigma_q)$.

Since the case g = 1 was extensively studied by Meyer, such a cobounding function is called a Meyer function. Some number-theoretic and differential geometric aspects of the function ϕ_1 were studied by Atiyah [2]. The

^{*}Correspondence: msato@mail.dendai.ac.jp 2010 AMS Mathematics Subject Classification: 20F38, 55R10, 57N13, 57R20

case g=2 was studied by Matsumoto [15], Morifuji [18], and Iida [11]. For $g\geq 3$, there is no cobounding function of $\rho^*\tau_g$ on the whole mapping class group $\operatorname{Mod}(\Sigma_g)$. However, if we restrict $\rho^*\tau_g$ to a subgroup called the hyperelliptic mapping class group $\mathcal{H}(\Sigma_g)$, then it is known that there is a (unique) cobounding function $\phi_g^{\mathcal{H}}: \mathcal{H}(\Sigma_g) \to \mathbb{Q}$ of $\rho^*\tau_g$. Note that $\mathcal{H}(\Sigma_g) = \operatorname{Mod}(\Sigma_g)$ for g=1,2. This function $\phi_g^{\mathcal{H}}$ was studied by Endo [4] and Morifuji [18]. One motivation for studying Meyer functions comes from the localization phenomenon of the signature of fibered 4-manifolds. See, e.g., [1, 14].

In this paper, we study a new example of Meyer functions: the Meyer function on the handlebody group. The handlebody group of genus g, which we denote by $\operatorname{Mod}(V_g)$, is defined as the group of isotopy classes of orientation-preserving self-diffeomorphisms of the 3-dimensional handlebody V_g of genus g. It is well known that the natural homomorphism $\operatorname{Mod}(V_g) \to \operatorname{Mod}(\Sigma_g), \varphi \mapsto \varphi|_{\Sigma_g}$ is injective since V_g is an irreducible 3-manifold. Therefore, we can think of $\operatorname{Mod}(V_g)$ as a subgroup of $\operatorname{Mod}(\Sigma_g)$. For a mapping class $\varphi \in \operatorname{Mod}(V_g)$, we denote by M_{φ} the mapping torus of φ . It is a compact oriented 4-manifold. We define

$$\phi_q^V(\varphi) := \operatorname{Sign} M_{\varphi} \in \mathbb{Z}.$$

We show in Lemma 4.2 that ϕ_g^V is a cobounding function of the cocycle $\rho^*\tau_g$ on the handlebody group $\operatorname{Mod}(V_g)$. If $g \geq 3$, this is the unique cobounding function since $H_1(\operatorname{Mod}(V_g))$ is torsion (see [21, Theorem 20] and [12, Remark 3.5]).

The value $\phi_g^V(\varphi)$ can be computed from the action of φ on the first homology $H_1(\Sigma_g)$, and our first result gives its explicit description. To state it, we take a suitable basis of $H_1(\Sigma_g)$ so that the homology representation ρ restricted to $\operatorname{Mod}(V_g)$ takes values in a subgroup $\operatorname{urSp}(2g;\mathbb{Z}) \subset \operatorname{Sp}(2g;\mathbb{Z})$. (See Section 2.3 for details.) Then, $\rho(\varphi)$ is of the form $\rho(\varphi) = \begin{pmatrix} P & Q \\ O_g & S \end{pmatrix}$, where P, Q, and S are $g \times g$ matrices. We consider a \mathbb{Q} -linear space $U_{\varphi} := \operatorname{Ker}(S - I_g) \subset \mathbb{Q}^g$, and define a bilinear form $\langle \ , \ \rangle_{\varphi}$ on it by

$$\langle x, y \rangle_{\varphi} := {}^t x {}^t Q y, \text{ for } x, y \in U_{\varphi}.$$

It turns out that $\langle \ , \ \rangle_{\varphi}$ is symmetric, and we have the following:

Theorem 1.1 The value $\phi_q^V(\varphi)$ coincides with the signature of the symmetric bilinear form $\langle \ , \ \rangle_{\varphi}$ on U_{φ} .

In fact, we will show in Section 3.5 that the intersection form on $H_2(M_{\varphi})$ is equivalent to the bilinear form $\langle , \rangle_{\varphi}$.

As a corollary, we see that the function ϕ_g^V is bounded by $g = \operatorname{rank} H_1(V_g)$. We also give sample calculations of ϕ_g^V in Lemmas 4.4 and 4.5. Walker also constructed a function $j \colon \operatorname{Mod}(\Sigma_g) \to \mathbb{Q}$ whose restriction to $\operatorname{Mod}(V_g)$ coincides with ϕ_g^V . Our description of ϕ_g^V in Theorem 1.1 is similar to but different from a description of j given by Gilmer and Masbaum [5, Proposition 6.9]. See, for details, Remark 3.6.

As an application of the function ϕ_g^V , we obtain a nontrivial first cohomology class in the intersection $\mathcal{H}(\Sigma_g) \cap \operatorname{Mod}(V_g)$ called the hyperelliptic handlebody group, denoted by $\mathcal{H}(V_g)$. The group $\mathcal{H}(V_g)$ is an extension by $\mathbb{Z}/2\mathbb{Z}$ of a subgroup of the mapping class group of a 2-sphere with (2g+2)-punctures, called the Hilden group. The Hilden group was introduced in [8], and it is related to the study of links in 3-manifolds. In

[10], Hirose and Kin studied the minimal dilatation of pseudo-Anosov elements in $\mathcal{H}(V_g)$, and gave a presentation of $\mathcal{H}(V_g)$.

We consider the difference

$$\phi_q^{\mathcal{H}} - \phi_q^V \in \operatorname{Hom}(\mathcal{H}(V_g), \mathbb{Q}) = H^1(\mathcal{H}(V_g); \mathbb{Q})$$

of the Meyer functions on $\mathcal{H}(\Sigma_g)$ and on $\operatorname{Mod}(V_g)$. From the abelianization of $\mathcal{H}(V_g)$ obtained in [10, Corollary A.9], we see that the rank of $H^1(\mathcal{H}(V_g))$ is one. Let us denote a generator of $H^1(\mathcal{H}(V_g))$ by μ . Our second result is:

Theorem 1.2 Let $g \ge 1$. We have

$$\phi_g^{\mathcal{H}} - \phi_g^V = \begin{cases} \frac{2}{2g+1}\mu & \text{if } g \text{ is even,} \\ \frac{1}{2g+1}\mu & \text{if } g \text{ is odd.} \end{cases}$$

When g = 1, 2, we have $\mathcal{H}(V_g) = \text{Mod}(V_g)$, and $\phi_g^{\mathcal{H}} - \phi_g^{\mathcal{V}}$ gives an abelian quotient of $\text{Mod}(V_g)$.

There is an interpretation of the cohomology class $\phi_g^{\mathcal{H}} - \phi_g^V$ in terms of a kind of connecting homomorphism. We assume that $g \geq 3$. From the diagram

$$\mathcal{H}(V_g) \xrightarrow{i_2} \operatorname{Mod}(V_g)$$

$$\downarrow^{i_1} \qquad \qquad \downarrow^{j_2}$$

$$\mathcal{H}(\Sigma_g) \xrightarrow{j_1} \operatorname{Mod}(\Sigma_g).$$

of groups and their inclusions, we have a natural homomorphism

$$\Upsilon \colon H^2(\operatorname{Mod}(\Sigma_g); \mathbb{Q}) \to H^1(\mathcal{H}(V_g); \mathbb{Q})$$

defined as follows. For $[c] \in H^2(\operatorname{Mod}(\Sigma_g); \mathbb{Q})$, there are cobounding functions $f^{\mathcal{H}} \colon \mathcal{H}(\Sigma_g) \to \mathbb{Q}$ of j_1^*c and $f^V \colon \operatorname{Mod}(V_g) \to \mathbb{Q}$ of j_2^*c , respectively. The cochain $i_1^*f^{\mathcal{H}} - i_2^*f^V$ is actually a homomorphism on $\mathcal{H}(V_g)$. It does not depend on the choices of the representatives c, $f^{\mathcal{H}}$, and f^V since $H^1(\operatorname{Mod}(V_g); \mathbb{Q}) = H^1(\mathcal{H}(\Sigma_g); \mathbb{Q}) = 0$ when $g \geq 3$. Then $\Upsilon([c])$ is defined to be $i_1^*f^{\mathcal{H}} - i_2^*f^V$. In this setting, our cohomology class is written as $\Upsilon([\tau_g]) = \phi_g^{\mathcal{H}} - \phi_g^V \in H^1(\mathcal{H}(V_g); \mathbb{Q})$.

The outline of this paper is as follows. In Section 2, we review the definition of Meyer's signature cocycle and the handlebody group $\operatorname{Mod}(V_g)$. We also review the abelianization of the hyperelliptic handlebody group obtained in [10], and describe a generator of the cohomology group $H^1(\mathcal{H}(V_g))$ in Corollary 2.6. In Section 3, we investigate the intersection form of the mapping torus of $\varphi \in \operatorname{Mod}(V_g)$, and prove Theorem 1.1. As it turns out, we can explicitly describe ϕ_g^V as a function on a subgroup $\operatorname{urSp}(2g;\mathbb{Z})$ of the integral symplectic group. In Section 4, we prove Theorem 1.2 by using explicit calculations of the Meyer function $\phi_g^V \colon \operatorname{Mod}(V_g) \to \mathbb{Z}$ in Lemmas 4.4 and 4.5.

2. Preliminaries on mapping class groups

Fix a nonnegative integer g.

2.1. Mapping class group of a surface

Let Σ_g be a closed connected oriented surface of genus g. The mapping class group of Σ_g , denoted by $\operatorname{Mod}(\Sigma_g)$, is the group of isotopy classes of orientation-preserving self-diffeomorphisms of Σ_g . To simplify notation, we will use the same letter for a self-diffeomorphism of Σ_g and its isotopy class.

The first homology group $H_1(\Sigma_g)$ is equipped with a nondegenerate skew-symmetric pairing $\langle \cdot, \cdot \rangle$, namely the intersection form. Thus, we can take a symplectic basis $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g$ for $H_1(\Sigma_g)$. This means that $\langle \alpha_i, \beta_j \rangle = \delta_{ij}$ and $\langle \alpha_i, \alpha_j \rangle = \langle \beta_i, \beta_j \rangle = 0$ for any $i, j \in \{1, \ldots, g\}$, where δ_{ij} is the Kronecker symbol.

Once a symplectic basis for $H_1(\Sigma_q)$ is fixed, we obtain the homology representation

$$\rho \colon \operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}(2g; \mathbb{Z}), \quad \varphi \mapsto \varphi_*.$$

Here, the target is the integral symplectic group

$$\operatorname{Sp}(2g; \mathbb{Z}) = \{ A \in \operatorname{GL}(2g; \mathbb{Z}) \mid {}^{t}AJA = J \},$$

where $J = \begin{pmatrix} O_g & I_g \\ -I_g & O_g \end{pmatrix}$, and $\rho(\varphi) = \varphi_*$ is the matrix presentation of the action of φ on $H_1(\Sigma_g)$ with respect to the fixed symplectic basis. We use block matrices to denote elements in $\operatorname{Sp}(2g;\mathbb{Z})$, e.g., $A = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ with $g \times g$ integral matrices $P,\ Q,\ R$, and S.

2.2. Meyer's signature cocycle

Let $A, B \in \operatorname{Sp}(2g; \mathbb{Z})$. We consider an \mathbb{R} -linear space

$$V_{A,B} := \{(x,y) \in \mathbb{R}^{2g} \oplus \mathbb{R}^{2g} \mid (A^{-1} - I_{2g})x + (B - I_{2g})y = 0\}$$

and a bilinear form on $V_{A,B}$ given by

$$\langle (x,y),(x',y')\rangle_{A,B} := {}^t(x+y)J(I_{2q}-B)y'.$$

The form $\langle \cdot, \cdot \rangle_{A,B}$ turns out to be symmetric, and thus its signature is defined; we set

$$\tau_q(A, B) := \operatorname{Sign}(V_{A,B}, \langle \cdot, \cdot \rangle_{A,B}).$$

The map $\tau_g \colon \operatorname{Sp}(2g; \mathbb{Z}) \times \operatorname{Sp}(2g; \mathbb{Z}) \to \mathbb{Z}$ is called *Meyer's signature cocycle* [16, 17]. It is a normalized 2-cocycle of the group $\operatorname{Sp}(2g; \mathbb{Z})$.

Let P be a compact oriented surface of genus 0 with three boundary components, i.e. a pair of pants. We denote by C_1 , C_2 , and C_3 the boundary components of P. Choose a base point in P, and let ℓ_1 , ℓ_2 , and ℓ_3 be based loops in P such that ℓ_i is parallel to the negatively oriented boundary component C_i for any $i \in \{1, 2, 3\}$ and $\ell_1 \ell_2 \ell_3 = 1$ holds in the fundamental group $\pi_1(P)$.

For given two mapping classes $\varphi_1, \varphi_2 \in \operatorname{Mod}(\Sigma_g)$, there is an oriented Σ_g -bundle $E(\varphi_1, \varphi_2) \to P$ such that the monodromy along ℓ_i is φ_i for i = 1, 2. It is unique up to bundle isomorphisms. The total space $E(\varphi_1, \varphi_2)$ is a compact 4-manifold equipped with a natural orientation; hence, its signature is defined.

Proposition 2.1 (Meyer [16, 17]) $\operatorname{Sign}(E(\varphi_1, \varphi_2)) = \tau_q(\rho(\varphi_1), \rho(\varphi_2))$.

Remark 2.2 Turaev [20] independently found the signature cocycle. He also studied its relation to the Maslov index.

2.3. Handlebody group

Let V_g be a handlebody of genus g. That is, V_g is obtained by attaching g one-handles to the 3-ball D^3 . We identify Σ_g and the boundary of V_g by choosing an orientation-preserving diffeomorphism between them. We have the following short exact sequence

$$0 \longrightarrow H_2(V_q, \Sigma_q) \xrightarrow{\partial_*} H_1(\Sigma_q) \xrightarrow{i_*} H_1(V_q) \longrightarrow 0$$
 (2.1)

which is a part of the homology exact sequence of the pair (V_g, Σ_g) . There are properly embedded, oriented and pairwise disjoint disks D_1, \ldots, D_g in V_g whose homology classes (denoted by the same letters) constitute a basis for $H_2(V_g, \Sigma_g)$. We set $\alpha_i := \partial_*(D_i) \in H_1(\Sigma_g)$ for $i \in \{1, \ldots, g\}$. Then α_i 's extend to a symplectic basis $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g$ for $H_1(\Sigma_g)$. In what follows, we fix a symplectic basis obtained in this way. The image of the homology classes β_1, \ldots, β_g by the map i_* constitute a basis for $H_1(V_g)$. For simplicity, we denote them by the same letters β_1, \ldots, β_g .

We denote by $\operatorname{Mod}(V_g)$ the handlebody group of genus g. It can be considered a subgroup of $\operatorname{Mod}(\Sigma_g)$. For any $\varphi \in \operatorname{Mod}(V_g)$, the matrix $\rho(\varphi)$ lies in the subgroup of $\operatorname{Sp}(2g;\mathbb{Z})$ defined by

$$\mathrm{urSp}(2g;\mathbb{Z}) := \left\{ A \in \mathrm{Sp}(2g;\mathbb{Z}) \mid A = \begin{pmatrix} P & Q \\ O_g & S \end{pmatrix} \right\},\,$$

cf. [3, 9] for details. The matrices P, Q, and S satisfy the following relations:

$${}^{t}PS = I_{q}, \quad {}^{t}QS = {}^{t}SQ. \tag{2.2}$$

Remark 2.3 The group $\operatorname{Mod}(V_g)$ acts naturally on the groups in (2.1), and the maps ∂_* and i_* are $\operatorname{Mod}(V_g)$ module homomorphisms. The matrix presentation of the action φ_* on $H_1(V_g)$ is S.

2.4. Hyperelliptic handlebody group

An involution of Σ_g is called *hyperelliptic* if it acts on $H_1(\Sigma_g)$ as $-\operatorname{id}$. We fix an hyperelliptic involution ι which extends to an involution of V_g , as in Figure 1.

Figure 1. The involution ι of V_g and the curves C_1 , C_2 , C_3 .

The hyperelliptic mapping class group $\mathcal{H}(\Sigma_g)$ is the centralizer of ι in $\mathrm{Mod}(\Sigma_g)$:

$$\mathcal{H}(\Sigma_g) := \{ \varphi \in \operatorname{Mod}(\Sigma_g) \mid \varphi \iota = \iota \varphi \}.$$

Definition 2.4 ([10]) The hyperelliptic handlebody group $\mathcal{H}(V_q)$ is defined by

$$\mathcal{H}(V_g) := \mathcal{H}(\Sigma_g) \cap \operatorname{Mod}(V_g).$$

Hirose and Kin [10, Appendix A] gave a finite presentation of the group $\mathcal{H}(V_g)$. Moreover, they determined the abelianization of $\mathcal{H}(V_g)$ as

$$\mathcal{H}(V_g)^{\text{abel}} \cong \mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \quad \text{for } g \geq 2.$$

In fact, using their presentation, it is easy to make this result more explicit. Let C_1 , C_2 , and C_3 be simple closed curves on Σ_g as in Figure 1. For each $i \in \{1, 2, 3\}$ denote by t_i the right handed Dehn twist along C_i . Following [10], set $r_1 = t_2^{-1}t_3^{-1}t_1t_2$ and $s_1 = t_2t_3t_1t_2$. (Note that in [10], t_C denotes the left handed Dehn twist along C.)

Lemma 2.5 When g = 1, one has $\mathcal{H}(V_1) \cong \mathbb{Z}[t_1s_1] \oplus \mathbb{Z}_2[t_1^2s_1]$. If $g \geq 2$, then

$$\mathcal{H}(V_g)^{\text{abel}} \cong \begin{cases} \mathbb{Z}\left[s_1\right] \oplus \mathbb{Z}_2\left[t_1 s_1^{\frac{g}{2}}\right] \oplus \mathbb{Z}_2\left[r_1\right] & \textit{if } g \textit{ is even}, \\ \mathbb{Z}\left[t_1 s_1^{\frac{g+1}{2}}\right] \oplus \mathbb{Z}_2\left[t_1^2 s_1^g\right] \oplus \mathbb{Z}_2\left[r_1\right] & \textit{if } g \textit{ is odd}. \end{cases}$$

Here, $[s_1]$ is the class of s_1 in $\mathcal{H}(V_g)^{\mathrm{abel}}$, and $\mathbb{Z}[s_1]$ is the infinite cyclic group generated by $[s_1]$, etc.

Proof The case g = 1 follows from the fact that $\mathcal{H}(V_1) \cong \operatorname{Mod}(V_1)$ and a result of Wajnryb [21, Theorem 14].

Assume that $g \geq 2$. Using [10, Theorem A.8], one sees that $\mathcal{H}(V_g)^{\text{abel}}$ is generated by $[r_1]$, $[s_1]$, and $[t_1]$ with the relations

$$2[r_1] = 0$$
, $4[t_1] + 2g[s_1] = 0$, $2(g+1)[t_1] + g(g+1)[s_1] = 0$.

The assertion follows from these relations by a direct computation.

The following corollary to Lemma 2.5 will be used in Section 4.4 to prove Theorem 1.2.

Corollary 2.6 Let $g \ge 1$. There is a unique homomorphism $\mu \colon \mathcal{H}(V_g) \to \mathbb{Z}$ satisfying the following property:

- (1) If g is even, $\mu(s_1) = 1$ and $\mu(t_1) = -g/2$;
- (2) If g is odd, $\mu(t_1) = -g$, $\mu(s_1) = 2$, and thus $\mu(t_1 s_1^{\frac{g+1}{2}}) = 1$.

Moreover, the first cohomology group $H^1(\mathcal{H}(V_q)) = \operatorname{Hom}(\mathcal{H}(V_q), \mathbb{Z})$ is an infinite cyclic group generated by μ .

3. Handlebody bundles over S^1

3.1. Mapping torus

Let I = [0,1] be the unit interval. By identifying the endpoints of I, we obtain the circle $S^1 = [0,1]/0 \sim 1$. Let $\ell: I \to S^1$ be the natural projection. For $t \in I$, we set $[t] := \ell(t)$. Choose [0] as a base point of S^1 . Then the fundamental group $\pi_1(S^1)$ is an infinite cyclic group generated by the homotopy class of ℓ .

In what follows, we use the following cell decomposition of S^1 : the 0-cell is $e^0 = [0]$ and the 1-cell is $e^1 = S^1 \setminus e^0$. The map ℓ induces an orientation of e^1 .

Let $\varphi \in \operatorname{Mod}(V_q)$. The mapping torus of φ is the quotient space

$$M_{\varphi} := (I \times V_q)/(0, x) \sim (1, \varphi(x)).$$

For $(t,x) \in I \times V_g$, its class in M_{φ} is denoted by [t,x]. The natural projection $\pi \colon M_{\varphi} \to S^1, [t,x] \mapsto [t]$ is an oriented V_g -bundle, and the total space M_{φ} is a compact 4-manifold with boundary equipped with a natural orientation. The pullback of $M_{\varphi} \to S^1$ by ℓ is a trivial V_g -bundle over I, and its trivialization is given by the map

$$\Phi \colon I \times V_g \to M_{\varphi}, \quad (t, x) \mapsto [t, x].$$
 (3.1)

The following composition of maps coincides with φ :

$$V_q \overset{0 \times \mathrm{id}}{\cong} \{0\} \times V_q \overset{\Phi(0,\cdot)}{\longrightarrow} \pi^{-1}([0]) = \pi^{-1}([1]) \overset{\Phi(1,\cdot)^{-1}}{\longrightarrow} \{1\} \times V_q \overset{1 \times \mathrm{id}}{\cong} V_q.$$

Therefore, the monodromy of $M_{\varphi} \to S^1$ along ℓ is equal to the mapping class φ . As was mentioned in Remark 2.3, the groups $H_2(V_g, \Sigma_g)$, $H_1(\Sigma_g)$, and $H_1(V_g)$ are $\operatorname{Mod}(V_g)$ -modules. Thus, these groups become $\pi_1(S^1)$ -modules; the homotopy class of ℓ , which is a generator of $\pi_1(S^1)$, acts as the monodromy $\varphi \in \operatorname{Mod}(V_g)$.

3.2. Second homology of the mapping torus

For a nonnegative integer $q \geq 0$, let $\mathscr{H}_q(V_g)$ be the local system on S^1 which comes from the V_g -bundle $\pi \colon M_\varphi \to S^1$, and whose fiber at $x \in S^1$ is the q-th homology group $H_q(\pi^{-1}(x))$. Similarly, we consider the local system $\mathscr{H}_q(V_g, \Sigma_g)$ whose fiber at $x \in S^1$ is the q-th relative homology group $H_q(\pi^{-1}(x), \partial \pi^{-1}(x))$.

Consider the Serre homology spectral sequence of the V_g -bundle $M_{\varphi} \to S^1$. It degenerates at the E^2 page, which is given by $E_{p,q}^2 = H_p(S^1; \mathcal{H}_q(V_g))$. Since $H_2(V_g) = 0$ and the base space S^1 is 1-dimensional, we obtain

$$H_2(M_{\varphi}) \cong E_{1,1}^{\infty} \cong E_{1,1}^2 = H_1(S^1; \mathscr{H}_1(V_g)).$$

Moreover, using the cellular homology of S^1 with coefficients in $\mathcal{H}_1(V_q)$, we have

$$H_1(S^1; \mathscr{H}_1(V_g)) \cong \operatorname{Ker}(\partial \colon C_1(S^1; \mathscr{H}_1(V_g)) \to C_0(S^1; \mathscr{H}_1(V_g)))$$
$$= \operatorname{Ker}(\partial \colon \mathbb{Z}e^1 \otimes H_1(V_g) \to \mathbb{Z}e^0 \otimes H_1(V_g) = H_1(V_g)),$$

where the boundary map is given by

$$\partial(e^1\otimes\alpha)=\ell_*(\alpha)-\alpha=(\Phi(0,\cdot)^{-1}\circ\Phi(1,\cdot))_*(\alpha)-\alpha=\varphi_*^{-1}(\alpha)-\alpha.$$

In summary, we have proved the following lemma. In the statement, $H_1(V_g)^{\pi_1(S^1)}$ is the space of invariants under the action of $\pi_1(S^1)$, i.e., $H_1(V_g)^{\pi_1(S^1)} = \{\alpha \in H_1(V_g) \mid \varphi_*(\alpha) = \alpha\}$.

Lemma 3.1 We have $H_2(M_{\varphi}) \cong H_1(S^1; \mathscr{H}_1(V_g)) \cong H_1(V_g)^{\pi_1(S^1)}$.

Similarly, for the relative homology of the pair $(M_{\varphi}, \partial M_{\varphi})$, there is a spectral sequence converging to $H_*(M_{\varphi}, \partial M_{\varphi})$ such that $E_{p,q}^2 = H_p(S^1; \mathscr{H}_q(V_g, \Sigma_g))$. This degenerates at the E^2 page, too. Since $H_1(V_g, \Sigma_g) = 0$, we obtain

$$H_2(M_{\varphi}, \partial M_{\varphi}) \cong E_{0,2}^{\infty} \cong E_{0,2}^2 = H_0(S^1; \mathcal{H}_2(V_q, \Sigma_q)).$$

By the same argument as above, we obtain the following lemma. In the statement, $H_2(V_g, \Sigma_g)_{\pi_1(S^1)}$ is the space of coinvariants under the action of $\pi_1(S^1)$, i.e. the quotient of $H_2(V_g, \Sigma_g)$ by the subgroup generated by the set $\{\varphi_*(\delta) - \delta \mid \delta \in H_2(V_g, \Sigma_g)\}$.

Lemma 3.2 We have $H_2(M_{\varphi}, \partial M_{\varphi}) \cong H_0(S^1; \mathscr{H}_2(V_q, \Sigma_q)) \cong H_2(V_q, \Sigma_q)_{\pi_1(S^1)}$.

3.3. Description of the inclusion homomorphism

Recall that the short exact sequence (2.1) is $\operatorname{Mod}(V_g)$ -equivariant. Let $\alpha \in H_1(V_g)^{\pi_1(S^1)}$ be a φ_* -invariant homology class. Pick an element $\tilde{\alpha} \in H_1(\Sigma_g)$ such that $i_*(\tilde{\alpha}) = \alpha$. Then $\varphi_*(\tilde{\alpha}) - \tilde{\alpha} \in \operatorname{Ker}(i_*) = \operatorname{Im}(\partial_*)$.

Definition 3.3
$$d(\alpha) := [\partial_*^{-1}(\varphi_*(\tilde{\alpha}) - \tilde{\alpha})] \in H_2(V_g, \Sigma_g)_{\pi_1(S^1)}$$
.

It is easy to see that $d(\alpha)$ is independent of the choice of $\tilde{\alpha}$. Thus, we obtain a well-defined map $d: H_1(V_g)^{\pi_1(S^1)} \to H_2(V_g, \Sigma_g)_{\pi_1(S^1)}$.

Proposition 3.4 The following diagram is commutative:

$$\begin{array}{ccc} H_1(V_g)^{\pi_1(S^1)} & \stackrel{d}{\longrightarrow} H_2(V_g, \Sigma_g)_{\pi_1(S^1)} \\ & & & & & \\ \cong & & & & \\ H_2(M_\varphi) & \stackrel{i_*}{\longrightarrow} H_2(M_\varphi, \partial M_\varphi), \end{array}$$

where the bottom horizontal arrow is the inclusion homomorphism, and the vertical arrows are the isomorphisms in Lemmas 3.1 and 3.2.

3.4. Proof of Proposition 3.4

In this section, for a topological space X, we denote by $S_n(X)$ and $Z_n(X)$ the groups of singular n-chains and singular n-cycles, respectively.

Let $\alpha \in H_1(V_g)^{\pi_1(S^1)}$. Pick its lift $\tilde{\alpha} \in H_1(\Sigma_g)$ such that $i_*(\tilde{\alpha}) = \alpha$. Take a singular 1-cycle $\tilde{a} \in Z_1(\Sigma_g)$ representing the homology class $\tilde{\alpha}$. Then, $\varphi_{\sharp}^{-1}(\tilde{a}) - \tilde{a}$ is a singular 1-boundary in V_g since $\varphi_*^{-1}(\tilde{\alpha}) - \tilde{\alpha} \in \operatorname{Ker}(i_*)$. Therefore, there exists $\sigma_{\varphi,\alpha} \in S_2(V_g)$ such that $\partial \sigma_{\varphi,\alpha} = \varphi_{\sharp}^{-1}(\tilde{a}) - \tilde{a}$.

First we compute the composition of d and the right vertical map. We claim that $d(\alpha)$ is represented by the relative 2-cycle $-\sigma_{\varphi,\alpha} \in Z_2(V_g, \Sigma_g)$. This follows from the equality $\varphi_*(\tilde{\alpha}) - \tilde{\alpha} = -(\varphi_*^{-1}(\tilde{\alpha}) - \tilde{\alpha})$ in $H_1(\Sigma_g)_{\pi_1(S^1)}$ and the relation $\partial \sigma_{\varphi,\alpha} = \varphi_{\sharp}^{-1}(\tilde{a}) - \tilde{a}$. Hence, the right vertical map sends $d(\alpha)$ to the homology class represented by the relative 2-cycle $-e^0 \times \sigma_{\varphi,\alpha} \in Z_2(M_{\varphi}, \partial M_{\varphi})$, where the symbol \times means the cross product.

Next we compute the composition of the left vertical map and i_* . For this purpose, we set

$$\mathcal{Z}_{\alpha} := \Phi_{\sharp}(I \times \tilde{a}) - e^{0} \times \sigma_{\varphi,\alpha} \in S_{2}(M_{\varphi}).$$

Here, Φ is the map defined in (3.1), and the unit interval is regarded as a singular 1-chain in the obvious way. Actually, \mathcal{Z}_{α} is a 2-cycle in M_{φ} .

Lemma 3.5 The isomorphism in Lemma 3.1 sends α to the homology class of \mathcal{Z}_{α} .

Proof We need to inspect the spectral sequence involved in Lemma 3.1. For simplicity we denote $M = M_{\varphi}$, and for every nonnegative integer $q \geq 0$ let $M^{(q)}$ be the inverse image of the q-skeleton of S^1 by the projection map π . Thus, we have $\emptyset \subset M^{(0)} = \pi^{-1}([0]) \subset M^{(1)} = M$. Accordingly, the singular chain complex $S_*(M)$ has an increasing filtration: $\{0\} \subset S_*(M^{(0)}) \subset S_*(M^{(1)}) = S_*(M)$. The associated spectral sequence is the one that we consider.

Now let $\alpha \in H_1(V_q)^{\pi_1(S^1)}$. There is an isomorphism

$$E_{1,1}^2 = H_1(S^1; \mathcal{H}_1(V_q)) \cong \text{Ker}(\partial_*: H_2(M, M^{(0)}) \to H_1(M^{(0)})),$$

under which the homology class $[e^1 \otimes \alpha]$ is mapped to the homology class of the relative 2-cycle $\Phi_{\sharp}(I \times \tilde{a})$. However, since $e^0 \times \sigma_{\varphi,\alpha} \in S_2(M^{(0)})$, it holds that

$$[\Phi_{\sharp}(I \times \tilde{a})] = [\Phi_{\sharp}(I \times \tilde{a}) - e^0 \times \sigma_{\varphi,\alpha}] = [\mathcal{Z}_{\alpha}] \in H_2(M, M^{(0)}).$$

Thus, the homology class under consideration is now represented by a $genuine\ 2$ -cycle in M. Finally, we observe that the natural map

$$H_2(M) \cong E_{1,1}^{\infty} \stackrel{\cong}{\longrightarrow} E_{1,1}^2 \subset H_2(M, M^{(0)})$$

coincides with the inclusion homomorphism. This completes the proof.

By Lemma 3.5, it is enough to compute $i_*([\mathcal{Z}_{\alpha}])$. Since \tilde{a} is a 1-cycle in $\Sigma_g = \partial V_g$, the 2-chain $\Phi_{\sharp}(I \times \tilde{a})$ lies in ∂M_{φ} . Hence,

$$\mathcal{Z}_{\alpha} = -e^0 \times \sigma_{\varphi,\alpha} \in Z_2(M_{\varphi}, \partial M_{\varphi}).$$

This shows that $i_*([\mathcal{Z}_{\alpha}])$ is represented by the relative 2-cycle $-e^0 \times \sigma_{\varphi,\alpha}$. This completes the proof of Proposition 3.4.

3.5. Proof of Theorem 1.1

We describe the intersection form of M_{φ} and prove Theorem 1.1.

First we claim that the second homology group $H_2(M_{\varphi})$ is naturally isomorphic to $U_{\varphi}^{\mathbb{Z}} := \text{Ker}(S - I_g) \subset \mathbb{Z}^g$. In fact, by Lemma 3.1 we have $H_2(M_{\varphi}) \cong H_1(V_g)^{\pi_1(S^1)}$, and the action of φ on $H_1(V_g) \cong \mathbb{Z}^g$ is given by the matrix S. Thus, the claim follows.

We next claim that under the isomorphism $H_2(M_{\varphi}) \cong U_{\varphi}^{\mathbb{Z}}$, the intersection form on $H_2(M_{\varphi})$ is transferred to the bilinear form $\langle \ , \ \rangle_{\varphi}$. Since $\phi_g^V(\varphi) = \operatorname{Sign} M_{\varphi}$, this will complete the proof of Theorem 1.1. The proof of this claim consists of two steps.

Step 1. We give a description of the bilinear form on $H_1(V_g)^{\pi_1(S^1)}$ that is obtained by transferring the intersection form on $H_2(M_{\varphi})$. Let $\langle \cdot, \cdot \rangle_V \colon H_2(V_g, \Sigma_g) \times H_1(V_g) \to \mathbb{Z}$ be the intersection product of the compact oriented 3-manifold V_g . We have

$$\langle D_i, \beta_i \rangle_V = \delta_{ij} \quad \text{for any } i, j \in \{1, \dots, g\}.$$
 (3.2)

Let

$$H_0(S^1; \mathscr{H}_2(V_g, \Sigma_g)) \times H_1(S^1; \mathscr{H}_1(V_g)) \longrightarrow \mathbb{Z}$$
 (3.3)

be the intersection product of $H_0(S^1; \mathscr{H}_2(V_g, \Sigma_g))$ and $H_1(S^1; \mathscr{H}_1(V_g))$ followed by the contraction of the coefficients by the form $\langle \cdot, \cdot \rangle_V$. Under the isomorphisms in Lemmas 3.1 and 3.2, this is equivalent to the intersection product $H_2(M_{\varphi}) \times H_2(M_{\varphi}, \partial M_{\varphi}) \to \mathbb{Z}$. By composing (3.3) and the homomorphism

$$\begin{split} H_1(V_g)^{\pi_1(S^1)} \times H_1(V_g)^{\pi_1(S^1)} & \xrightarrow{d \otimes \mathrm{id}} H_2(V_g, \Sigma_g)_{\pi_1(S^1)} \times H_1(V_g)^{\pi_1(S^1)} \\ & \cong \ H_0(S^1; \mathscr{H}_2(V_g, \Sigma_g)) \times H_1(S^1; \mathscr{H}_1(V_g)), \end{split}$$

we obtain a bilinear form on $H_1(V_g)^{\pi_1(S^1)}$. Proposition 3.4 implies that this is equivalent to the intersection form on $H_2(M_{\varphi})$.

Step 2. We prove that the bilinear form on $H_1(V_g)^{\pi_1(S^1)}$ described in the previous paragraph is equivalent to $\langle \ , \ \rangle_{\varphi}$ under the identification $H_1(V_g)^{\pi_1(S^1)} \cong U_{\varphi}^{\mathbb{Z}}$. Let $x = (x_1, \dots, x_g), \ y = (y_1, \dots, y_g) \in U_{\varphi}^{\mathbb{Z}} \subset \mathbb{Z}^g$. We regard x as an element of $H_1(V_g)^{\pi_1(S^1)}$. Then, we can take $\tilde{x} = \sum_{i=1}^g x_i \beta_i \in H_1(\Sigma_g)$ as a lift of x which we need to compute d(x). Thus, we have

$$\varphi_*(\tilde{x}) - \tilde{x} = (\alpha_1, \dots, \alpha_g) Q^t(x_1, \dots, x_g) = (x_1, \dots, x_g)^t Q^t(\alpha_1, \dots, \alpha_g),$$

and hence $d(x) = (x_1, \dots, x_g)^t Q^t(D_1, \dots, D_g)$. Therefore, the pairing of x and y by the bilinear form on $H_1(V_g)^{\pi_1(S^1)}$ described above is equal to

$$\left\langle \left(x_1,\ldots,x_g\right){}^tQ{}^t(D_1,\ldots,D_g),\left(\beta_1,\ldots,\beta_g\right){}^t(y_1,\ldots,y_g)\right\rangle_V={}^tx{}^tQ{}\,y=\langle x,y\rangle_{\varphi}.$$

Here we used the equality (3.2). This completes the proof of Theorem 1.1.

Remark 3.6 There is a 2-cocycle m_{λ} on $\operatorname{Sp}(2g;\mathbb{Z})$ constructed by Turaev [20] which satisfies $[m_{\lambda}] = -[\tau_g] \in H^2(\operatorname{Sp}(2g;\mathbb{Z}))$, and Walker, in page 124 of his note*, constructed a (unique) cobounding function $j \colon \operatorname{Mod}(\Sigma_g) \to \mathbb{Q}$ of the sum $\rho^*\tau_g + \rho^*m_{\lambda}$ of 2-cocycles. The 2-cocycle m_{λ} and the function j depend on the choice of a lagrangian $\lambda \subset H_1(\Sigma_g;\mathbb{Q})$. If we choose a suitable lagrangian λ , the restriction of j to $\operatorname{Mod}(V_g)$ is known to be a cobounding function of $\rho^*\tau_g$, and coincides with our function ϕ_g^V . Gilmer and Masbaum [5, Proposition 6.9] described j explicitly in a way which is similar to but different from ours.

Remark 3.7 Since Sy = y for any $y \in U_{\varphi}$, we have $\langle x, y \rangle_{\varphi} = {}^t x {}^t Q S y$ for any $x, y \in U_{\varphi}$. Since ${}^t Q S$ is symmetric by (2.2), this gives a purely algebraic explanation for the symmetric property of the form $\langle \ , \ \rangle_{\varphi}$ on U_{φ} .

^{*}K. Walker (1991). On Witten's 3-manifold invariants, Preliminary Version [online]. Website $\frac{1}{1000}$ https://canyon23.net/math/1991TQFTNotes.pdf [accessed 1 May 2020].

Remark 3.8 By Theorem 1.1, one can regard ϕ_g^V as a 1-cochain on $\operatorname{urSp}(2g;\mathbb{Z})$. For $g \geq 3$, it is the unique 1-cochain which cobounds τ_g on $\operatorname{urSp}(2g;\mathbb{Z})$ since $H^1(\operatorname{urSp}(2g;\mathbb{Z})) = 0$; see [19, Corollary 4.4].

4. Evaluation of Meyer functions

4.1. The Meyer function on the hyperelliptic mapping class group

There is a unique 1-cochain $\phi_q^{\mathcal{H}} \colon \mathcal{H}(\Sigma_g) \to \mathbb{Q}$ such that for any $\varphi_1, \varphi_2 \in \mathcal{H}(\Sigma_g)$,

$$\phi_q^{\mathcal{H}}(\varphi_1) + \phi_q^{\mathcal{H}}(\varphi_2) - \phi_q^{\mathcal{H}}(\varphi_1 \varphi_2) = \tau_g(\rho(\varphi_1), \rho(\varphi_2)). \tag{4.1}$$

The 1-cochain $\phi_g^{\mathcal{H}}$ is called the Meyer function on the hyperelliptic mapping class group of genus g; see [4, 18]. Recall the element $s_1 = t_2 t_3 t_1 t_2 \in \mathcal{H}(V_g) \subset \mathcal{H}(\Sigma_g)$ which was defined in Section 2.4.

Lemma 4.1 $\phi_q^{\mathcal{H}}(s_1) = (2g+3)/(2g+1)$.

Proof Set $T_i = \rho(t_i)$ for every $i \in \{1, 2, 3\}$. Using (4.1), we have

$$\phi_g^{\mathcal{H}}(s_1) = \phi_g^{\mathcal{H}}(t_2) + \phi_g^{\mathcal{H}}(t_3) + \phi_g^{\mathcal{H}}(t_1) + \phi_g^{\mathcal{H}}(t_2) - \tau_g(T_1, T_2) - \tau_g(T_3, T_1 T_2) - \tau_g(T_2, T_3 T_1 T_2).$$

As was shown in [4, Lemma 3.3] and [18, Proposition 1.4], we have $\phi_g^{\mathcal{H}}(t_i) = (g+1)/(2g+1)$ for all $i \in \{1, 2, 3\}$. Also, by a direct computation we obtain $\tau_g(T_1, T_2) = 0$, $\tau_g(T_3, T_1T_2) = 0$, and $\tau_g(T_2, T_3T_1T_2) = 1$. The result follows from these equalities.

4.2. The Meyer function on the handlebody group

Recall from the introduction that we defined $\phi_g^V \colon \operatorname{Mod}(V_g) \to \mathbb{Z}$ by $\varphi \mapsto \operatorname{Sign} M_{\varphi}$, where M_{φ} is the mapping torus of φ .

Lemma 4.2 The function $\phi_g^V \colon \operatorname{Mod}(V_g) \to \mathbb{Z}$ cobounds the cocycle $\rho^* \tau_g$ in the handlebody group $\operatorname{Mod}(V_g)$. If $g \geq 3$, ϕ_g^V is the unique cobounding function of $\rho^* \tau_g$.

Proof The uniqueness follows from the fact that $H_1(\operatorname{Mod}(V_g))$ is torsion when $g \geq 3$.

For given two mapping classes $\varphi, \psi \in \text{Mod}(V_g)$, there is an oriented V_g -bundle $W(\varphi, \psi) \to P$ such that the monodromy along ℓ_1 , ℓ_2 , and ℓ_3 are φ , ψ , and $(\varphi\psi)^{-1}$, respectively. The boundary of $W(\varphi, \psi)$ is written as

$$\partial W(\varphi,\psi) = E(\varphi,\psi) \cup (M_{\varphi^{-1}} \sqcup M_{\psi^{-1}} \sqcup M_{\varphi\psi}).$$

Note that $M_{\varphi^{-1}}$ is diffeomorphic to $-M_{\varphi}$ under an orientation-preserving diffeomorphism, where $-M_{\varphi}$ denotes the mapping torus M_{φ} with orientation reversed. Since the signature of $\partial W(\varphi, \psi)$ is zero, Novikov additivity implies that

$$\operatorname{Sign} E(\varphi, \psi) - \operatorname{Sign} M_{\varphi} - \operatorname{Sign} M_{\psi} + \operatorname{Sign} M_{\varphi\psi} = 0.$$

This shows that ϕ_g^V is a cobounding function of $\rho^*\tau_g$ restricted to $\operatorname{Mod}(V_g)$.

Since dim $V_{A,B} \leq 4g$ for any $A,B \in \operatorname{Sp}(2g;\mathbb{Z})$, the signature cocycle τ_g is a bounded 2-cocycle. Therefore, it represents a class in the second bounded cohomology group $H_b^2(\operatorname{Mod}(\Sigma_g))$. The image of $[\tau_g]$ under the natural homomorphism $H_b^2(\operatorname{Mod}(\Sigma_g);\mathbb{Q}) \to H_b^2(\mathcal{H}(\Sigma_g);\mathbb{Q})$ is nontrivial since the Meyer function $\phi_g^{\mathcal{H}}$ is unbounded. In contrast, we have:

Proposition 4.3 Under the natural homomorphism $H_b^2(\operatorname{Mod}(\Sigma_g);\mathbb{Q}) \to H_b^2(\operatorname{Mod}(V_g);\mathbb{Q})$, the image of the cohomology class $[\tau_g]$ vanishes.

Proof The restriction of the signature cocycle τ_g to $\operatorname{Mod}(V_g)$ is cobounded by the function ϕ_g^V , and ϕ_g^V is a bounded function since the rank of $H_2(M_{\varphi})$ is at most g.

4.3. Computation of the Meyer function on the handlebody group

Theorem 1.1 shows that the bilinear form $\langle \ , \ \rangle_{\varphi}$ on U_{φ} , whose signature coincides with $\phi_g^V(\varphi)$, can be computed from the homological monodromy $\rho(\varphi) \in \mathrm{urSp}(2g;\mathbb{Z})$. In more detail, if $\rho(\varphi) = \begin{pmatrix} P & Q \\ O_g & S \end{pmatrix}$, then $U_{\varphi} = \mathrm{Ker}(S - I_g) \subset \mathbb{Q}^g$ and $\langle x, y \rangle_{\varphi} = {}^t x {}^t Q y$ for $x, y \in U_{\varphi}$.

The 1-cochain ϕ_g^V , regarded as the one defined on $\operatorname{urSp}(2g;\mathbb{Z})$, is *stable* with respect to g in the following sense. For every nonnegative integer $g \geq 0$, there is a natural embedding ι : $\operatorname{urSp}(2g;\mathbb{Z}) \hookrightarrow \operatorname{urSp}(2(g+1);\mathbb{Z})$;

$$A = \begin{pmatrix} P & Q \\ O_q & S \end{pmatrix} \mapsto \iota(A) = \begin{pmatrix} \tilde{P} & \tilde{Q} \\ O_{q+1} & \tilde{S} \end{pmatrix},$$

where

$$\tilde{P} = \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{Q} = \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix}, \quad \tilde{S} = \begin{pmatrix} S & 0 \\ 0 & 1 \end{pmatrix}.$$

Then $\phi_{g+1}^V(\iota(A)) = \phi_g^V(A)$ for any $A \in \text{urSp}(2g; \mathbb{Z})$.

Lemma 4.4 For any positive integer m, we have $\phi_g^V(t_1^m) = 1$.

Proof Since the action of $\rho(t_1^m)$ on $H_1(\Sigma_q)$ is given by

$$\rho(t_1): \alpha_i \mapsto \alpha_i \quad (i = 1, \dots, g), \qquad \beta_1 \mapsto m\alpha_1 + \beta_1, \qquad \beta_i \mapsto \beta_i \quad (i = 2, \dots, g),$$

we may assume that g=1. Then $\rho(t_1^m)=\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$, and $\operatorname{Ker}(S-I_1)=\mathbb{Z}$ on which the pairing is given by the 1×1 matrix (m). Hence, $\phi_q^V(t_1^m)=1$, as required.

Lemma 4.5 $\phi_g^V(s_1) = 1$.

Proof The proof proceeds as in the same way as the previous lemma. In this case we may assume that g = 2. Then

$$\rho(s_1) = \begin{pmatrix} P & Q \\ O_2 & S \end{pmatrix} \quad \text{with} \quad P = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}.$$

The rest of computation is straightforward, so we omit it.

4.4. Proof of Theorem 1.2

Since both the 1-cochains $\phi_g^{\mathcal{H}}$ and ϕ_g^V cobound the signature cocycle, their difference becomes a \mathbb{Q} -valued homomorphism on $\mathcal{H}(V_g) = \mathcal{H}(\Sigma_g) \cap \operatorname{Mod}(V_g)$.

We compare the homomorphism $\phi_g^{\mathcal{H}} - \phi_g^V$ with the generator $\mu \in H^1(\mathcal{H}(V_g))$ in Corollary 2.6. It is sufficient to evaluate $\phi_g^{\mathcal{H}} - \phi_g^V$ on s_1 if g is even, and on $t_1 s_1^{\frac{g+1}{2}}$ if g is odd. By Lemmas 4.1 and 4.5 we immediately obtain

$$(\phi_g^{\mathcal{H}} - \phi_g^V)(s_1) = \frac{2}{2g+1}. (4.2)$$

This settles the case where g is even. When g is odd, we compute

$$(\phi_g^{\mathcal{H}} - \phi_g^V)(t_1 s_1^{\frac{g+1}{2}}) = (\phi_g^{\mathcal{H}} - \phi_g^V)(t_1) + \frac{g+1}{2}(\phi_g^{\mathcal{H}} - \phi_g^V)(s_1)$$
$$= \left(\frac{g+1}{2g+1} - 1\right) + \frac{g+1}{2} \cdot \frac{2}{2g+1}$$
$$= \frac{1}{2g+1}.$$

Here, we used the fact that $\phi_g^{\mathcal{H}} - \phi_g^V$ is a homomorphism on $\mathcal{H}(V_g)$ in the first line; we used the fact that $\phi_g^{\mathcal{H}}(t_1) = (g+1)/(2g+1)$ (see the proof of Lemma 4.1), Lemma 4.4 and (4.2) in the second line. This completes the proof of Theorem 1.2.

Acknowledgments

The authors would like to thank Susumu Hirose for his helpful comments. Y. K. is supported by JSPS KAKENHI 18K03308. M. S. is supported by JSPS KAKENHI 18K03310.

References

- [1] Ashikaga T, Endo H. Various aspects of degenerate families of Riemann surfaces. Sugaku Expositions 2006; 19 (2): 171-196.
- [2] Atiyah MF. The logarithm of the Dedekind η -function. Mathematische Annalen 1987; 278: 335-380. doi: 10.1007/BF01458075
- [3] Birman JS. On the equivalence of Heegaard splittings of closed, orientable 3-manifolds. In: Neuwirth LP (editor). Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Annals of Mathematics Studies 84. Princeton, NJ, USA: Princeton University Press, 1975, pp. 137-164.
- [4] Endo H. Meyer's signature cocycle and hyperelliptic fibrations. Mathematische Annalen 2000; 316 (2): 237-257.doi: 10.1007/s002080050012
- [5] Gilmer PM, Masbaum G. Maslov index, lagrangians, mapping class groups and TQFT. Forum Mathematicum 2013;25 (5): 1067-1106. doi: 10.1515/form.2011.143
- [6] Harer J. The second homology group of the mapping class group of an orientable surface. Inventiones Mathematicae 1983; 72: 221-239. doi: 10.1007/BF01389321
- [7] Harer J. The third homology group of the moduli space of curves. Duke Mathematical Journal 1991; 63 (1): 25-55. doi:10.1215/S0012-7094-91-06302-7

KUNO and SATO/Turk J Math

- [8] Hilden HM. Generators for two groups related to the braid group. Pacific Journal of Mathematics 1975; 59 (2): 475-486. doi: 10.2140/pjm.1975.59.475
- [9] Hirose S. The action of the handlebody group on the first homology group of the surface. Kyungpook Mathematical Journal 2006; 46: 399-408.
- [10] Hirose S, Kin E. The asymptotic behavior of the minimal pseudo-Anosov dilatations in the hyperelliptic handlebody groups. The Quarterly Journal of Mathematics 2017; 68: 1035-1069. doi: 10.1093/qmath/hax012
- [11] Iida S. Adiabatic limits of η -invariants and the Meyer functions. Mathematische Annalen 2010; 346: 669-717. doi: 10.1007/s00208-009-0412-y
- [12] Ishida T, Sato M. A twisted first homology group of the handlebody mapping class group. Osaka Journal of Mathematics 2017; 54: 587-619. doi: 10.18910/667001
- [13] Kawazumi N. Canonical 2-forms on the moduli space of Riemann surfaces. In: Papadopoulos A (editor). Handbook of Teichmüller theory Volume II. Zürich, Switzerland: European Mathematical Society Publishing House, 2009, pp. 217-237.
- [14] Kuno Y. Meyer functions and the signature of fibered 4-manifolds. In: Papadopoulos A (editor). Handbook of Teichmüller theory Volume V. Zürich, Switzerland: European Mathematical Society Publishing House, 2016, pp. 75-96
- [15] Matsumoto Y. Lefschetz fibrations of genus two—a topological approach. In: Kojima S, Matsumoto Y, Saito K, Seppälä M (editor). Topology and Teichmüller Spaces, Proceedings of the 37th Taniguchi Symposium. Singapore: World Scientific, 1996, pp. 123-148.
- [16] Meyer W. Die Signatur von lokalen Koeffizientensystemen und Faserbündeln. Bonner Mathematische Schriften 1972; 53: 1-59 (in German).
- [17] Meyer W. Die Signatur von Flächenbündeln. Mathematische Annalen 1973; 201 (3): 239-264 (in German). doi: 10.1007/BF01427946
- [18] Morifuji T. On Meyer's function of hyperelliptic mapping class groups. Journal of the Mathematical Society of Japan 2003; 55 (1): 117-129. doi:10.2969/jmsj/1196890845
- [19] Sakasai T. Lagrangian mapping class groups from a group homological point of view. Algebraic & Geometric Topology 2012; 12: 267-291. doi:10.2140/agt.2012.12.267
- [20] Turaev VG. First symplectic Chern class and Maslov indices. Journal of Soviet Mathematics 1987; 37: 1115-1127. doi: 10.1007/BF01086635
- [21] Wajnryb B. Mapping class group of a handlebody. Fundamenta Mathematicae 1998; 158: 195-228. doi: 10.4064/fm-158-3-195-228