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Abstract: We explore, by using formal analysis, the existence of mass conserving self-similar solutions for Smolu-
chowski’s coagulation equation when kernel K(x, y) = xλyµ + xµyλ with 0 < λ+ µ < 1 .
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1. Introduction
In the study of collision processes the following infinite set of nonlinear differential equations, which are also
known as the discrete form of the coagulation equation, are considered.

dyi
dt

= −yi

∞∑
j=1

ai,jyj +
1

2

i−1∑
j=1

ai−j,jyjyi−j (i = 1, 2, 3, · · · ),

where ai,j = aj,i > 0 and t ≥ 0 . Existence and uniqueness results with initial conditions

y1(0) = 1, yi(0) = 0 (i = 2, 3, 4, · · · ),

for the case ai,j ≤ ij were first proved long ago, with under certain reasonable convergence criteria, by McLeod
in [1–3] where the explicit solution is valid only for 0 ≤ t ≤ 1 . Furthermore, existence and uniqueness results
related to different cases of the ai,j were also studied. Firstly, existence of solution in the case ai,j ≤ cicj ,
where c1 = 1 and ci > 0 for all i , was proved. Secondly, let ai,j ≤ Kij be for all i , j and some positive
constant K , then it was shown that there is at least one solution of the above equations analytic sufficiently
near t = 0 . Existence of the mass conserving solution was proved in [8] for coagulation kernels with at most
linear growth at infinity. The Smoluchowski coagulation equation describing mean-field model [12] is given by

ft(x, t) =
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy

−
∫ ∞

0

K(x, y)f(x, t)f(y, t)dy,

(1.1)
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with

f(x, 0) = F (x) ≥ 0 a.e.,

where the variables x > 0 and t ≥ 0 denote the size of the particles and time, respectively. The number density
of particles of size x at time t is denoted by f(x, t) . The coagulation kernel K(x, y) represents the rate at
which particles of size x coalesce with particles of size y .

Existence and uniqueness of solutions to (1.1) when K(x, y) = xy and fairly general f(x, 0) were studied
by McLeod in [4]. The following explicit solutions were also established. With the initial conditions

F (x) =
αe−αx

x
and F (x) =

ae−bxJ1
(
ax
)

x2
√
a2 + b2 − b

,

where J1 is the Bessel function of order one, then (1.1) has the explicit solution

f(x, t) =
αe−(t+α)xI1

(
2x

√
tα
)

x2
√
t

on 0 ≤ t ≤ α , where I1 is the Modified Bessel function, and

f(x, t) =
ae−(t+b)xJ1

(
ax
√

1− 2t/B
)

x2
√
B2 − 2tB

on 0 ≤ t ≤ B
2 where B =

√
a2 + b2 − b respectively. When kernel K(x, y) = xy is bounded then existence of

solutions to (1.1) was studied in [10].

The existence of self-similar solutions of (1.1) when kernel K(x, y) = xλyλ with 0 < λ < 1/2 was studied
analytically by employing topological shooting technique and for some other techniques, see [5]. For further
information on topological shooting technique, see [6]. In particular, the existence of self-similar solutions with
finite mass has been established for a huge class of kernels and some properties of those solutions have been
investigated in [14, 15]

Equation (1.1) arises in a number of problems in physics, meteorology, chemistry, engneering, biology,
and astrophysics, see [7, 9, 11, 13] and references therein. In the case of the product kernel small particles
interact mostly with the ones having a comparable size.

In this paper, we also analyze mass conserving self-similar solutions to the coagulation equation (1.1)

when kernel K(x, y) = xλyµ + xµyλ with 0 < λ + µ < 1 and introduce clasical analysis different from the
previously published papers.

2. Main results
We are interested in a solution of the form

f(x, t) =
1

s2(t)
h

(
x

s(t)

)
.
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Then from (1.1) we see that

− 2s−3s′h
(x
s

)
− xs−4s′h′

(x
s

)
=

1

2

1

s4

∫ x

0

yµ(x− y)λh

(
x− y

s

)
h
(y
s

)
dy − xλ

s4
h
(x
s

)∫ ∞

0

yµh
(y
s

)
dy

+
1

2

1

s4

∫ x

0

yλ(x− y)µh

(
x− y

s

)
h
(y
s

)
dy − xµ

s4
h
(x
s

)∫ ∞

0

yλh
(y
s

)
dy.

Set y
s = Y , x

s = X , and we get, after multiplying both sides by s4 , and using symmetry in the first and the
third integrals on the right-hand side,

ss′{−2h(X)−Xh′(X)}

= sλ+µ+1
{∫ X/2

0

Y µ(X − Y )λh(X − Y )h(Y )dY −Xλh(X)

∫ ∞

0

Y µh(Y )dY

+

∫ X/2

0

Y λ(X − Y )µh(X − Y )h(Y )dY −Xµh(X)

∫ ∞

0

Y λh(Y )dY
}
.

(2.1)

Since the equation cannot involve t , we see that

s(t)s′(t) = Const × sλ+µ+1(t), s1−λ−µ(t) = At+B,

for arbitrary constants A and B . However, the (1.1) is translation invariant in t .Therefore, we may without
loss of generality take B = 0 . Furthermore, the choice of A may be subsumed into the definition of h(x) .
Therefore, we may take

s(t) = (1− λ− µ)t
1

1−λ−µ .

Equation (2.1) becomes

− 2h(X)−Xh′(X)

=

∫ X/2

0

Y µ(X − Y )λh(X − Y )h(Y )dY −Xλh(X)

∫ ∞

0

Y µh(Y )dY

+

∫ X/2

0

Y λ(X − Y )µh(X − Y )h(Y )dY −Xµh(X)

∫ ∞

0

Y λh(Y )dY.

(2.2)

Our belief (which we have, of course, to verify ) is that

h(X) ∼ h0X
−1−λ−µ (2.3)
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as X → 0 , for some constant h0 . Since this would cause the integrals on the right-hand side of (2.2) to diverge,
we must rewrite (2.2) in the form

− 2h(X)−Xh′(X)

=

∫ X/2

0

Y µh(Y )
(
(X − Y )λh(X − Y )−Xλh(X)

)
dY

−Xλh(X)

∫ ∞

X/2

Y µh(Y )dY

+

∫ X/2

0

Y λh(Y ) ((X − Y )µh(X − Y )−Xµh(X)) dY

−Xµh(X)

∫ ∞

X/2

Y λh(Y )dY.

We now set

h(X) = X−1−λ−µH(X),

and the equation for H(X) is

−X−λ−µH ′(X)− (1− λ− µ)X−1−λ−µH(X)

=

∫ X/2

0

Y −1−λH(Y )
(
(X − Y )−1−µ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−µ −X−1−µ]
)
dY −X−1−µH(X)

∫ ∞

X/2

Y −1−λH(Y )dY

+

∫ X/2

0

Y −1−µH(Y )
(
(X − Y )−1−λ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−λ −X−1−λ]
)
dY

−X−1−λH(X)

∫ ∞

X/2

Y −1−µH(Y )dY

= I1 + I2,

(2.4)

where I1 is the first two terms and I2 is the last two terms.
We can now work out, at least formally, what the value of h0 must be in (2.3) . We first work out I1 for

H(x) → h0 as X → 0 , and so

I1 ∼ h0

∫ X/2

0

Y −1−λ
(
(X − Y )−1−µ[H(X − Y )−H(X)]

+ H(X)[(X − Y )−1−µ −X−1−µ]
)
dY − h0X

−1−µ

∫ ∞

X/2

Y −1−λH(Y )dY.

Now

H(X − Y )−H(X) ≍ Y H ′(X) and H ′(X) = o(X−1),
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as X → 0 , since H(0) exists. Thus,

I1 ∼ h0

∫ X/2

0

Y −1−λ(X − Y )−1−µ[H(X − Y )−H(X)]dY

+ h2
0

∫ X/2

0

Y −1−λ[(X − Y )−1−µ −X−1−µ]dY

− h0X
−1−µ

∫ ∞

X/2

Y −1−λH(Y )dY,

I1 ∼ o

(
X−1

∫ X/2

0

Y −λ(X − Y )−1−µdY

)

+ h2
0

∫ X/2

0

Y −1−λ[(X − Y )−1−µ −X−1−µ]dY − 2λh2
0X

−1−λ−µ

λ
.

By setting Y = Xu , we see that the first term in the last line o(X−1−λ−µ) . Therefore,

I1 ∼ h2
0X

−1−λ−µ

∫ 1/2

0

u−1−λ[(1− u)−1−µ − 1]du− 2λh2
0X

−1−λ−µ

λ

= h2
0X

−1−λ−µA(λ, µ)− 2λh2
0X

−1−λ−µ

λ
,

say. Here

A(λ, µ) =

∫ 1/2

0

u−1−λ[(1− u)−1−µ − 1]du

can be expressed in terms of hypergeometric functions. Similarly, calculating I2 we see that

I2 ∼ h2
0X

−1−λ−µ

∫ 1/2

0

u−1−µ[(1− u)−1−λ − 1]du− 2µh2
0X

−1−λ−µ

µ

= h2
0X

−1−λ−µA(µ, λ)− 2µh2
0X

−1−λ−µ

µ
.

Substituting this into (2.4) and letting X → 0 , we see that

−(1− λ− µ)h0 = h2
0

(
A(λ, µ)− 2λ

λ
+A(µ, λ)− 2µ

µ

)
.

Therefore,

h0(λ, µ) =
λµ(1− λ− µ)

µ(2λ − λA(λ, µ)) + λ(2µ − µA(µ, λ))
. (2.5)

Of course, for this to make sense, we need

2λ − λA(λ, µ) > 0 and 2µ − µA(µ, λ) > 0 for 0 < λ+ µ < 1. (2.6)
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For λ = µ = 0 , this is clearly true, since from its definition A(λ, µ) (similarly A(µ, λ)) is bounded as λ → 0

and µ → 0 . Indeed, by using the binomial series

A(λ, µ) =

∫ 1/2

0

u−1−λ[(1− u)−1−µ − 1]du

=

∫ 1/2

0

u−1−λ
∞∑

n=1

(
un(µ+ 1)(µ+ 2)...(µ+ n)

n!

)
du

=

∞∑
n=1

(
1

2

)n−λ
(µ+ 1)(µ+ 2)...(µ+ n)

(n− λ)n!
.

Similarly,

A(µ, λ) =

∞∑
n=1

(
1

2

)n−µ
(λ+ 1)(λ+ 2)...(λ+ n)

(n− µ)n!
.

Therefore, the above series converge for any λ and µ . From this, it is clear that

A(λ, µ)

2λ
=

∞∑
n=1

(
1

2

)n
(µ+ 1)(µ+ 2)...(µ+ n)

(n− λ)n!

and

A(µ, λ)

2µ
=

∞∑
n=1

(
1

2

)n
(λ+ 1)(λ+ 2)...(λ+ n)

(n− µ)n!

are increasing function of λ and µ . We also remark below that (2.6) is true (with equality) for λ = µ = 1/2 .

Remark 2.1 If λ = µ , then one obtains

h0(λ) =
λ(1− 2λ)

2
(
2λ − λA(λ, λ)

) .
With suitable scaling the above remark becomes h0(λ) =

λ(1−2λ)
2λ−λA(λ,λ)

.

Remark 2.2 If λ = µ and K(x, y) = (xy)λ with 0 < 2λ < 1 , by applying the same argument as above, then
one obtains

h0(λ) =
λ(1− 2λ)

2λ − λA(λ, λ)
,

the same as in [5].

Remark 2.3 If λ = µ = 0 , then one obtains A(0, 0) = ln 2 .
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Remark 2.4 If λ = µ = 1
2 , then one obtains

A(
1

2
,
1

2
) =

∫ 1/2

0

u−3/2
[
(1− u)−3/2 − 1

]
du

=
2(2

√
1− x+ 1)

√
x

−x+
√
1− x+ 1

|1/20 = 23/2.

We now need to investigate the desired behavior as X → ∞ . We are looking for exponential behavior. Therefore,
on the left-hand side of (2.4) , the dominant term should be −X−λ−µH ′(X) . The last term on the right-hand
side will be a higher-order exponential, and so negligible. Then

−X−λ−µH ′(X)

∼
∫ X/2

0

Y −1−λH(Y )
(
(X − Y )−1−µ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−µ −X−1−µ]
)
dY

+

∫ X/2

0

Y −1−µH(Y )
(
(X − Y )−1−λ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−λ −X−1−λ]
)
dY.

If Y is bounded, say Y ≤ Y0 , Y0 large but fixed independent of X , then the contribution to the right-hand
side is of order

∫ Y0

0

Y −1−λH(Y )
(
(X − Y )−1−µ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−µ −X−1−µ]
)
dY

+

∫ Y0

0

Y −1−µH(Y )
(
(X − Y )−1−λ[H(X − Y )−H(X)]

+H(X)[(X − Y )−1−λ −X−1−λ]
)
dY.

= O(X−2−µH(X)) +O(X−1−µH ′(X))

+O(X−2−λH(X)) +O(X−1−λH ′(X)),

which is of smaller order than the right-hand side (for large X ). Hence,

−X−λ−µH ′(X)

∼
∫ X/2

Y0

Y −1−λH(Y )(X − Y )1−µH(X − Y )dY

+

∫ X/2

Y0

Y −1−µH(Y )(X − Y )1−λH(X − Y )dY.
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If we set

H(X) = XΦ(X),

we get

−X1−λ−µΦ′(X)

∼
∫ X/2

Y0

Y −λ(X − Y )−µΦ(Y )Φ(X − Y )dY

+

∫ X/2

Y0

Y −µ(X − Y )−λΦ(Y )Φ(X − Y )dY

∼ 1

2

∫ X

0

Y −λ(X − Y )−µΦ(Y )Φ(X − Y )dY

+
1

2

∫ X

0

Y −µ(X − Y )−λΦ(Y )Φ(X − Y )dY.

It is readily verified that an exact solution of this

Φ(X) = ce−X ,

where

c(λ, µ) =
2∫ 1

0
s−λ(1− s)−µds+

∫ 1

0
s−µ(1− s)−λds

=
Γ(2− λ− µ)

Γ(1− λ)Γ(1− µ)
,

(2.7)

for Gamma and Beta integrals, see [16]. This is, of course, not the only solution. We can also have

Φ(X) = ac(λ, µ)e−aX , for any a.

That is,

H(X) = c(λ, µ)(aX)e−aX , for any a > 0.

We can now formally formulate the following existence theorem.

Theorem 2.5 There exists a solution to (2.4) which is C1(0,∞) , and has the properties that

(i) H(X) → h0(λ, µ) as X → 0 , where h0(λ, µ) is given by (2.5) .

(ii) H(X) ∼ c(λ, µ)(aX)e−aX as X → ∞ , for some a > 0 , where c(λ, µ) is given by (2.7) .

Remark 2.6 If λ = µ , then from (2.7) one obtains

c(λ) =
Γ(2− 2λ)

Γ2(1− λ)
.

Remark 2.7 If λ = µ , then Theorem 2.5 case (ii) is obtained as in [5].
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3. Further investigation of the solution as X → 0

We aim to find a formula to determine r in the following expansion. Set

H(X) = h0 + aXr + bXr+1 + · · · .

Then from (2.4) , considering just the first two terms, we get

− arXr−1−λ−µ − (1− λ− µ)X−1−λ−µ(h0 + aXr)

+X−1−µ(h0 + aXr)

∫ ∞

1
2X

Y −1−λ{h0 + (H(Y )− h0)}dY

+X−1−λ(h0 + aXr)

∫ ∞

1
2X

Y −1−µ{h0 + (H(Y )− h0)}dY

=

∫ 1
2X

0

Y −1−λ(h0 + aY r)[((X − Y )−1−µ −X−1−µ)h0

+ a((X − Y )r−1−µ −Xr−1−µ)]dY

+

∫ 1
2X

0

Y −1−µ(h0 + aY r)[((X − Y )−1−λ −X−1−λ)h0

+ a((X − Y )r−1−λ −Xr−1−λ)]dY.

Therefore, multiplying by X1+λ+µ−r , we have

− ar + (λ+ µ− 1)h0X
−r + a(λ+ µ− 1)

+Xλ−r(h0 + aXr){ 1
λ
(
X

2
)−λh0 +

∫ ∞

1
2X

Y −1−λ(H(Y )− h0)dY }

+Xµ−r(h0 + aXr){ 1
µ
(
X

2
)−µh0 +

∫ ∞

1
2X

Y −1−µ(H(Y )− h0)dY }

= X−rh2
0

∫ 1
2

0

u−1−λ((1− u)−1−µ − 1)du

+ ah0

∫ 1
2

0

ur−1−λ((1− u)−1−µ − 1)du

+ ah0

∫ 1
2

0

u−1−λ((1− u)r−1−µ − 1)du

+X−rh2
0

∫ 1
2

0

u−1−µ((1− u)−1−λ − 1)du

+ ah0

∫ 1
2

0

ur−1−µ((1− u)−1−λ − 1)du

+ ah0

∫ 1
2

0

u−1−µ((1− u)r−1−λ − 1)du+O(Xr).

(3.1)
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We now have six cases in (3.1) to consider depending on whether r > λ , r = λ , r < λ , r > µ , r = µ and
r < µ . If we write

K1 =

∫ ∞

0

Y −1−λ(H(Y )− h0)dY and K2 =

∫ ∞

0

Y −1−µ(H(Y )− h0)dY,

then the integral certainly exists if H(Y ) is ever bounded as Y → ∞ , since H(Y ) − h0 = O(Y r) . Thus, we
have, using the value of h0 from (2.5) to cancel out the highest terms,

− ar + a(λ+ µ− 1) +
2λ

λ
ah0 +

2µ

µ
ah0

h0X
λ−r

(
K1 −

∫ X
2

0

Y −1−λ(H(Y )− h0)dY

)

+ aXλ

(
K1 −

∫ X
2

0

Y −1−λ(H(Y )− h0)dY

)

+ h0X
µ−r

(
K2 −

∫ X
2

0

Y −1−µ(H(Y )− h0)dY

)

+ aXµ

(
K2 −

∫ X
2

0

Y −1−µ(H(Y )− h0)dY

)

= ah0

∫ 1
2

0

ur−1−λ((1− u)−1−µ − 1)du

+ ah0

∫ 1
2

0

u−1−λ((1− u)r−1−µ − 1)du

+ ah0

∫ 1
2

0

ur−1−µ((1− u)−1−λ − 1)du

+ ah0

∫ 1
2

0

u−1−µ((1− u)r−1−λ − 1)du+O(Xr).

(3.2)

If r > λ and r > µ in (3.2), then the dominant term are now Xλ−rh0K1 and Xλ−rh0K2 , so we must have
K1 = K2 = 0 . Then

∫ 1
2X

0

Y −1−λ(H(Y )− h0)dy ∼ a

∫ 1
2X

0

Y −1−λY rdY = a
( 12X)r−λ

r − λ
,

∫ 1
2X

0

Y −1−µ(H(Y )− h0)dy ∼ a

∫ 1
2X

0

Y −1−µY rdY = a
( 12X)r−µ

r − µ
,
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and so

− r + (λ+ µ− 1) +
2λ

λ
h0 +

2µ

µ
h0 + h0

2λ−r

r − λ
+ h0

2µ−r

r − µ

= h0

∫ 1
2

0

ur−1−λ((1− u)−1−µ − 1)du

+ h0

∫ 1
2

0

u−1−λ((1− u)r−1−µ − 1)du

+ h0

∫ 1
2

0

ur−1−µ((1− u)−1−λ − 1)du

+ h0

∫ 1
2

0

u−1−µ((1− u)r−1−λ − 1)du+O(Xr).

(3.3)

This should determine r .
If r = λ and r = µ , then this case is impossible since it produces a term logX in (3.2) which cannot be

cancelled.
If r < λ and r < µ , then the dominant term are now from (3.2)

∫ 1
2X

0

Y −1−λ(H(Y )− h0)dy ∼ a

∫ 1
2X

0

Y −1−λY rdY = −a
( 12X)r−λ

r − λ
,

∫ ∞

1
2X

Y −1−µ(H(Y )− h0)dy ∼ a

∫ ∞

1
2X

Y −1−µY rdY = −a
( 12X)r−µ

r − µ
,

so that (3.2) leads to

− r + (λ+ µ− 1) +
2λ−r

λ− r
h0 +

2λ

λ
h0 +

2µ−r

µ− r
h0 +

2µ

µ
h0

= h0

∫ 1
2

0

ur−1−λ((1− u)−1−µ − 1)du

+ h0

∫ 1
2

0

u−1−λ((1− u)r−1−µ − 1)du

+ h0

∫ 1
2

0

ur−1−µ((1− u)−1−λ − 1)du

+ h0

∫ 1
2

0

u−1−µ((1− u)r−1−λ − 1)du,

(3.4)

which is once again (3.3) . This is the either case r determined from (3.4) .

Remark 3.1 If λ = µ and K(x, y) = (xy)λ with 0 < 2λ < 1 , then it was established in [5] that

r(λ) ∼ λ

2
±
√
λi as λ → 0.
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4. Conclusion
Kernel K(x, y) = xλyµ+xµyλ we study is more general than the following kernels. K(x, y) = 1 , K(x, y) = x+y ,
K(x, y) = xλ + yλ , K(x, y) = xy and K(x, y) = (xy)λ with 0 < 2λ < 1 . For importance of these kernels and
their various applications see [7–9, 11–15] and references therein.
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