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Abstract: Let R be a commutative Noetherian ring and ® be a system of ideals of R. In this paper, we study the
annihilators and the set of attached prime ideals of top generalized local cohomology modules with respect to a system

of ideals.
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1. Introduction

Throughout this paper, R is a commutative Noetherian ring and M is a finitely generated R-module. Let ®
be a nonempty set of ideals of R. We call ® a system of ideals of R if whenever a,b € ®, then there is an ideal
¢ € ® such that ¢ C ab (see [5]). For every R-module N, one can define

I'g(N)={z € N | az =0 for some a € $}.

Then I'g(—) is an additive, covariant, R-linear and left exact functor from the category of R-modules to itself.
The functor I's(—) is called the general local cohomology functor with respect to ®. For each ¢ > 0, the ith
right derived functor of T's(—) is denoted by HE(—). For an ideal a of R, if ® = {a" | n € Ny}, then the
functor Hi(—) coincides with the ordinary local cohomology functor H:(—). Some basic properties of the local
cohomology modules with respect to ® were shown in [1, 5, 7].

In [6], the author introduced the bifunctor Hg(—, —) as follows: Let M, N be two R-modules. Then the
module H} (M, N) is defined as

H(M,N) = lim Extly (M/aM, N).
acd

This bifunctor is contravariant in the first variable and covariant in the second variable. If ® = {a™ | n € Ny},
then the bifunctor H%(—,—) is naturally equivalent to the bifunctor Hi(—,—) of Herzog in [17].

In [19], a nonzero R-module N is said to be secondary precisely when N # 0 and, for each r € R,
either 7N = N or there exists n € N such that "N = 0. Then the ideal p := v/AnngN is a prime ideal and

N is called p-secondary. A secondary representation of an R-module N is an expression of N as a sum of
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finitely many secondary submodules of N. If an R-module N has a secondary representation, then it is said
to be representable. A secondary representation of N = Ny 4+ No + --- + N,, is called minimal if the prime
ideals p; = /AnngN;,i = 1,2,...,n are all distinct and none of N; is redundant. The set {p1,pa,...,pn} is
independent of the choice of the minimal secondary representation of N. It is denoted by AttzrN and called
the set of attached prime ideals of N.

In [24], a prime ideal p of R is called an attached prime of an R-module N (not necessarily admitting
a secondary representation) if p = Anng(N/T) for some submodule T of N. If N admits a secondary
representation, then this definition agrees with the preceding one of attached prime ideals.

The set of attached prime ideals of local cohomology modules, which have been studied by many authors,
is one of the most interesting properties. In the case of generalized local cohomology modules with respect to
an ideal, we see that Attg(HZ(M,N)) = Assg M N Suppr N whenever (R, m) is a d-dimensional Gorenstein
local ring ([15, Lemma 2.4]) or (R, m) is a d-dimensional Cohen-Macaulay local ring ([16, Corollary 3.4]).

In this paper, we study the cohomological dimension of M, N with respect to ®, the annihilators and
the set of attached prime ideals of top generalized local cohomology modules with respect to ®. In Section 2,

we show some properties of cohomological dimension of M, N with respect to a ®, which is donoted by
cde(M,N) :=sup{i | H5 (M, N) # 0}.

This direction of research is motivated by Amjadi and Naghipour’s work [2] and the one of Divaani et al. [14].
In particular, cde (R, N) is denoted by cde(N). The next section shows some results on the annihilators of top

generalized local cohomology modules with respect to ®.

Theorem 1.1 (See Theorem 3.3) Let M, N be two nonzero finitely generated R-modules with cohomological
dimension ¢ :=cde(M,N). Then

AnnpHE(M,N) = Anng(N/Te(M,N)),
where To(M, N) is the largest submodule of N such that cde(M,Te(M,N)) < c.

A consequence of Theorem 3.3 is Corollary 3.4 which shows that

AmnpHS (M, R) = N a4
cde(M,R/p;)=c

where ¢ = cde(M, R) and 0 = ﬂpi r Ui is a reduced primary decomposition of the zero ideal of R, q; is a

€Assr
p;-primary ideal of R.
The set of attached prime ideals of top generalized local cohomology modules with respect to ® are

presented in Section 4. The first main result of Section 4 is the following Theorem.

Theorem 1.2 (See Theorem 4.4) Let M, N be two nonzero finitely generated R-modules such that p =
pdM < oo and d:= dim N = dim R. Assume that cde(M,N) =p+d. Then

Attr(HEY (M, N)) = {p € Assg N | cda(M, R/p) = p + d}.
Moreover, AttRHngd(M, N) C AttrHS(N).
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Let R be a Cohen-Macaulay local ring with dim R > 0. Assume that M is a nonzero Cohen-Macaulay
finitely generated R-module with pdM < oo and cdg(M, R) = dim R. Theorem 4.10 says that

Attr(HE™ (M, R)) = Attg(Hg™ M (M))

The last section is devoted to the study of the set of attached prime ideals of generalized local cohomology

modules with respect to a pair of ideals which were introduced in [21]. The results in Section 5 are special cases
of Section 4, when we consider ® as the set W = {a is an ideal of R | I" C a+ .J for some integer n}.

Throughout this paper, M is always a finitely generated R-module with finite projective dimension.
We denote the projective dimension of M by pdM. For each ideal a of R, the supremum of i’s such that

Hi(M,N) # 0 is denoted by cd(M, N), and we abbreviate cdq(R, N) by cdq(N). We denote by R and N
the m-adic completion of R and R-module N, respectively.

2. Cohomological dimension with respect to a system of ideals

Firstly, we investigate the cohomological dimension with respect to a system of ideals. Results of this section

will be used in the following sections. We also extend some facts of [2].

Definition 2.1 Let M be a finitely generated R-module of finite projective dimension and N be an R-module.
The cohomological dimension of M, N with respect to ® is defined as

cde(M,N) :=sup{i | H5(M, N) # 0},
if this supremum exists, otherwise, we define it —oc.
Lemma 2.2 [6, Lemma 2.1] Let M be a finitely generated R-module. Then

Hy(M,N) = lim Hy (M, N)
acd

for all R-module N and i > 0.

If M is a nonzero finitely generated R-module of finite projective dimension and N is an R-module of

finite Krull dimension, then it follows from Lemma 2.2, [12, Corollary 3.2] and [6, Proposition 5.2] that
cde (M, N) < min{dim R, pdM + dim N}
and
cde (M, N) < sup{cdq(M,N) | ac d}.
Proposition 2.3 Let M be a finitely generated R-module and N be an R-module. Then
cde(M,N) < sup{cde (M, K) | K is a finitely generated submodule of N'}.

Proof Since H} (M, —) commutes with direct limits and N is a direct limit of all finitely generated submodules

of N, the assertion follows. O
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Proposition 2.4 Let M, N be two finitely generated R-modules and K be an R-module such that Suppr K C
SupprN. Then cde(M, K) < cdg(M,N).

Proof Assume that K is a finitely generated R-module such that Suppp K C SupppM . Using the same
method in the proof of [2, Theorem B] we see that cde (M, K) < cde(M, N). Hence, the claim follows from
Proposition 2.3. O

The following result is implied immediately from Proposition 2.4.

Corollary 2.5 Let M,N,K be three finitely generated R-modules such that SupppN = SupprpK. Then
cde(M,N) = cde(M, K).

Theorem 2.6 Let M, N be two finitely generated R-modules. Then

cde (M, N) = sup{cde (M, R/p) | p € SupppN}.
Moreover, cde(M,N) = cde(M, R/p) for some prime ideal p which is a minimal element of SupppN.
Proof We have by Proposition 2.4 that

cde (M, N) = sup{cde (M, R/p) | p € SupppN}.

Now let m = sup{cde (M, R/p) | p € SupprN} and n = cde (M, N). Suppose that m < n, and we look

for a contradiction. It follows from [20, 6.4] that there is a filtration of submodules of N
0=NoCNC...CNy=N
such that N;/N;_1 = R/p; for some p; € Suppyp N for all i =1,2,... k. Let ¢ > 1, the short exact sequence
0— N;—1 >N, - R/p; —>0
induces a long exact sequence
Hy '(M, R/p;) = Hg(M, N;_1) = Hg(M, N;) — Hg(M, R/p;).

Note that HE(M,R/p;) =0 for all ¢ > 1 and HE(M,Ny) = HZ(M,R/p1) = 0. It follows from the long exact
sequence that HZ(M,N;) = 0 for all 1 < 4 < k. In particular, 0 = HZ(M,N,) = HZ(M,N), which is a
contradition.

If p € Suppp/N, then there exists a prime ideal q which is a minimal element of Suppp/N such that

q C p. According to Proposition 2.4, we have cde (M, R/p) < cde(M, R/q). This implies that c¢de(M, R/q) =
cde(M, N), and the proof is complete. O

3. Annihilators of top generalized local cohomology modules with respect to a system of ideals

We will present some results on the annihilators of top generalized local cohomology modules with respect to a

system of ideals. Firstly, we need the following concept.

Definition 3.1 Let M, N be two nonzero finitely generated R-modules. We denote by To(M,N) the largest
submodule of N such that cde(M,Te(M,N)) < cde (M, N).
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It is easy to check that
Te(M,N) = U{K | K is a submodule of N and cde(M, K) < cde (M, N)}.

The first result of this section gives a decomposition of Tg (M, N) based on a reduced primary decom-

position of the zero submodule of N.

Theorem 3.2 Let M, N be two nonzero finitely generated R-modules with cohomological dimension c :=
cde (M, N). Assume that 0 = ﬂ?zl N; is a reduced primary decomposition of the zero submodule of N and N;

s a p; -primary submodule of N. Then

To(M,N) = N Ni.
pi€Assg(N),cde(M,R/p;)=c
Proof Let
Q= m N; and K = ﬂ N;j.
pi€Assp(M),cds (M,R/p;)=c pi€Assp(M),cda (M,R/pi)<c

By the hypothesis, we have K N @Q = 0. Thus, there is an exact sequence
0—-Q— N/K.
It follows from Proposition 2.4 that cde(M, Q) < cde(M, N/K). Note that
Assp Q C Assp(N/K) = {p € Assg(N) | cdo (M, R/p) < c}.

By Theorem 2.6, we have cde (M, N/K) < ¢ and then cde (M, Q) < c¢. This implies that Q C T (M, N).
Now, let = € To(M,N) and it is easy to see that cde(M, Rz) < c. Note that H§ (M, R/p) = 0 for all
p € Assp(Rz). Therefore, one gets that

Assp(Rxz) C {p € Assg(N) | cde(M, R/p) < c}.

Therefore,

N pC () p=+Amg(Rz)

pEAssr(N),cde (M,R/p)<c pEAssr(Rz)
Let J = ﬂpeAssR(N),qu)(M,R/PKCp, there exists a positive integer m such that
J"r = 0.
By the primary decomposition of the zero submodule of N, we have
J"xr € N;

for all 1 <4 < n. Assume that there exists an R-module N; such that ¢ N; and cde (M, R/p;) = c. Since
Nj; is p;-primary, we can conclude that J™ C p;. This implies that there is a prime ideal p, € Assg N such
that cde (M, R/pr) < ¢ and pi C p;. Consequently, we have

c= Cd@(M, R/p]) < Cd@(Ma R/pk) <6
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which is a contradition. Hence, z € @ and then T (M, N) = Q. O

We are going to state and prove the first main result of this paper. The following theorem is an extension of [3,
2.3].

Theorem 3.3 Let M, N be two nonzero finitely generated R-modules with cohomological dimension ¢ :=
cde (M, N). Then
AnnpHE(M,N) = Anng(N/Te (M, N)).

Proof The short exact sequence
0—>Te(M,N) - N — N/Te(M,N) — 0
induces the following exact sequence
Hy(M,To(M,N)) - HG(M,N) — H{(M,N/T(M,N)) — 0.
Since cdg(M,Te(M, N)) < ¢, there is an isomorphism
HE(M,N) = H{(M,N/Te(M, N)).
The proof is complete by showing that
AnnpHE(M,N/Te(M,N)) = Anng(N/Te(M, N)).

Let N = N/Te(M,N) and it is clear that

AnngN C AnngH§ (M, N).
Let € AnngHS (M, N), we will prove that € AnngN. The short exact sequence

O%O:ﬁxﬁﬁﬂxﬁ—)O
deduces the long exact sequence

H§(M,0 5 x) — HE(M,N) % HE(M,zN) — 0.

Since z € AnngHS (M, N), it follows that HS(M,zN) = zHS(M,N) = 0 and then cde(M,zN) < c. By the
definition of Ty (M, N), we can conclude that N = 0. Hence, 2 € AnngN and the proof is complete. O

Corollary 3.4 Let R be a ring with cohomological dimension ¢ := cde(M, R). Then

AmpHG(M,R)=Te(M,R)= ()
cds(M,R/pi)=c

where 0 = ﬂp,;eAssRR q; s a reduced primary decomposition of the zero ideal of R and q; is a p;-primary ideal

of R.
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Proof It follows from Theorem 3.2 and Theorem 3.3. O

Corollary 3.5 Let R be a ring of finite dimension d and cde (M, R) = c. Then the following conditions are

equivalent:
(i) Anng(H$(M,R)) =0.
(ii) Assg R = {p € Spec R | cde(M, R/p) = c}.
Proof It follows from Corollary 3.4. O
Corollary 3.6 Let R be a domain such that cde(M, R) = dim R. Then
Anng HI™ B (M, R) = 0.

Proof If R is a domain, then we have Assp R = {0}. The assertion follows from Corollary 3.4. O

Corollary 3.7 [3, Corollary 2.10] Let R be a domain such that cdq(R) = dim R. Then

Anng HI™R(R) = 0.

4. Attached primes of top generalized local cohomology modules with respect to a system of
ideals

The set of attached prime ideals of an R-module M is denoted by AttrM. The attached prime ideals have

been studied by Zoéschinger [24]. In the case where M is a representable R-module, this definition agrees with

the one of Macdonald [19].

Definition 4.1 (See [24]) Let M be an R-module. A prime ideal p of Spec R is called attached to M if
there is a submodule N of M such that p = Anng(M/N).

The following facts are basic properties of the set of attached prime ideals.
Lemma 4.2 (See [1]) The following statements hold true.
(i) If 0 > A — B — C — 0 is an exact sequence of R-modules, then
AttrC C AttgB C AttrC U AttrA.
(ii) If N is a finitely generated R-module, then
Attr(M ®r N) = AttgM N Suppp N
for all R-module M.

Lemma 4.3 Let R be a ring of finite cohomological dimension ¢ := cde (M, R). Then

Attr(Hg(M, R)) C {p € Spec R | cda (M, R/p) = c}.
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Proof Let p € Attr(H$ (M, R)), we have by the right exactness of H§ (M, —) that
0# Hg(M,R)/pHg(M, R) = Hg (M, R/p).

Hence, cdg(M, R/p) = ¢, and the proof is complete. O

We are going to state and prove another main result of this paper which describes the set of attached prime

ideals of HEMFI™ R Ny,

Theorem 4.4 Let M, N be two nonzero finitely generated R-module such that p := pdM < oo and d :=
dim N =dim R < co. Assume that cde(M,N) =p+d. Then

Attr(HEY (M, N)) = {p € Assg N | cds(M, R/p) = p + d}.
p+d d
Moreover, AttrHg “(M,N) C AttrHG(N).

Proof Let F := Hom(M,—) and G :=I's(—) be two functors from the category of R-modules to itself. It
is clear that FG(N) 2 T'¢(M,N) for any R-module N and R'F(G(E)) =0 for any i > 0 and any injective
R-module E. There is a spectral sequence by [22, Theorem 10.47]

Ey’ = Extp(M, Hy(N)) = Hg'/ (M, N).

Note that E;J =0 for all i > p and by [5, 2.7] we have E;j =0 for all j > d. Therefore, E%J =0 for all i > p

or j > d since E%J is a subquotient of E4”. There is a filtration of submodules of HPt? := H£+d(M, N)
0 = prtdtipgprtd c pptdpgrtd . C ptprtd C LOgPHd = grtd

such that
Eé,oerdﬂ' o~ (piH;D+d/¢i+1Hp+d

for all 0 <7 < p—+d. By the above analysis, we obtain that

p+1pp+d — (Pp+2Hp+d — prd+lppt+d _

14 =

and
s017Hp-&-d — (pp—al-&-d - = (pOHp+d — fgrtd.

Consequently, there is an isomorphism
HY(M, N) =2 Ext? (M, HE(N)).
Let p € Attg HE (M, N), we have by the right exactness of the functor HZ"(M,—) that
0# HYY(M,N)/pHE™(M,N) = HY (M, R/p) @r N.

Hence, H2™¥(M, R/p) # 0 and we get by Proposition 2.4 that cdg(M, R/p) = p + d. Since Exth, (M, —) is a

right exact functor, we obtain

Ext?, (M, HE(N)) = HE(N) @ Exth (M, R).
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According to Lemma 4.2, we have
Attp HET (M, N) = Attg(HE(N)) N Supp zExt? (M, R)

and
0# HY (M, N)/pHY (M, N) = Ext?, (M, R) @ HL(N)/pHE(N).

This implies that HE(N)/pHL(N) # 0. Note that HZ(—) is a right exact functor by [5, 2.7]. It is clear that
HZ(R/p) # 0. Therefore, we can conclude that dim R/p = d and then p € Assg N.

Let q € Assg N such that cde (M, R/q) = p + d. There exists a submodule K of N such that K is
q-primary and Assg(N/K) = {q}. It follows from Theorem 2.6 that cde(M,N/K) = cde(M,R/q) = p + d.

By the above argument, we see that
AttHY (M, N/K) C {p € Assp N/K | cdo(M, R/p) = p+d} = {a}.

Now the short exact sequence
0—-K—-N-—->N/K-=0

leads to the following exact sequence
HE2YY(M,N) — H2 (M, N/K) — 0.

By Lemma 4.2(i), Attg H2 (M, N/K) C Attg HE (M, N) and then q € Attg H2 (M, N), which completes
the proof. O

Corollary 4.5 Let M, N be two nonzero finitely generated R-modules such that p := pdM < oo and
d:=dim N =dim R < co. Assume that cde(M,N)=p+d. Then

Attr(HET (M, N)) = {p € mAssgN | cds(M, R/p) = p + d}.

Proof Let p € Assp N such that cde (M, R/p) = p+d. It follows from the above proof that dim R/p = dim N
and then p € mAssp V.
Now, let p € mAssgN such that cde (M, R/p) = p + d. It follows from Theorem 4.4 that

AttpHET (M, N/pN) = {q € Assg N/pN | cdo(M, R/q) = p+d} = {p}.

The short exact sequence
0—pN—-N— N/pN -0

induces the following exact sequence
HEMY(M,N) — HYY(M,N/pN) — 0.

By Lemma 4.2(ii), we get Attg HZ (M, N/pN) C Attg HE (M, N) and then p € Atz HE (M, N). O

Corollary 4.6 Let M, N be two nonzero finitely gemerated R-modules such that p := pdM < oo and
d:=dim N = dim R < co. Assume that cde(M,N) =p+d. Then
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(i) There exists a submodule T of N such that dim N/T = d,
(ii) Assg N/T ={p € Assg N | dim R/p = d},
(iii) AttgHE (M, N) = Assgp N/T.

Proof  According to Theorem 4.4, we have AttRHfffd(M, N) C Assg N. It follows from [10, p. 263,
Proposition 4] that there is a submodule T of N such that Assgp N/T = AttRHngd(M, N) and AsspT =
Assp N\ AttRHgJ“d(M, N). It is clear that dim N/T = d, and the proof is complete. O

Corollary 4.7 Let N be a nonzero finitely generated R-module of finite dimension d. Then
Attr(HE(N)) = {p € Assg N | dim R/p = d}.
Proof It follows from Theorem 4.4 that
Attr(HI™E(R)) = {p € Assg R | dim R/p = dim R}.
Now, let R = R/AnngN, it is clear that dim R = dim N. By [5, 2.5], there is an isomorphism
H§(N) 2= Hgz(N),
where ®R = {aR | a € ®} is a system of ideals in R. On the other hand, there are isomorphisms
H{-(N) = H{-(R@gp N)

=~ H!-(R) @z N
since Hgﬁ(—) is a right exact functor. It follows from Lemma 4.2(ii) that
Attm(HGH(N)) = Attg(Hiw(R)) N SuppgN = Attg(Hiw(R)).

Note that
Attﬁ(HgE(R)) ={pe Assp R | cd(<I>R7 R/p) =d}.

Consequently, one gets

Attr(HE(N)) = {p € Assg N | cd(®, R/p) = d},
and the proof is complete. O

In the case where p := pdM > 0, we see that Hf;dimR(M, N) =0 for all R-module N. Now we consider
that M is a projective R-module.

Theorem 4.8 Let M be a nonzero finitely generated projective R-module and N be a nonzero finitely generated
R-module of finite dimension d := dim N = dim R. Assume that cde(M,N) =d. Then

Attp(HE(M,N)) = {p € SuppzM N Assg N | dim R/p = d}.
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Proof Since M is a projective R-module, it follows by [22, Corollary 10.65] that

Hg(M,N) = lim H{ (M, N)
acd

= hgql)lignExth(M/a”M, N)
ac n

1%

i% lim Ext%(R/a", Homp(M, N))
€ n

im H¢(Hompg (M, N))

a

p=1

I
|5

a
m
(S

IR

Hg(Hompg (M, N)).

e,

Combining Corollary 4.7 with [10, p. 267, Proposition 10], we have
AttrHE (M, N) = Attg HE (Hom (M, N))

= {p € Assg Homg(M,N) | dim R/p = d}

= {p € SupppM NAssg N | dim R/p = d},

as required. O

Corollary 4.9 Let (R, m) be a local ring with finite dimension. Let M be a nonzero finitely generated projective

R-module and N be a nonzero finitely generated R-module of finite dimension d := dim N = dim R. Assume

that cde (M, N) = d. Then there is an ideal a € ® and p € Suppﬁl\//fﬂ ASSEN such that dim(R/(aR +p)) = 0.

Proof Combining the hypothesis with Corollary 4.8, we can conclude that Hg(Hom(M, N)) # 0. The
isomorphism

H§ (Hom(M, N))  lim H(Hom (M, N))
acd

shows that there exists an ideal a € @ such that HZ(Hom(M,N)) # 0. By the Lichtenbaum-Hartshorne
Vanishing theorem, there is an ideal p € SuppE(Homﬁ(M\, N) such that dim R/p = d and dim(R/(aR+p)) = 0.
Note that dim Homﬁ(]\/], ]\Af) =d and then p € Suppf{]\/jﬂ Assﬁ]v, which completes the proof. O

Theorem 4.10 Let R be a Cohen-Macaulay local ring with d := dim R > 0. Assume that M is a nonzero
Cohen Macaulay finitely generated R-module with pdM < oo and cde (M, R) = d. Then

Attr(Hg™ (M, R)) = Attr(Hg™ ™ (M)).

Proof Let p = pdM, by [9, Theorem 2.1.5], we have p = inf{i | Extiz (M, R) # 0}. Let F = T's(—) and

G = Hompg(M, —) be two functors from the category of R-modules to itself. We have a Grothendieck spectral
sequence

Ey’ = Hy (Extp(M, R)) = Hy'/ (M, R).
It should be mentioned that E;J = 0 for all j # p. Hence, there is an isomorphism

HE(M, R) = HY P(Ext? (M, R)).
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Since H{ (M, R) # 0, it follows from [5, 2.7] that dim Extf,(M, R) > d —p. On the other hand, by [18, Lemma

3.1], we can assert that
dim Ext},(M, R) = d — p = depthR — pdM = depthM = dim M.
Combining [9, Exercise 1.4.26] with Corollary 4.7, we have
Attp(HE (M, R)) = Attp(Hg 7 (Exth (M, R)))
= {p € Assg Ext},(M, R) | cde(R/p) = dim M}
={p € Assg M | cde(R/p) = dim M}

= Attr(Hg™M (M),

as required. O

5. Attached primes of generalized local cohomology modules with respect to a pair of ideals

In [23], Takahashi et al. introduced an extension of local cohomology modules which is called the local

cohomology modules with respect to a pair ideals. Let I, J be two ideals of R and
W(I,J)={p €SpecR|I" Cp+J for some integer n}.
The functor I'; ; from the category of R-modules to itseft is defined by
T1(N) = {z € N | Suppg(Re) € W(I,J)},

where N is an R-module. The functor I'; ; is R-linear and left exact. For an integer 4, the ith right derived
functor of I'y ; is called the ith local cohomology functor and denoted by H}‘J. Let M be an R-module, we
call Hj ;(M) the ith local cohomology module of M with respect to (I,.J). Let

W(I,J)={ais anideal of R | I" C a + J for some integer n}

and we define a partial order on W(I,J) by letting a < b if a D b for a,b € W(I,J). It follows from [23,
Theorem 3.2] that
Hi, (M) lm H()
aeW(1,J)
for all + > 0 and for any R-module M. It is clear that W(I, J) is a system of ideals of R.

A natural generalization of local cohomology modules with respect to (I,J) was introduced in [21] as
follows: Let M, N be two R-modules, the module I'; j(Hompg (M, N)) is denoted by I'; ;(M,N). For each
finitely generated R-module M, the ith generalized local cohomology functor H} (M, =) is the ith right
derived functor of the functor I'y ;(M, —). When M = R, the generalized local cohomology module H } ;(R,N)
is the local cohomology module H} ;(N) in [23].

It is clear that the local cohomology modules with respect to a pair of ideals are special cases of local

cohomology modules with respect to a system of ideals.
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We denote by
cdy, s (M, N) := sup{i | H}.,J(Mv N) # 0}

and call the cohomological dimension of M, N with respect to (I,.J).

Theorem 5.1 Let M, N be two nonzero finitely generated R-module such that p :== pdM and d := dim N =
dim R. Assume that cd; ;(M,N)=p+d. Then

Attr(HY S (M N)) = {p € Assp N | cd; 5 (M, R/p) = p + d}.

Moreover, AttRHfjd(M, N) C AttRH;l,J(N)~

Proof It follows from Theorem 4.4. O

Theorem 5.2 Let R be a Cohen—Macaulay local ring with d := dim R > 0. Assume that M is a nonzero
Cohen—-Macaulay finitely generated R-module with pdM < oo and cdy y(M,R) = d. Then

Attr(H{"P (M, R)) = {p € SupprM NV (J) | cd;(R/p) = dim M}

Proof It follows from Theorem 4.10 that

Attr(HJ (M, R)) = Attr(H{ M (M)).

The assertion follows from [11, Theorem 2.1]. O
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