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Abstract: An extension in Montgomery identity with the help of Taylor’s formula on time scales is provided in the
paper, which is used to establish Ostrowski type inequality, midpoint inequality and trapezoid type inequality on time
scales in generalized forms. The weighted version of obtained Montgomery identity and respective Ostrowski inequality

are also addressed at the end of the paper.
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1. Introduction

An identity due to Montgomery is utilized to obtain a number of novel inequalities such as Ostrowski type
inequality, trapezoid inequality, Mohajani inequality, Cebysév and Griiss inequalities:

The Montgomery identity given by Pecaric in [17] is stated as:

Let v : [a, 5] = R and ¢ : [o, 5] — R be integrable on [a, ], then

2 B
v) = 57 [ vedvt [ Raow . (1)
where
« o a<v<y,
R(y’v):{ gifw y<v<B. }

The interpolation (1.1) is used by many authors to generalized inequalities for higher order convex function,
namely Jensen’s inequaity [12], Jensen-Stefensen’s inequality [13], Sherman’s inequality [14, 15], cyclic refine-
ment of Jensen’s inequality [8], Popoviciu’s inequality [9, 16], combinatorial improvements of Jensen’s inequality
[18], Levinson’s inequality [1] via time scales theory [2].

The Montgomery weighted identity (obtained in [19]) states, for y € [a, ],

B B
by) = / cW)do + | Re(y, op (v)dv, (1.2)

where 9 : [a, 5] — R is differentiable on [a, 8], while ¢ : [a, 5] — R integrable on the same interval [«, §] and

z: [a, B] = [0, 00) is normalized weight function, i.e. ff z(v)dv =1, where as Z(v) = [ z(y)dy for v € [, ]
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and the weighted Peano kernel is

- B Zw), a<wv<y,
Rz(y,v)—{ Z(v) — 1, ygvgg. }

The development in the field of time scales was started by German mathematician Hilger in 1988 as a
theory to have ability to contain difference and differential calculus both together in a consistent way. From
that point forward, numerous creators have thought about many integral inequalities on this topic. Bohner and
Matthews [6] obtained the following Montgomery identity and respective Ostrowski inequality in the context of

time scales. Some of the important integral inequalities can also be seen in [21-24].

Theorem 1.1 [6, Lemma 3.1] Let o, B,w,u € T, a < B and ¥ : [a, Blr = [, 5] T — R be differentiable,
then

'3
W) = / V7 () Aw + % B, w)ih™ () Aw, (1.3)

where

The following is the weighted identity on the same topic:

Theorem 1.2 [25] Let o, B,w,u € T, a < B and ¥ : [a, By = [o, 5] (T — R be differentiable, then

B
W(u) = / (W) (w) Aw + / B (1, )0 (1) Aw, (1.4)

where
Rz(u,w):{ Z(w) —1, u;wgﬂ.

Where z : [a, 8] — [O,oo),ff z(u)du = 1 and Z(u) = [ 2(y)dy for u € [, f] and Z(u) = 0 for u < a,
Z(u)=1 for u> .

In the paper, we extend Montgomery identities (1.3), (1.4) by using Taylor series in time scales settings and we
prove the respective trapezoid and Ostrowski type inequalities for this scenario. The sharpness of the constants
on the RHS of Ostrowski inequality is also addressed. Moreover special cases of obtained Ostrowski inequality

include generalized midpoint inequality.

2. Preliminary results
Generalized polynomials on time scales are the functions g, h : T2 — R,l € Ny defined recursively as follows:
go(u,w) = ho(u,w) =1, Vu,w € T and for given g;, h; with [eN,

h[_H(u,w) :/h[(T,U))AT, Giyq (U, w) :/gz(U(T),w)AT.
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If h[A (u,w) denotes for each fixed w, the derivative of h;, ,(u, w) according to the variable u, then

hﬁrl(u,w) = hj(u,w), gﬁl(u,w) = gi(o(u),w) for [ € No,u € T.

Also Tk = T — (p(supT),supT] ifsupT < oo
T ifsupT = oo.

Further
hi(u, w) = (=1)'g;(w, u).

Taylor formula for arbitrary time scale T is as what follows:

Theorem 2.1 [7, Theorem 1.113] Let m € N, ¢ is m times differentiable on T Then for uw e T, we have

1 ) P (w)
vw) = 3 e @+ [ b )e®” (), )

where h; T2 5 R, [ € Ny represents generalized polynomial on time scales with the following values ho(w,u) =
u ~

1, he(w,u) = w —u, Yu,w € T and hi(u,w) = [ h;_,(n,w)An, hZA(u,w) = h;_,(u,w) forleN,ueT"

Elvan Akin proved the following result to exchange the integrals on time scales.

Theorem 2.2 [3, Theorem 10] Assume o < € T and V(n,w) is a real-valued function on T x T, then

B n B B
//\If(n,w)AwAn = / / U(n, w)AnAw.
o« @ o(w)
See also [11, Lemma 1] for exchange of integrals on time scales.
Remark 2.3 From [7, Theorem 1.109], it is easy to obtain

Im(u, pl(u)) =0 VYmeN, 0<I<m—1. (2.2)
The following lemma is used to proof the results.
Lemma 2.4 The function h; for u € T satisfies

hm(pi(u),a(u)) =0, YmeN, 0<I<m-—2. (2.3)

Proof By using Remark 2.3, we can write gm(u,p[(u)) —0VmeN, 0<[<m-—1. Since hy,(u,w) =
(=1)™gm(w,u), ¥Ym € N. Therefore

hm(p[(u),u) =0, VmeN, 0<I<m-—1.
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By using [7, Theorem 1.16 (iw)],

O
3. Generalized Montgomery identity on time scales
Theorem 3.1 Let m € N, ¢ is m times differentiable on T, Let u € T, then we have
1 B 1 m—2 R
o 1+1
v = g [ @ser o 30 e, - e}
a =0
B
1 A
Al — Qum(u, =" (n)An, (3.1)

[e3%

where

_f —hm(o(a),0(n), nela,p™ 2(u)),
Qm(“’”)‘{ hom(0(B),0(n)), 1€ [p™(u), B, }

Proof Suppose ¥> is m — 1 times differentiable, then by replacing m with m — 1, ¢ with ¥* in (2.1), we
have

- , P2 (s)
A0 = 3 bl @+ [ hao,o)ed” A (3.2
=0 u
We can rewrite (1.3) as
oy 1 f
= T()Av + —— [ (v — @) (v)As
Yw) = B_aa/wm +ﬁ‘aa/( 0o )A
) B
— A v v
+ g [ rrwa (33)
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By using (3.2) in (3.3), we have

o) = g /B v (0)Av

T3 = a/ (v=-o) 7:2:; hi(w, A () A o)
1 / ~ i+1

T Ba u/(” —B) g hi(v, u)p™ " (u)Av (35)
1 "

T B-a /(“_O‘) / hn—2(v, 0 ()" (1) AnAv (3.6)
1 aﬁ uu m

I u/(” _5),)7“[(1,) hn—2(v, 0 ()™ () AnAv. (3.7)

By making calculations for integral in (3.4), we obtain

[0 Y hwwe ™ wae = 30" @ [ mwand, e
s i=o0 i=0 o
= A (W) gy (o), ) — B (o), )}
=0
(3.8)
Similarly (3.5) gives
g m=2 i+1 m—2 i+1
/ 0-8)Y b, Ao = 3 A" )y, o0 (u),w) — by o(0(8), u)}
u =0 =0
(3.9)
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By making calculations for (3.6), we have

u P2 (v) P2 () a
a/ (v a) / s (0, ()" () Ay = / ) (/) (0 — Q) —(v, 0(n)) Avir,
P2 () ey
- / B2 () / (0 — a)h_y (v,0()) AvAn,
o a(n)
m Q(U
= / wAm /hm 1 (U))AUAW
a(n)
m ‘2(u
- / VA" () ham(0(a), o(n)) Ar. (3.10)

Similarly (3.7) gives

7n 2 B
/ v—a) / hm_ (v, ()" () Ao = — / A" () (0(B), 0 (m)) A,
P (u)

(3.11)

Use (3.8)—(3.11) in (3.4)—(3.7) respectively to get the desired result. O

Remark 3.2 e If weuse T =R in Theorem 3.1, (3.1) becomes (2.2) in [4].

o If we use T =7 in Theorem 3.1, (3.1) takes the form

— Al+ a+1-— U)(”Q) _(B+1- u)(i+2) }
V) e vl { (i12) (12
1 =
+ ﬁf Z m¢(77)Qm(U 77)
n=a

where
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e If we use T =q*, q> 1 in Theorem 3.1, (3.1) attains the form

m—2 +1 s I+1 8 — g
w( ZAH»lw { H qo q u H (q — q U)}

p2=0 Z qh2 p2=0 Z qH2

p1=0 pn1=0
1 =
+ > AP0 Qm(u,n)
B2
where
[ ey o, 02,
H2= qu“2
Qm(U’?n): m e

-1
- [T Y e fugr,B).

3.1. Trapezoid type inequalities

Theorem 3.3 Under the conditions of Theorem 3.1, we obtain following generalized trapezoid inequality

B

Y(a) +9(8) 1 -
5 T 3 a /1/) (v)Av

[e3%

771 m72Ai+la i olx),a)— hy g o
2(6_04) gdj ( ){hl+2( ( )a ) hl+2( (6); )}

1 m—2 Af+1
S =PI UNCO LR}
1 m 7 z
< st (/ |Qm(a>n)+Qm(5,n)|qAn> : (3.12)

Proof Rewrite (3.1) by replacing v = a and w = § in the following forms,

/8 m—
e = B i o /wa(U)AU + Z Alﬂ {hl+2 hi+2(0(5)’0‘)}
B
/ A% (m)An,

(3.13)
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and

B m—2 R
00 = g [ @av 4 = ST 6) o). B) — hiya(o(5).0))

=0
. 8
A’"L
+ 57@/62171(6,77)1# () An. (3.14)

Add (3.13) and (3.14) and divide the resultant by 2 to get

B
V(o) +¥(8) 1 - 1 2 e
2 o ﬁ_a/w (U)A’U—m Z(:)wA (a){hiJrQ(a(a)’a)_hi+2(a(6)7a)}

[e3%

m—2

1 I+1
ey L O rale @) o310

B
_ 1 A™
= 2G-a) /{Qm(am) + Qu(B,m) 3= (n)An. (3.15)
Use Holder’s inequality on R.H.S of (3.15) to obtain
¥(@) +4(6) Lo =N
« i+1
i Rt > v @ trpafote0) = byslotd),a)
m—2
- g v (5){hi+2(0(04)> B) = hiyo(o(B), 6)}’,
i=o0
. B . a
which is required trapezoid inequality. Furthermore, we can write
Q) + Qo5 = =2 (o), ) + (o (3), ().
O
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Remark 3.4 For T =R, (3.12) becomes as

8 ) )
V() +v(8) 1 o)dv 1 & o (8 — )t
2 ﬁaa/“ 0t Sy 2 I (it2) }

_ 1 ~ (I+1) (o — 5)(i+2)
2w 2 2 it 2) H

8
1™l (/IQm(Oé,UHQm(B,U)WdU) ;

IN

1
2(8 —a)

where

(a—u)er(ﬁ—u)’”}

m! m!

Qm(a,u) + Qm(B,u) = —2[

Remark 3.5 In the Theorem 3.3 take m =2 and g =1. In this case (3.12) takes the form

B
1/1(04)+¢(5) B 1 () Ay — 1 Aa ola). o) — o o
: B_%/w 00— st (@ halo(a). ) halo(). 0}
1 . o(a),B) = ha(o
- st Ol - ha(e).0) )
I B
< s 19 e [ 1Qalan)+ Qa8 an

where

Q2(o,m) + Q2(8,m) = —2 {hz(ff(a),a(??)) + ha(o(B),a(n))|-

3.2. Ostrowski type inequalities
Theorem 3.6 With all assumptions of Theorem 3.1,assume additionally (p,q) as a pair of conjugate exponents,

that is 1§p7q<oo7%+$:1. Then

B m—2
— ! (v ’U—L A[Hu - o(o(a),u) —hi (o U
v B_aa/w R = ) irato(@)0) = hipa(o ()0 )
1 / '
LAl (/ Qm,(um)lqAn) . (3.10

B
The constant ([ \Qm(u,n)|qA77)% is sharp for 1 < p < oo. Also it is best possible for p=1.
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Proof We use the identity (3.1) along with Holder inequality, consequences

v - g /ﬁ w%vmv—ﬂm}_j A {m(a(a»u)—hf+2<o—<ﬁ>,u>}\

IA
<

>

S

Let us denote D1(n) = @ (t,m). To see the sharpness of the constant (ff |D1(77)|’1A77)% we need a function u
so that the equality in (3.16) is resulted.
For 1 < p < o0, take 9 so that
42" () = sgn D1 (n).| Dy ()| 7
For p = oo, take
v2" (1) = sgnDi(n).

For p =1, we shall prove

i F
‘ / Dim)eA" ()Ag| < max |Di(n) ( / W <n>|An>. (3.17)

n€la,Blr

Suppose |Di(n)| attains its maximum value at 79 € [, B]r. Firstly Di(n9) > 0 and € > 0 is such that
e < B—no. Define ¢() by

0, a <n <,
Ye(n) = %hm(n, n0), no < n <o+,
whmo1(n,m0), M0 +e<n< B

For ny < n < no + €, the expression for derivatives are

1 1
Ye(n) = ;hﬁ(mno) = zhm—l(mno)-
" 1 A 1
we (77) = Ehmfl(na 770) = Ehm*Q(na 770)
Continue in the same way, to get
A’!n 1 1
,(/)e (77) = th—m(na 770) = ZhO(nv 770)
1
= —. ho =1.
€
For no +e<n < B,
, 1 A 1
vem) = —hip_1(0,10) = —hm—2(1,70)-
" 1 A 1
Tpe (77) = Ehm—Q(’r}? 770) = Eh'm—fﬁ(nv 770)
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Continue in the same way, to get

m 1 1

Then, for small enough ¢

Since

. 1 no+e
lim — D1 (n)An = D1(no).

e—0 €

Therefore the statement yields. In case D1(n9) < 0, take

%hm—l(nan0+e)7 a < n <o,

wﬁ(n) = ihm(n7’r]0+6)7 Mo §77<770+€7 )
€
0, m+e<n<p
and working on the same steps as above the result yields. O

Corollary 3.7 Under the same assumptions of Theorem 3.6 and for p =1, we have

5 2
- T(v)Av  — Ly AN b (0(@), 1) — Bi L (0(8),u
v B_QQ/w R T (] o). = ol |
< gl max {1 (ot o@D il (8), ™)1

(3.18)

and the constant located on the right hand side of the above inequality is best possible.

Proof By using (3.1)

£ ) E
[ i@nmisy = [ Qunisg+ [ @uwnlan
o o P2 (u)
R ) 5
= [ - hm@uotltan s [ = hale(3).ot)n,
a pm=2(u)
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For p =1= g = 0o, we have

sup Q)| = max{ sip | hm(o(a),o(m)l,  sup |hm<o<ﬁ>,a<n>>},
n€la,p] €[, p™ 2 (u)] n€lpm—2(t),H]
— mex {| = (0@, o (™2 ()], | — hm<a<ﬂ>,a<pm2<u>»|},
— max {| = hn(o (@) ")), | hm<a<ﬂ>,pm3<u>>|}.
By using above expression in (3.16) we get (3.18). O

Remark 3.8 Choose m =2 in Corollary 3.7, In this case (3.18) takes the form

1
b —«

5 @ kalo(e).0) - ha(o ()0

1

< ||max{| —hz(o(a),p1(U))I,|—h2(a(ﬂ)7p1(u))l}-

Remark 3.9 By using T =R in Remark 3.8, we have [/, Corollary 1].

3.3. Generalized midpoint inequality

Corollary 3.10 Under the conditions of Theorem 3.6, we find the following inequality of generalized midpoint

m—2

B
1/}(@;3) - ﬂ%a/zp“(U)Av— 1 Z¢Az+1(a;‘5){hi_~_2(a(a)7a;6)_hi+2(0(5)7a;—6)}’

B—a 4
q q
An |

=0

B
1 A™ Oerﬂ
i (/\%(2,77)

where
Q (a+ﬁ ):{ 7hm(g(a)a0(77))a ne [aapmiz %) ) }
2 —hm(a(B),0(n), nelp™2(*F5), 8]
Proof Use u= # in Theorem 3.6, to fulfill the requirement. O
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4. Generalized weighted Montogomery identity on time scales
Theorem 4.1 Let m € N, If 1 be m times differentiable on TV and w € T,z : [o, B]r = [o, )T — [0, o0)

is a density probability function, then

B

Y(u) = / 2(s)y7 (s As—zw { i 2(Y)hiy (o Ay}

/sz u, M= () An, (4.1)
where
2@ hm1(@0m) = | Zhmr(o(s),00m)As, 1€ [, g2 (w)),
_ a(n)
Qz,m(uvn) - B
(Z(B) = Dhm-1(B8,0(n)) — (f)(Z(S) = 1)2hm—1(c(s),0(n)As, n € [p™ ?(u),s].

Proof Since ¢ is m — 1 times differentiable, therefore by replacing m with m — 1, and ¢ with ¥ in (2.1),

we have

- A P (s)
29 = 3 s @+ [ sl )0 () (42)
=0 u
(1.4) takes the shape
B u
/ As+/ ( )wA(s)As+/(Z( ) — 1) (s)As (4.3)
Now by using (4.2) in (4.3), we have
B m—2
b(u) = /z(s)w( As+/ Zh s, )0 (w)As (4.4)
B m—2 N
+ / (Z(s) = 1) Y hyls, ™ (w)As
u =0

WL_Q(S

+ / 2(s) / B, om0 () AqAs

[e3

- / -1) / Bm—2(s, 0(n)v2" (n) AnAs.

P2 (s)
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By using Theorem 2.2,

u m—2

a i=0

Similarly

B m—2 R
/ (Z(5) = 1) S has,wpA (w)As
w i=0

By using Theorem 2.2 and (2.3), we have

m 2(8

/ / Bon—2(s, o()02" (n) AnAs =

()

«

W<n>{2<a>hm_1<a,a<n>>— / ZA(S)hm—l(U(S),G(U))AS}AU- (4.7)

Similarly,

m,—Q(S)

B
/ (Z(s) ~ 1) / (5,0 ()" () AnAs

Use (4.5)—(4.8) in

4.1. Weighted Ostrowski inequality

Corollary 4.2 With assumptions of the Theorem 4.1,
+ é =1. we find

exponents, that is 1 < p,q < oo, %

(4.4), to get the required result.

a(n)

additionally by taking (p,q) as a pair of conjugate
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B
The constant ([ \Qz,m(u,n)PAn)% is sharp for 1 < p < oo and the best possible for p=1.

Proof Proof is similar to proof of Theorem 3.6. O

Remark 4.3 By using T =R in Section 4, we have [4, Theorems 1, 2].

Remark 4.4 Remaining results appeared in Section 3 can be proved for the weighted Montogomery identity and

Ostrowski’s inequality.

5. Conclusion

In this paper, we obtained extension in Montgomery identity with the help of Taylor formula on time scales.
Further, it is applied to find extended form of Ostrowski type inequality, midpoint inequality and trapezoid type
inequality on time scales in generalized forms along with the weighted version of obtained Montgomery identity
and respective Ostrowski’s inequality. As special cases, our inequalities contain the results proved in [4] when
T = R. Moreover, our results can be used to prove certain integral inequalities including Cebysev-Griiss type
inequality, Steffensen’s inequality and Popoviciu type inequality in more generalized settings, e.g., it is possible

to extend the results given in [5, 10, 20] with the help of new inequalities presented here.
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