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Abstract: In this paper, we prove a Benedicks type theorem and a Donoho-Stark type theorem, for the generalized
Fourier transform F, associated to some differential operators that we call Flensted-Jensen operators, in various spaces
such LL(K), L2(K) and L. (K) NL2(K), where K = Ry x R.
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1. Introduction
The uncertainty principle is a characterization of a quantum mechanical system. This principle says that one
cannot measure, simultaneously and as accurately as one wants, the position and momentum of a quantum

particle. In harmonic analysis, the uncertainty principle can be summarized by the following sentence:
a nonzero function and its Fourier transform cannot be localized as precisely as one wishes.

We can distinguish two formulations of this principle, quantitative and qualitative. In 1927, W. Heisenberg
[13] gave a physical interpretation of the quantitative uncertainty principle that he wrote in the form of the

following formula called Heisenberg inequality:
. 1 2
wrevr®. [l [ Piota = ([ rwpe)
R R 4 \Jr
where f is the Fourier transform of f, defined for all f € L2 (R)NLY(R), by

N 1 —izy T
f(y):E/Rf(x)e dz.

Equality cases are realized only by Gaussians of the form

flx) = Ce™" z eR,

where C' and a are constants with a > 0.
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By a qualitative uncertainty principle one means a result that, without giving quantitative estimates for

a function f and its Fourier transform f, says that f and f cannot both be sharply localized unless f = 0.
Several authors have published works in the context of the qualitative uncertainty principle. We can cite for
example, [1-7, 12, 14-16]. For further references about uncertainty principle, we refer the reader to the book
[11] and the survey [10].

In [7], Donoho and Stark studied a new version of qualitative uncertainty principle. This uncertainty
principle relies on the notion of e—concentrated, where a function f belongs to L2(R) called e-concentrated

on a measurable set E if

If = fiellz <ellfll2

Both others in [7] established that if f is e;—concetrated on E and f is ea-concentrated on F', then
m(E)ym(F) > (1 —e; — &3)?

The aim of this paper is to establish Benedicks and Donoho-Stark type theorems associated to the following
operators, that we call Flensted-Jensen operators,

0
D = =
00’
02 0 1 02
Dy = —— +[(2a+1)cothy +tanhy] — — —— = 12,
gy [ Deothy & tanby] 5 — o o )

where a > 0 and (y,0) € K = [0, +00[xR.

This system was first considered by Flensted-Jensen in [9] for « = n — 1, where n is a positive integer, in the
frame work of simply connected semisimple Lie group. The operators D and [D,,_; — n?] with the identity
generate the algebra D(G/K) of left invariant differential operators on G/K , where @ is the universal covering
group of G = U(n,1) and K is the subgroup U(n). A several works on the theory of uncertainty principle,
related to the operators D and D, were studiedin [15-17].

The outline of this paper is given as follows:

Section 2 is devoted to recall some results concerning the harmonic analysis associated to the operators D
and D, . In section 3, we prove a Benedicks type theorem. In the last section we obtain a various versions of

Donoho-Stark theorem.

2. Preliminaries

For (y,0) € K, the following system

Du(y,0) = idu(y,9),
Dou(y,0) = —pu(y,b), ApeR
ou
0,0 =1 —(0,0) =0,  €R
u( ) ) 9 ay( 9 ) ) S
has a unique solution given by
oau(y,0) = €’ (coshy)* i (y),
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where gofj’)‘ is the Jacobi function defined by

at+A+1+ip a+A+1—iu
2 ’ 2 ’

sOZ"A(y) = oF < a+1; — sinh? y) .

Recall that oF; is the Gaussian hypergeometric function (see [8]).

From [18], we have

sup oau(y,0) =1, (A p) €K
(y,0)€K

Let L =R x [0, +o0o[ and K = L UQ, where

o= J pLub,,.
meN

with
D} ={(a+2m+1+n,in)|n> 0} and D, ={(—a—2m—1—n,in)|n > 0}.

Let 1 <p < +o0. Consider L2 (K), the space of measurable functions f on K verifying

Wmma=(4ﬁwﬂﬁﬂmdww>p<+m7

where

dme(y,0) = 22 (sinh )22+ cosh y dy d6.
For p = oo, we put

[Flloo,mo = ess sup [f(y,0)|.
(y:0)€K

The generalized Fourier transform of f associated to Flensted-Jensen operators is given by

() €&, Rﬂ%MZAJ@ﬂMqM%WWm@ﬂ)
where f € LL(K).

Denote 7, the positive measure, defined on K by

1 dAdp
dva (A, = / A U)————
JLoetm @2 Lo P TC N )P

400 +o00
1 . .
—&-sz_:o{/o gla+2m+1+n,in)Co(a+2m+ 1+ n,in)dn

+oo
+/ g(—a—=2m —1—mn,in)Co(—a —2m — 1 — n,in)dn} ,
0

where
20 L= (o + 1)T (i)

Ci(\p) =
1(A 1) P(a+A—i2-1+iu)F a—A—i2-1+iH)

(A p) € Rx]0, 4o00]
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and

G0 = ~i Res [0 AC(—2)] . (me @

We have from [18] the following inversion formula
Fola0:0) = [ aOn00,0.0) 000, (22

For 1 <p < 400, denote LP (]K) the space of measurable functions g : K+ C verifying

:
gl = ( / |g<A,u>pdva<A,m) < 4o,

For p = oo, we denote

19lloc,7a =e€ss sup _|g(A, p)
(Ap)eK

The generalized Fourier transform F,, extended to an isometry between L2(K) and L2 (K) In particular, for

fe Li(]ﬁ), we have the Plancherel formula

[Fa SNz = 1 ll2:ma- (2.3)

For f € LL(K), we have
[Faflloora < [1fll1ma- (2.4)

In the following sections, we consider £ C K and F C K tow measurable subsets. For a function
f € L2(K), we denote by

T, the time-limiting operator
T, f=xe [,
P, the frequency-limiting operator

‘F(!(PF f):XF ./."a(f),

where y , is the characteristic function of the set A.

If 0 <7,(F) < oo, then for f € L2(K) we have

P, f(y.0) = /F Faf O 1)@ 0)dva (M 1)- (2.5)

The operators P, is bounded from L2(K) into itself and

F
I1Pr fllzima < 1 fl12ma- (2.6)
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3. Benedicks type theorem
In order to prove the main theorem of this section, we start by proving the following lemmas.

Lemma 3.1 If 0 < mq(E) < 0o and vo(F) < oo, then the Hilbert-Schmidt norm of P.T, is finite and we

have

1P Tplls < v'ma(E)ya(F).

Proof Let f € L2(K), from relation (2.5)

P.T, [(4.0) = /F FuTy [0 1900 (4, 0) v (A, 1)

Lo { / xE<s,t>f<s,t>ga_x,u<s,t>dma<s,t>} o (0.0 (M ).

Denote
G5t (A 1) = Xp (A )o—x (s, 1)

and
N(s,t,4,0) = X (5,6)F5  (g4.0) (. 0).

Using Fubini’s theorem, we obtain
P.T,f(y,0) = /Kf(s, N (s,t,y,0)dma(s,t).
N is called the kernel of integral operator P.T, and the Hilbert-Schmidt norm of this operator is given by
1P Ty llrs = V|2 )or2 x)-

Therefore,

1
2

Wl ez = ([ et 0F [ 1720000000 Pdma(s.0) ) dma(s,1))

By applying Plancherel formula (2.3), we get

1
2

Wha ez = ([ xe(e0 ( JRECA PR ENENs) dm(s,t))

We deduce from relation (2.1) that

1P Tyllrs < vma(E)Ya(F).

Lemma 3.2 Let f € L2(K). Then

1
(1 - ||PFTEH)||f||2,ma S (”Tch' g,mn + ||PFCf| g,mn) :
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Proof Let I be the identity operator, we have

I=P,T,+P.T,. +P,..

F " EC¢

For f € L2(K), we get

Hf - PF‘TEng,ma = HPFTECf + PFCf”%,ma

1P T F2m + 1 Pec 15 .,

It follows by using (2.6) that

1f = PeTu f13me < T f13me + [1Pec £I3 .- (3.1)
On the other hand, we have
1f = PeTs fllzma 2 1 l2ima = 1P Ty fll2ime -
Since
1P T fIl S 1PTp 11 f l2ma »
therefore

”f - PFTEf”Q,ma > (1 - HPFTE”)”f' 2,Mq " (32)

Combining relations (3.1) and (3.2) we obtain the wanted result.

Theorem 3.3 Let f € L2(K). If supp(f) C E, supp(Fof) CF and 0 < mo(E)yo(F) <1 then f=0.

Proof Let f € L2(K). from lemma 3.1, we obtain

1P Tpll < [[PeTellas < vVma(E)va(F) <1.

Applying lemma 3.2, we get

A

2m.)

-2
(1= VmaEPa®)  (Tee fl m, + 1Pec F 1, ) -

13, < A= IPTo ) (I T f

I%,ma + ||PFCf

IA

Hence suppf C E and suppF,f C F then
T.,.f=0 and P, f=0.

Therefore f=0.
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4. Donoho-Stark uncertainty principle

4.1. L2 version of Donoho-Stark theorem

We start by giving the definition of e-concentrated functions.

Definition 4.1 Let f € L2(K), E and F be measurable subsets, respectively, of K and K. We call

1. f is an €, -concentrated on E if there exists a vanishing function g on K\ E, such that

If — 9ll2.m. < €5 ||f||2,ma'

2. Fo(f) is an e, -concentrated on F if there exists a vanishing function h on K \ F', such that

[Falf) = hllzna < €p 1Fafll2 -

Lemma 4.2 Let f € L2(K), E and F be measurable subsets, respectively, of K and K. We have

1. f is €, -concentrated on E if and only if

N

1f = Tofllama < epllfll2ma- (4.1)

2. Fuof is €, -concentrated on F if and only if

N

1f = Pefllzma < €xllfll2ma- (4.2)

Proof

1. Let f be a e, -concentrated on E. There exits a vanishing function g on E°, such that

I = gllzma < e [ fll2,ma- (4.3)

On the other hand, we have
f(yva) - TEf = XE(‘f

Then

||f - TEfH%,mQ

/K £ 0) — T, £ (4,0) dma(y, 0)

/C |f(y,0) — g(y,0)|>dma(y, 0)

IN

”.f - g”%,ma‘

Then from relation (4.3), we get

If = Tefllzma <crllfllzma.-
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2. Let F,f be a €, -concentrated to F', then there exists a vanishing function h on F¢, such that

[Falf) —h

2,%a S 6F H‘Faf

o (4.4)

Moreover

Fof = Fa(Ppf) =Fuof — XeFaf = Xpe Faf-
Then

| Faf — FalPo )2, = /klfaf(k,u) ~ Fa(Pef) O w)Pdva (A 1)

/FC |]:ocf()‘7:u) - h()‘7u)|2d7a()‘aﬂ)

IN

| Faf = hl3

VYo
By relation (4.4), we obtain the following result
[Faf = Fa(Prf)ll2e < €pllFafll2-

Applying Plancherel’s formula (2.3) on both terms of the above inequality we get

If = Pefllzme <erllf

|2,ma .

O
Lemma 4.3 For f € L2(K) we have
1P Ty fllzma < Vna(E)ya(F) [[fll2ma-
Proof Assume that m,(F) and v,(F) are finite. Applying Lemma 3.1 we get
1P Tyl s < V/ma(E)va(F)
considering
1P, 1= sup AT lme gy
rerz@nfoy  Ifll2ma
then for f € L2(K)\ {0} we have
it = Vel
which allows us to deduce the wanted result.
O

Theorem 4.4 Consider a nonzero function f € L2(K). If f is an €,— concentrated on E, Fof is an

€.—concentrated on F and ¢, +¢, <1, then
ma(E)'ya(F) > 1 —€p —Ep-
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Proof Let f € L2(K)\ {0}, we have

Hf - PFTEf|

2,mq < Hf - PFf||27ma + HPFf - PFTEf||277na'

From relations(4.2), (2.6) and (4.1), we obtain

”f - PFTEf||27ma

IN

exllfllzma +I1f =Tof

|27mo¢

< (EE + EF)||f||27ma'
which allows us to get the following inequality
||PFTEfH2:ma > Hf||2,ma - ”f - PFTEf 2,Maq
> (I—ep —ep)llfll2ma-

Applying lemma 4.3 we conclude that

Ma(E)va(F) > (1 —cp —€r).

4.2. 1! version of Donoho-Stark theorem

In this section, we study the case of a function f € L!(K).

The operator T, verifies the following inequality on L. (K).

1T f

[Lma < I ll1me
We say that f is an e, —concentrated on E in L} /(K) if
If = Tofllima < €sllflltma-
We denote by BL(F) the following subset
B (F) = {g € Lo(K)| P.g=g}.
We say that f is an e, —bandlimited on F' if there is a function g € B§(F') such that
1 = gllima < epllfllrma-

We begin with the following lemma in order to prove the Donoho-Stark type theorem on L. (K).

Lemma 4.5 Consider a nonzero function f € BY(F), we have

[T fll1me,

17 L < ma(E)ya(F).

1732
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Proof Let f e B§(F)\ {0}, according to relation (2.5) we get

F(.6) = /K X o) Fo F O 1) (31 6) v (A, ).

Therefore by Fubini’s theorem, we obtain

1.0 = [ 5600 ([ ernothonstn 010 ) dimas. )

From relation(2.1), we get
[fllse.ma < Yo E) L l1m-

Furthermore,

1T fllima = /KXE(ZJ79)|f(y,9)|dma(y79) < ma(E)[[fllso,ma
by using the relation(4.6), we get

||TEf||17ma < ma(E)'Ya(F)Hf”Lma-

Then, we gain the wanted result.

Theorem 4.6 Consider a nonzero function f € LL(K) and €, , €, two real numbers such that ¢, + ¢,

If f is €,— concentrated on E and ¢, — bandlimited on F in LL(K) then

l—e, —¢€,

Mo (E)va(F) > 1+e,

Proof We consider f € LL(K)\ {0}, we have

||TEf||17ma = ||f+TEf - f”lﬂna-

By applying the triangular inequality, we obtain

1T £

Lma 2 [ fllme = 1F =T fllma-

Since f is €,—concentrated on E, then

1o fllime = (1 =€) fll1ma-

On the other hand, f is £, —bandlimited so there exists a function g € BL(F) such that

”f_ng,ma < 5F||f||1,ma'

Furthermore, from relation (4.5) we get

1Toglltme 2 1T fllvme = 1T f = Togllime 2 1T fllim. = 1 = gllm.-

O

<1.

(4.7)

(4.8)
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Using both relations (4.7) and (4.8), we get

1Tsgll1me = (1 =ep =)l fllme -

On the other hand, we have

Hg| 1,mq S (1 + <E\F‘)Hf”lfma'
Therefore,
HTFg”l,ma > 1-— €g —ErF
lglim. —  1+4esp

Then, by lemma 4.5 we obtain the wanted result.

O
In the sequel, we give an L. NL2 version of Donoho-Stark theorem for the generalized Fourier transform F, .

Theorem 4.7 Consider a nonzero function f € LL(K)NL2(K). If f is e,— concentrated on E in L!(K) and
Fof is e,.— cocentrated on F in L2(K) then

ma(E)’ya(F) 2 (1 - EE)2(1 - EF)Q'

Proof Assume that m,(E) and 74 (F) are finite. For a nonzero function f € L. (K)NL2(K), we have

[fll2ma < UWf = Pefllzme + (1P f]

Plancherel’s formula (2.3) gives us the following inequality

[fll2ma < IFaf = FalPrf)ll2q. + IXrFalf)

2,meq

2%

Since F,f is €, —cocentrated on F in L2(K), we obtain by using relation(4.2)

2

A

I/

2,me = 5F||~Faf||2,'ya + (/}; |]:ocf()‘>/1*)2d'7a(>‘a,u))

IN

rllfllzma + Vo F) [ Faf lloo ra-

Furthermore from relation (2.4), we obtain

(1 =ep)llfllzma < VYalENSll1ma- (4.9)
On the other hand, we have
[fllme < If = Tofllime + 175 f]

Seeing that f is e, —concentrated on E in L. (K), we conclude from relation (4.1) that

1,me-

A

1 lme < 2ol flma + / 1 (.0)ldma(y.0)
E
el e + V2B 2

IN

Therefore,

(1 =e)lfhima < Vma(E)lfll2ma- (4.10)

Combining (4.9) and (4.10) we reach the needed result.
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