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Abstract: In this paper, we prove a Benedicks type theorem and a Donoho-Stark type theorem, for the generalized
Fourier transform Fα associated to some differential operators that we call Flensted-Jensen operators, in various spaces
such L1

α(K) , L2
α(K) and L1

α(K) ∩ L2
α(K) , where K = R+ × R .
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1. Introduction
The uncertainty principle is a characterization of a quantum mechanical system. This principle says that one
cannot measure, simultaneously and as accurately as one wants, the position and momentum of a quantum
particle. In harmonic analysis, the uncertainty principle can be summarized by the following sentence:

a nonzero function and its Fourier transform cannot be localized as precisely as one wishes.

We can distinguish two formulations of this principle, quantitative and qualitative. In 1927, W. Heisenberg
[13] gave a physical interpretation of the quantitative uncertainty principle that he wrote in the form of the
following formula called Heisenberg inequality:

∀f ∈ L2(R),
∫
R
x2|f(x)|2dx .

∫
R
y2|f̂(y)|2dy ≥ 1

4

(∫
R
|f(x)|2dx

)2

,

where f̂ is the Fourier transform of f , defined for all f ∈ L2(R) ∩ L1(R) , by

f̂(y) =
1√
2π

∫
R
f(x)e−ixydx.

Equality cases are realized only by Gaussians of the form

f(x) = Ce−ax2

, x ∈ R,

where C and a are constants with a > 0 .
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By a qualitative uncertainty principle one means a result that, without giving quantitative estimates for
a function f and its Fourier transform f̂ , says that f and f̂ cannot both be sharply localized unless f = 0 .
Several authors have published works in the context of the qualitative uncertainty principle. We can cite for
example, [1–7, 12, 14–16]. For further references about uncertainty principle, we refer the reader to the book
[11] and the survey [10].

In [7], Donoho and Stark studied a new version of qualitative uncertainty principle. This uncertainty
principle relies on the notion of ε−concentrated, where a function f belongs to L2(R) called ε -concentrated
on a measurable set E if

‖f − f|E‖2 ≤ ε‖f‖2.

Both others in [7] established that if f is ε1−concetrated on E and f̂ is ε2 -concentrated on F , then

m(E)m(F ) ≥ (1− ε1 − ε2)
2

The aim of this paper is to establish Benedicks and Donoho-Stark type theorems associated to the following
operators, that we call Flensted-Jensen operators,

D =
∂

∂θ
,

Dα =
∂2

∂y2
+ [(2α+ 1) coth y + tanh y]

∂

∂y
− 1

cosh2 y

∂2

∂θ2
+ (α+ 1)2,

where α > 0 and (y, θ) ∈ K = [0,+∞[×R .
This system was first considered by Flensted-Jensen in [9] for α = n− 1 , where n is a positive integer, in the
frame work of simply connected semisimple Lie group. The operators D and [Dn−1 − n2] with the identity

generate the algebra D(G̃/K) of left invariant differential operators on G̃/K , where G̃ is the universal covering
group of G = U(n, 1) and K is the subgroup U(n) . A several works on the theory of uncertainty principle,
related to the operators D and Dα were studiedin [15–17].

The outline of this paper is given as follows:
Section 2 is devoted to recall some results concerning the harmonic analysis associated to the operators D

and Dα . In section 3, we prove a Benedicks type theorem. In the last section we obtain a various versions of
Donoho-Stark theorem.

2. Preliminaries
For (y, θ) ∈ K , the following system



Du(y, θ) = iλu(y, θ),

Dαu(y, θ) = −µ2u(y, θ), λ, µ ∈ R

u(0, 0) = 1 ,
∂u

∂y
(0, θ) = 0, θ ∈ R

has a unique solution given by
φλ,µ(y, θ) = eiλθ(cosh y)λ φα,λ

µ (y),

1725



KAMOUN and LAFFI/Turk J Math

where φα,λ
µ is the Jacobi function defined by

φα,λ
µ (y) = 2F1

(
α+ λ+ 1 + iµ

2
,
α+ λ+ 1− iµ

2
;α+ 1;− sinh2 y

)
.

Recall that 2F1 is the Gaussian hypergeometric function (see [8]).
From [18], we have

sup
(y,θ)∈K

|φλ,µ(y, θ)| = 1, (λ, µ) ∈ K̂ (2.1)

Let L = R× [0,+∞[ and K̂ = L ∪ Ω , where

Ω =
⋃
m∈N

D+
m ∪D−

m.

with
D+

m = {(α+ 2m+ 1 + η, iη) | η > 0} and D−
m = {(−α− 2m− 1− η, iη) | η > 0}.

Let 1 ≤ p < +∞ . Consider Lp
α(K) , the space of measurable functions f on K verifying

‖f‖p,mα
=

(∫
K
|f(y, θ)|p dmα(y, θ)

) 1
p

< +∞,

where

dmα(y, θ) = 22(α+1)(sinh y)2α+1 cosh y dy dθ.

For p = ∞ , we put
‖f‖∞,mα

= ess sup
(y,θ)∈K

|f(y, θ)|.

The generalized Fourier transform of f associated to Flensted-Jensen operators is given by

∀ (λ, µ) ∈ K̂, Fαf(λ, µ) =

∫
K
f(y, θ)φ−λ,µ(y, θ), dmα(y, θ).

where f ∈ L1
α(K) .

Denote γα the positive measure, defined on K̂ by∫
K̂
g dγα(λ, µ) =

1

(2π)2

∫
R×[0,+∞[

g(λ, µ)
dλdµ

|C1(λ, µ)|2

+
1

(2π)2

+∞∑
m=0

{∫ +∞

0

g(α+ 2m+ 1 + η, iη)C2(α+ 2m+ 1 + η, iη)dη

+

∫ +∞

0

g(−α− 2m− 1− η, iη)C2(−α− 2m− 1− η, iη)dη

}
,

where

C1(λ, µ) =
2α+1−iµΓ(α+ 1)Γ(iµ)

Γ
(

α+λ+1+iµ
2

)
Γ
(

α−λ+1+iµ
2

) , (λ, µ) ∈ R×]0,+∞[
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and

C2(λ, µ) = −i Res
z=µ

[
C1(λ, z)C1(λ,−z)

]−1

, (λ, µ) ∈ Ω.

We have from [18] the following inversion formula

F−1
α g(y, θ) =

∫
K̂
g(λ, µ)φλ,µ(y, θ) dγα(λ, µ), (2.2)

For 1 ≤ p < +∞ , denote Lp
α(K̂) the space of measurable functions g : K̂ 7−→ C verifying

‖g‖p,γα =

(∫
K̂
|g(λ, µ)|p dγα(λ, µ)

) 1
p

< +∞.

For p = ∞ , we denote

‖g‖∞,γα
= ess sup

(λ,µ)∈K̂
|g(λ, µ)|

The generalized Fourier transform Fα extended to an isometry between L2
α(K) and L2

α(K̂) . In particular, for

f ∈ L2
α(K̂) , we have the Plancherel formula

‖Fαf‖2,γα = ‖f‖2,mα . (2.3)

For f ∈ L1
α(K) , we have

‖Fαf‖∞,γα
≤ ‖f‖1,mα

. (2.4)

In the following sections, we consider E ⊂ K and F ⊂ K̂ tow measurable subsets. For a function
f ∈ L2

α(K) , we denote by

T
E

the time-limiting operator

T
E
f = χ

E
f,

P
F

the frequency-limiting operator

Fα(PF
f) = χ

F
Fα(f),

where χ
A

is the characteristic function of the set A .
If 0 < γα(F ) < ∞ , then for f ∈ L2

α(K) we have

P
F
f(y, θ) =

∫
F

Fαf(λ, µ)φλ,µ(y, θ)dγα(λ, µ). (2.5)

The operators P
F

is bounded from L2
α(K) into itself and

‖P
F
f‖2,mα

≤ ‖f‖2,mα
. (2.6)
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3. Benedicks type theorem
In order to prove the main theorem of this section, we start by proving the following lemmas.

Lemma 3.1 If 0 < mα(E) < ∞ and γα(F ) < ∞ , then the Hilbert-Schmidt norm of P
F
T

E
is finite and we

have

‖P
F
T

E
‖HS ≤

√
mα(E)γα(F ).

Proof Let f ∈ L2
α(K) , from relation (2.5)

P
F
T

E
f(y, θ) =

∫
F

FαTE
f(λ, µ)φλ,µ(y, θ)dγα(λ, µ)

=

∫
K̂
χ

F
(λ, µ)

{∫
K
χ

E
(s, t)f(s, t)φ−λ,µ(s, t)dmα(s, t)

}
φλ,µ(y, θ)dγα(λ, µ) .

Denote
gs,t(λ, µ) = χ

F
(λ, µ)φ−λ,µ(s, t)

and
N (s, t, y, θ) = χ

E
(s, t)F−1

α (gs,t)(y, θ).

Using Fubini’s theorem, we obtain

P
F
T

E
f(y, θ) =

∫
K
f(s, t)N (s, t, y, θ)dmα(s, t).

N is called the kernel of integral operator P
F
T

E
and the Hilbert-Schmidt norm of this operator is given by

‖P
F
T

E
‖HS = ‖N‖L2

α(K)⊗L2
α(K).

Therefore,

‖N‖L2
α(K)⊗L2

α(K) =

(∫
K
|χ

E
(s, t)|2

(∫
K
|F−1

α (gs,t)(y, θ)|2dmα(y, θ)

)
dmα(s, t))

) 1
2

.

By applying Plancherel formula (2.3), we get

‖N‖L2
α(K)⊗L2

α(K) =

(∫
K
χ

E
(s, t)

(∫
K
χ

F
(λ, µ)|φ−λ,µ(s, t)|2dγα(λ, µ)

)
dmα(s, t)

) 1
2

.

We deduce from relation (2.1) that

‖P
F
T

E
‖HS ≤

√
mα(E)γα(F ).

2

Lemma 3.2 Let f ∈ L2
α(K) . Then

(1− ‖P
F
T

E
‖)‖f‖2,mα

≤
(
‖T

Ec f‖22,mα
+ ‖P

Fc f‖22,mα

) 1
2
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Proof Let I be the identity operator, we have

I = P
F
T

E
+ P

F
T

Ec + P
Fc .

For f ∈ L2
α(K) , we get

‖f − P
F
T

E
f‖22,mα

= ‖P
F
T

Ec f + P
Fc f‖22,mα

= ‖P
F
T

Ec f‖22,mα
+ ‖P

Fc f‖22,mα

It follows by using (2.6) that

‖f − P
F
T

E
f‖22,mα

≤ ‖T
Ec f‖22,mα

+ ‖P
Fc f‖22,mα

. (3.1)

On the other hand, we have

‖f − P
F
T

E
f‖2,mα

≥ ‖f‖2,mα
− ‖P

F
T

E
f‖2,mα

.

Since
‖P

F
T

E
f‖ ≤ ‖P

F
T

E
‖ ‖f‖2,mα

,

therefore
‖f − P

F
T

E
f‖2,mα ≥ (1− ‖P

F
T

E
‖)‖f‖2,mα . (3.2)

Combining relations (3.1) and (3.2) we obtain the wanted result.
2

Theorem 3.3 Let f ∈ L2
α(K) . If supp(f) ⊂ E , supp(Fαf) ⊂ F and 0 < mα(E)γα(F ) < 1 then f = 0 .

Proof Let f ∈ L2
α(K) . from lemma 3.1, we obtain

‖P
F
T

E
‖ ≤ ‖P

F
T

E
‖HS ≤

√
mα(E)γα(F ) < 1.

Applying lemma 3.2, we get

‖f‖22,mα
≤ (1− ‖P

F
T

E
‖)−2 (‖T

Ec f‖22,mα
+ ‖P

Fc f‖22,mα

)
≤

(
1−

√
mα(E)γα(F )

)−2 (
‖T

Ec f‖22,mα
+ ‖P

Fc f‖22,mα

)
.

Hence suppf ⊂ E and suppFαf ⊂ F then

T
Ec f = 0 and P

Fc f = 0.

Therefore f = 0 .
2
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4. Donoho-Stark uncertainty principle

4.1. L2 version of Donoho-Stark theorem
We start by giving the definition of ε -concentrated functions.

Definition 4.1 Let f ∈ L2
α(K) , E and F be measurable subsets, respectively, of K and K̂ . We call

1. f is an ε
E

-concentrated on E if there exists a vanishing function g on K \ E , such that

‖f − g‖2,mα ≤ ε
E
‖f‖2,mα .

2. Fα(f) is an ε
F

-concentrated on F if there exists a vanishing function h on K̂ \ F , such that

‖Fα(f)− h‖2,γα ≤ ε
F
‖Fαf‖2,γα .

Lemma 4.2 Let f ∈ L2
α(K) , E and F be measurable subsets, respectively, of K and K̂ . We have

1. f is ε
E

-concentrated on E if and only if

‖f − T
E
f‖2,mα

≤ ε
E
‖f‖2,mα

. (4.1)

2. Fαf is ε
F

-concentrated on F if and only if

‖f − P
F
f‖2,mα

≤ ε
F
‖f‖2,mα

. (4.2)

Proof

1. Let f be a ε
E

-concentrated on E . There exits a vanishing function g on Ec , such that

‖f − g‖2,mα
≤ ε

E
‖f‖2,mα

. (4.3)

On the other hand, we have
f(y, θ)− T

E
f = χ

Ec f.

Then

‖f − T
E
f‖22,mα

=

∫
K
|f(y, θ)− T

E
f(y, θ)|2dmα(y, θ)

=

∫
Ec

|f(y, θ)− g(y, θ)|2dmα(y, θ)

≤ ‖f − g‖22,mα
.

Then from relation (4.3), we get
‖f − T

E
f‖2,mα

≤ εE‖f‖2,mα
.
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2. Let Fαf be a ε
F

-concentrated to F , then there exists a vanishing function h on F c , such that

‖Fα(f)− h‖2,γα
≤ ε

F
‖Fαf‖2,γα

. (4.4)

Moreover
Fαf −Fα(PF

f) = Fαf − χ
F
Fαf = χ

FcFαf.

Then

‖Fαf −Fα(PF
f)‖22,γα

=

∫
K̂
|Fαf(λ, µ)−Fα(PF f)(λ, µ)|2dγα(λ, µ)

=

∫
F c

|Fαf(λ, µ)− h(λ, µ)|2dγα(λ, µ)

≤ ‖Fαf − h‖22,γα
.

By relation (4.4), we obtain the following result

‖Fαf −Fα(PF
f)‖2,γα ≤ ε

F
‖Fαf‖2,γα .

Applying Plancherel’s formula (2.3) on both terms of the above inequality we get

‖f − P
F
f‖2,mα

≤ ε
F
‖f‖2,mα

.

2

Lemma 4.3 For f ∈ L2
α(K) we have

‖P
F
T

E
f‖2,mα ≤

√
mα(E)γα(F ) ‖f‖2,mα .

Proof Assume that mα(E) and γα(F ) are finite. Applying Lemma 3.1 we get

‖P
F
T

E
‖HS ≤

√
mα(E)γα(F )

considering

‖P
F
T

E
‖ = sup

f∈L2
α(K)\{0}

‖P
F
TEf‖2,mα

‖f‖2,mα

≤ ‖P
F
T

E
‖HS

then for f ∈ L2
α(K) \ {0} we have

‖P
F
T

E
f‖2,mα

‖f‖2,mα

≤
√
mα(E)γα(F )

which allows us to deduce the wanted result.
2

Theorem 4.4 Consider a nonzero function f ∈ L2
α(K) . If f is an ε

E
−concentrated on E , Fαf is an

ε
F
−concentrated on F and ε

E
+ ε

F
< 1 , then√

mα(E)γα(F ) ≥ 1− ε
E
− ε

F
.
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Proof Let f ∈ L2
α(K) \ {0} , we have

‖f − P
F
T

E
f‖2,mα

≤ ‖f − P
F
f‖2,mα

+ ‖P
F
f − P

F
T

E
f‖2,mα

.

From relations(4.2), (2.6) and (4.1), we obtain

‖f − P
F
T

E
f‖2,mα ≤ ε

F
‖f‖2,mα + ‖f − T

E
f‖2,mα

≤ (ε
E
+ ε

F
)‖f‖2,mα

.

which allows us to get the following inequality

‖P
F
T

E
f‖2,mα

≥ ‖f‖2,mα
− ‖f − P

F
T

E
f‖2,mα

≥ (1− ε
E
− εF )‖f‖2,mα .

Applying lemma 4.3 we conclude that

√
mα(E)γα(F ) ≥ (1− εE − εF ).

2

4.2. L1 version of Donoho-Stark theorem
In this section, we study the case of a function f ∈ L1

α(K) .

The operator T
E

verifies the following inequality on L1
α(K) .

‖T
E
f‖1,mα ≤ ‖f‖1,mα (4.5)

We say that f is an ε
E
−concentrated on E in L1

α(K) if

‖f − T
E
f‖1,mα

≤ ε
E
‖f‖1,mα

.

We denote by B1
α(F ) the following subset

Bα
1 (F ) =

{
g ∈ L1

α(K)| P
F
g = g

}
.

We say that f is an ε
F
−bandlimited on F if there is a function g ∈ Bα

1 (F ) such that

‖f − g‖1,mα
≤ ε

F
‖f‖1,mα

.

We begin with the following lemma in order to prove the Donoho-Stark type theorem on L1
α(K) .

Lemma 4.5 Consider a nonzero function f ∈ Bα
1 (F ) , we have

‖T
E
f‖1,mα

‖f‖1,mα

≤ mα(E)γα(F ).
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Proof Let f ∈ Bα
1 (F ) \ {0} , according to relation (2.5) we get

f(y, θ) =

∫
K̂
χ

F
(λ, µ)Fαf(λ, µ)φλ,µ(y, θ)dγα(λ, µ).

Therefore by Fubini’s theorem, we obtain

f(y, θ) =

∫
K
f(s, t)

(∫
F

φ−λ,µ(s, t)φλ,µ(y, θ)dγα(λ, µ)

)
dmα(s, t).

From relation(2.1), we get
‖f‖∞,mα ≤ γα(F )‖f‖1,mα . (4.6)

Furthermore,

‖T
E
f‖1,mα

=

∫
K
χ

E
(y, θ)|f(y, θ)|dmα(y, θ) ≤ mα(E)‖f‖∞,mα

by using the relation(4.6), we get

‖T
E
f‖1,mα ≤ mα(E)γα(F )‖f‖1,mα .

Then, we gain the wanted result.
2

Theorem 4.6 Consider a nonzero function f ∈ L1
α(K) and ε

E
, ε

F
two real numbers such that ε

E
+ ε

F
< 1 .

If f is ε
E
−concentrated on E and ε

F
−bandlimited on F in L1

α(K) then

mα(E)γα(F ) ≥ 1− ε
E
− ε

F

1 + ε
F

.

Proof We consider f ∈ L1
α(K) \ {0} , we have

‖T
E
f‖1,mα = ‖f + T

E
f − f‖1,mα .

By applying the triangular inequality, we obtain

‖T
E
f‖1,mα

≥ ‖f‖1,mα
− ‖f − T

E
f‖1,mα

.

Since f is ε
E
−concentrated on E , then

‖T
E
f‖1,mα

≥ (1− ε
E
)‖f‖1,mα

. (4.7)

On the other hand, f is ε
F
−bandlimited so there exists a function g ∈ B1

α(F ) such that

‖f − g‖1,mα
≤ ε

F
‖f‖1,mα

. (4.8)

Furthermore, from relation (4.5) we get

‖T
E
g‖1,mα

≥ ‖T
E
f‖1,mα

− ‖T
E
f − T

E
g‖1,mα

≥ ‖T
E
f‖1,mα

− ‖f − g‖1,mα
.
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Using both relations (4.7) and (4.8), we get

‖T
E
g‖1,mα ≥ (1− ε

E
− ε

F
)‖f‖1,mα .

On the other hand, we have
‖g‖1,mα

≤ (1 + ε
F
)‖f‖1,mα

.

Therefore,
‖T

F
g‖1,mα

‖g‖1,mα

≥ 1− ε
E
− ε

F

1 + ε
F

.

Then, by lemma 4.5 we obtain the wanted result.
2

In the sequel, we give an L1
α ∩ L2

α version of Donoho-Stark theorem for the generalized Fourier transform Fα .

Theorem 4.7 Consider a nonzero function f ∈ L1
α(K)∩L2

α(K) . If f is ε
E
−concentrated on E in L1

α(K) and
Fαf is ε

F
−cocentrated on F in L2

α(K) then

mα(E)γα(F ) ≥ (1− ε
E
)2(1− ε

F
)2.

Proof Assume that mα(E) and γα(F ) are finite. For a nonzero function f ∈ L1
α(K) ∩ L2

α(K) , we have

‖f‖2,mα
≤ ‖f − P

F
f‖2,mα

+ ‖P
F
f‖2,mα

.

Plancherel’s formula (2.3) gives us the following inequality

‖f‖2,mα
≤ ‖Fαf −Fα(PF f)‖2,γα

+ ‖χ
F
Fα(f)‖2,γα

.

Since Fαf is ε
F
−cocentrated on F in L2

α(K) , we obtain by using relation(4.2)

‖f‖2,mα ≤ ε
F
‖Fαf‖2,γα +

(∫
F

|Fαf(λ, µ)|2dγα(λ, µ)
) 1

2

≤ ε
F
‖f‖2,mα

+
√
γα(F )‖Fαf‖∞,γα

.

Furthermore from relation (2.4), we obtain

(1− εF )‖f‖2,mα
≤

√
γα(F )‖f‖1,mα

. (4.9)

On the other hand, we have
‖f‖1,mα

≤ ‖f − T
E
f‖1,mα

+ ‖T
E
f‖1,mα

.

Seeing that f is ε
E
−concentrated on E in L1

α(K) , we conclude from relation (4.1) that

‖f‖1,mα ≤ ε
E
‖f‖1,mα +

∫
E

|f(y, θ)|dmα(y, θ)

≤ ε
E
‖f‖1,mα +

√
mα(E)‖f‖2,mα .

Therefore,
(1− ε

E
)‖f‖1,mα ≤

√
mα(E)‖f‖2,mα . (4.10)

Combining (4.9) and (4.10) we reach the needed result.
2
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