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Abstract: We determine that two recent classes of KB-operators and weak KB-operators and the well-known class of
b -weakly compact operators, from a Banach lattice into a Banach space, are the same. We extend our study to the
ordered Banach space setting by showing that a weak chain-preserving operator between two ordered Banach spaces is
a KB-operator if and only if it is a weak KB-operator.
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1. Introduction
In this paper, an operator version of the property of being a KB-space for Banach lattices (i.e. positive
increasing and norm bounded sequences are convergent) is studied. The operators that we will deal with are
those from a Banach lattice E into a Banach space X that map positive increasing bounded sequences to
ones that have convergent subsequences. These operators were recently introduced in [5] under the name of
KB-operators. Moreover, the authors in the same paper also introduced the class of weak KB-operators by
replacing the convergence of subsequences appearing in the definition of KB-operators with weak convergence.
They showed that the three classes of KB, weak KB and b-weakly compact operators coincide with positive
operators between Banach lattices; see [5, Prop 2.1]. Recall that an operator T : E → X is said to be b -weakly
compact (bw -compact) if it maps any b -order bounded set in E (i.e. order bounded as a subset of the bidual
E′′ ) to a weakly compact set in X , equivalently, if it maps any b -order bounded positive disjoint sequence to
a norm null one. This class of operators was studied in the Banach lattice literature (see for instance [3, 4]),
and it turns out that for a Banach lattice E , being a KB-space is nothing but, the identity operator of E is a
bw -compact (resp. a KB-) operator; see [3, Prop 2.10 ] and [5, Prop 2.11 ]. At the end of their paper [5], the
authors asked two questions: Is there an operator from a Banach lattice into a Banach space which is KB but
fails to be bw -compact? Is there an operator from a Banach lattice into a Banach space which is weak KB but
fails to be KB? The authors of [11] have recently answered the first question negatively by establishing that
the two classes of KB and bw -compact operators from E into X are in fact the same. Here, we continue to
investigate all these classes of operators by showing, in Section 2, that the answer of the second question is also
negative, and in fact KB, weak KB and bw -compact operators from E into X are the same (Theorem 3.2).
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Moreover, since one does not need any lattice structure in the definition of (weak) KB-operators, we
extend in the last section of the paper our study by showing in Theorem 4.10 that the two classes of KB
and weak KB-operators between ordered Banach spaces (with some reasonable compatibility conditions for the
order structure) still coincide with operators preserving chains in some weak sense (in particular, on positive
operators). Our extension to the ordered Banach space setting is motivated by the fact that many subspaces of
function spaces are of this type and do not inherit the lattice structure (see for instance Examples 2.4 hereafter).
However, due to the lack of many powerful tools guaranteed by the lattice structure of Banach lattices, we could
not answer the question whether the two classes of KB and weak KB-operators between ordered Banach spaces
are the same.

2. Preliminaries
Recall that a subset K of a real vector space E is said to be a wedge if K +K ⊂ K, αK ⊂ K for all α ≥ 0 .
If furthermore K ∩ (−K) = {0} , then K is called a cone, and E endowed with the (partial) order relation

x ≤ y ⇔ y − x ∈ K

is called an ordered vector space (OVS). We will denote the cone K = {x ∈ E : x ≥ 0} by E+.

We will use the following fundamental extension lemma for additive mappings between cones.

Lemma 2.1 (Lem 1.26, [2]) Suppose that E and F are two OVSs with F Archimedean. Then, any additive
mapping T : E+ → F+ extends uniquely to a positive operator (denoted again by T ) from E+ − E+ to F

defined by
Tx = Tx1 − Tx2 , x = x1 − x2, x1, x2 ∈ E+.

Note that the operator T is well defined since the preceding expression does not depend on the repre-
sentation x = x1 − x2, x1, x2 ∈ E+.

We say that E+ is generating in E , if E = E+ − E+, i.e. for every x ∈ E,

x = x1 − x2, for some x1, x2 ∈ E+.

A vector e ∈ E+ is said to be an order unit of an OVS E, if for every x ∈ E there exists some λ > 0

such that x ≤ λe. It is clear that for an OVS E, E+ is generating iff it majorizes E , that is, for every x ∈ E

there exists y ∈ E+ with x ≤ y. It follows that the cone of an OVS with order unit is automatically generating.
If the OVS (E,≤) is a normed space, then E is said to be an ordered normed space (ONS) if the cone

E+ is closed. An ordered Banach space (OBS) is an ONS which is furthermore a Banach space (BS). Let us
recall that the cone E+ of an ONS (E,≤, ∥.∥) is said to be normal, if

∃N > 0, ∀x, y ∈ E, 0 ≤ x ≤ y ⇒ ||x|| ≤ N ||y|| .

The following two theorems give us the characterizations of generating cones and normal cones in OBSs.

Theorem 2.2 (Thm 2.37, [2]) For an OBS E, E+ is generating iff there exists some constant M > 0 such
that for each x ∈ E there exist x1, x2 ∈ E+ with

x = x1 − x2 and ||xi|| ≤ M ||x|| , i = 1, 2.
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Theorem 2.3 (Thms 2.38 and 2.40, [2]) 1. For an ONS E, E+ is normal iff E admits an equivalent
monotone norm |||.||| , i.e. a norm |||.||| satisfying for every x, y ∈ E

0 ≤ x ≤ y ⇒ |||x||| ≤ |||y||| .

2. For an OBS E, E+ is normal iff each order interval [x, y] of E, x ≤ y, is norm bounded.

Recall that a vector lattice (or Riesz space) is an OVS E such that the set E is a lattice with respect to
the order structure. A normed vector lattice is an ONS (E,≤, ∥.∥) such that E+ is a lattice cone in the sense
that (E,≤) is a vector lattice, and the norm ∥.∥ is a Riesz norm, that is, it is monotone and absolute. An
absolute norm ∥.∥ on a vector lattice E , is a norm such that for every x ∈ E, ∥|x|∥ = ∥x∥ . A Banach lattice
(BL) is a normed vector lattice which is complete with respect to its norm.

The following example gives an ONS with a normal and generating cone which fails to be a vector lattice.

Example 2.4 Let E = D [0, 1] be the real vector space of differentiable functions f : [0, 1] → R , endowed with
the pointwise ordering and the standard supremum norm. It is clear that the cone E+ is closed, and hence E

is an ONS, the supremum norm is monotone (and hence E+ is normal), and that the cone E+ is generating
for E has an order unit. However, E fails to be a vector lattice; see [6, Exple 5.9 (5), p 44].

By the same considerations of the above example, the real vector spaces of polynomials on [0, 1] , rational
functions on [0, 1] (i.e. functions f : [0, 1] → R such that f = p

q for some two polynomials p, q on [0, 1] with

q(x) ̸= 0 for all x ∈ [0, 1]) and continuously differentiable functions on [0, 1] are ONSs with a normal and
generating cone. All these spaces fail to be a vector lattice; see [2, Exercise 4 p 19 and Exercise 9 p 52].

It is worth noting that for an ONS E, the set of positive linear functionals on E is only a wedge in E′

called the dual wedge of E+. It is easily seen that in case E+ is generating, the dual wedge of E+ is a norm
closed cone in E′ that makes E′ an OBS.

The following theorem will also be useful in later.

Theorem 2.5 (Thm 2.40, [2]) For an OBS E, the following are equivalent:

1. E+ is normal;

2. the dual wedge of E+ is generating in E′.

Throughout the paper, by an operator between two normed spaces we will mean a continuous linear
mapping. The notation c0 (resp. C [0, 1]) will stand for the BL of real null sequences (resp. real-valued
continuous functions on [0, 1]), where the norm is the usual supremum norm and the ordering is the usual
coordinatewise (resp. pointwise) one. Moreover, the space Rn will be endowed with the coordinatewise ordering.

For more details, we refer the reader to [2] for ordered Banach space theory and to [1, 10] for Banach
lattice theory.

3. KB-operators on Banach lattices

Let us introduce the class of (weak) KB-operators in its general setting.
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Definition 3.1 An operator T : E → X, from an ONS into a normed space, is said to be a KB-operator if
for every increasing norm bounded sequence (xn) ⊂ E+, (Txn) has a convergent subsequence. If the latter
sequence has a weakly convergent subsequence then T is called a weak KB-operator.

Since the standard BL L1[0, 1] of real-valued Lebesgue integrable functions on [0, 1] is a KB-space, the
identity operator of L1[0, 1] is an example of an operator which is both KB (hence weak KB) and bw -compact.

Our main result below gives a negative answer to a question in [5] by showing that the three classes of
KB, weak KB and bw -compact operators on a BL are the same.

Theorem 3.2 Let E , X be respectively a BL and a BS. Then, for an operator T : E → X the following are
equivalent:

1. T is a bw -compact operator;

2. T is a KB-operator;

3. T is a weak KB-operator.

The proof is based on the following well-known lemmas from the Banach lattice literature.

Lemma 3.3 (Thm 4.50, [1]) For a BL E, there exists a lattice embedding i : c0 → E iff there exists a
disjoint sequence (xn) ⊂ E+ with

1. ∥xn∥ ↛ 0 as n → ∞ , and

2. ∃M > 0 , ∀n ∈ N , ∥
∑n
k=1 xk∥ ≤ M.

Note that for the ”if part” of the preceding lemma, by passing to a subsequence of (xn) , we may assume
that the lattice embedding i satisfies i (en) = xn for all n, where en is the unit vector of c0 with one on the
nth coordinate and zero elsewhere.

Lemma 3.4 (Prop 2.11, [3]) Let E be a BL with order continuous norm, X be a BS and T : E → X be an
operator. Then, T is bw -compact iff T ′′ (B (E)) ⊂ X, where B (E) stands for the band generated by E in E′′.

Proof [of Theorem 3.2] 1 ⇒ 2. Follows from i ⇔ ii of Proposition 1 of [4].
2 ⇒ 3. Obvious.
3 ⇒ 1. Let (xn) ⊂ E+ be a disjoint b -order bounded sequence. We shall show that ∥Txn∥ → 0.

Otherwise, there exists a subsequence
(
xφ(n)

)
⊂ (xn) with

∥∥Txφ(n)∥∥ > ε for each n and for some ε > 0. (∗)

Note that
(
xφ(n)

)
is also a disjoint b -order bounded sequence, and hence the sequence of its partial sums is

norm bounded. Since T is continuous,
(
xφ(n)

)
does not converge to 0. So, it follows from Lemma 3.3 that

there exists a lattice embedding i : c0 → E and, by passing to a subsequence of
(
xφ(n)

)
, we may assume that

i (en) = xφ(n) for each n . Taking into account this lattice embedding, we may assume that c0 is a closed Riesz
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subspace of E. Let the operator Tc0 : c0 → X be the restriction of T to c0. If z = (zn) ∈ (B (c0))
+
= l+∞, then

the sequence (un) ⊂ c0 defined by un = (z1, z2, ..., zn, 0, 0, ...) satisfies 0 ≤ un ↑ z in c′′0 = l∞ and we have that

un
w∗

→ z in c′′0 . Since T ′′
c0 : c′′0 → X ′′ is weak* to weak* continuous we get that Tc0 (un) = T ′′

c0 (un)
w∗

→ T ′′
c0z in

X ′′. Now, from the hypothesis, there exists a subsequence
(
uψ(n)

)
⊂ (un) with Tc0

(
uψ(n)

) w→ y in X. From
the uniqueness of the weak* limit in X ′′, we get T ′′

c0z = y, that is, we have shown that T ′′
c0 (B (c0)) ⊂ X. It

follows from Lemma 3.4 that Tc0 is a bw -compact operator, and hence
∥∥Txφ(n)∥∥ = ∥Tc0 (en)∥ → 0 as n → ∞,

contradicting (∗) . This shows that T is bw -compact as desired. 2

Now, we address the question whether the equivalence (2) ⇔ (3) in Theorem 3.2 remains true in the
general setting of OBSs. This is the subject of the next section.

4. KB-operators between ordered Banach spaces
In this section, we deal with operators satisfying some preserving conditions in relation with the order structure
of the underlying spaces assumed to be only OBSs. Recall first that a subset B of a partially ordered set (A,≤)

is said to be a chain if it is totally ordered i.e. every two elements of B are comparable, i.e. for every x, y ∈ B

one has x ≤ y or y ≤ x. If each two distinct elements of B are incomparable, then B is called an antichain.
A mapping T : A → B between two partially ordered sets is said to be monotone if it is order-preserving,

that is for every x, y ∈ A ,
x ≤ y ⇒ Tx ≤ Ty.

A linear mapping T : E → F between two OVSs is monotone iff it is positive, that is T (E+) ⊂ F+.

We now introduce the following notions of preserving mappings.

Definition 4.1 A mapping T : A → B between two partially ordered sets is said to be

1. chain-preserving, if it maps any chain of A into a chain of B.

2. weak chain-preserving, if for every chain C ⊂ A the image T (C) contains no infinite antichain.

Clearly, the following implications hold true:

T is monotone ⇒ T is chain-preserving ⇒ T is weak chain-preserving.

However, the converse of each one of the above implications is false in general. In fact, the operator
T : C [0, 1] → R defined by T (f) = f (1) − f (0) is a (weak) chain-preserving mapping which fails to be a
positive operator. Moreover, if the mapping T : C [0, 1] → R2 is defined by{

T (θ) = (0, 0) ,
T (f) = (−1, f (1)) , f ̸= θ,

where θ is the null function of C [0, 1] , then it is easily seen that T is weak chain-preserving which fails to be
chain-preserving.

Note also that, for two partially ordered sets A and B , the set of weak chain-preserving mappings from
A to B is strictly contained in the set BA of all mappings from A to B. Indeed, the operator T : C [0, 1] → R2

defined by T (f) = f (1) (−1, 1) fails to be weak chain-preserving.
We need the following lemma.
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Lemma 4.2 ([8]) Let (A,≤) be a partially ordered set. Then, every sequence in A admits a monotone
subsequence iff A contains no infinite antichain. In particular, every sequence in a chain of A admits a
monotone subsequence.

Since for every subsequence (xφ(n)) of an increasing (resp. decreasing) sequence (xn) of a partially
ordered set sup{xn : n ∈ N} = x (resp. inf{xn : n ∈ N} = x) iff sup{xφ(n) : n ∈ N} = x (resp.
inf{xφ(n) : n ∈ N} = x), and since the cone of an OBS is weakly closed, the following lemma is an immediate
consequence of [2, Lem 2.3 (4)].

Lemma 4.3 Let E be an OBS and (xn) ⊂ E be an increasing (resp. decreasing) sequence. Then, for every
subsequence

(
xφ(n)

)
of (xn) , if xφ(n)

w→ x then x = sup {xn : n ∈ N} (resp. x = inf {xn : n ∈ N}).

The details of the proof of the following lemma can be found in [7, Thm 2.2.2]. For a simple proof using
the preceding lemma and [2, Lem 2.28], see the proof of [9, Lem 1.4].

Lemma 4.4 Assume that an OBS E has a normal cone E+ . Then, a monotone sequence of E is convergent
iff it admits a weakly convergent subsequence.

When we restrict ourselves to positive operators between two OBSs, we get the following characterizations
of KB-operators.

Proposition 4.5 Let T : E → F be a positive operator between two OBSs such that F+ is normal (in
particular, if F is a BL). Then, the following are equivalent:

1. for every increasing bounded sequence (xn) ⊂ E+, (Txn) is convergent.

2. T is a KB-operator;

3. T is a weak KB-operator.

Proof 1 ⇒ 2 ⇒ 3 are obvious. Let (xn) ⊂ E+ be an increasing bounded sequence so that there exists a
subsequence

(
xφ(n)

)
of (xn) with Txφ(n)

w→ x ∈ F. Hence, since (Txn) is increasing, we see by Lemma 4.4
that Txn → x as desired. 2

Since the cone of a BL is normal, we immediately have the following corollary.

Corollary 4.6 Let E be a BL. Then, the following are equivalent:

1. E is a KB-space;

2. the identity operator of E is KB;

3. the identity operator of E is weak KB.

In the particular setting of BLs, the classes of KB and b-weakly compact operators coincide as we
mentioned before. So, since the class of b-weakly compact operators between BLs satisfies the domination
property (see [3, Cor 2.9 ]), this is also the case for KB-operators. Such a property can be stated as well in the
setting of OBSs for KB-operators.
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Proposition 4.7 Let T : E → F be an operator between two OBSs such that F+ is normal and the order
intervals [x, y] of F, x ≤ y, are weakly compact. Assume that T is a weak chain-preserving operator dominated
by some positive operator S : E → F, that is, −S ≤ T ≤ S . Then, T is a KB-operator whenever S is one.

Proof Let (xn) ⊂ E+ be an increasing bounded sequence. There exists a subsequence
(
xα(n)

)
of (xn) with

Sxα(n) → x ∈ F. Since (Sxn) is an increasing sequence, it follows by Lemma 4.3 that x = sup {Sxn : n ∈ N} .
In particular, we have

−x ≤ −Sxn ≤ Txn ≤ Sxn ≤ x

for each n. The hypothesis on the intervals of F shows that Txφ(n)
w→ y ∈ F for some subsequence

(
xφ(n)

)
of

(xn) . Since T is weak chain-preserving, the sequence
(
Txφ(n)

)
admits by Lemma 4.2 a monotone subsequence(

Txφ◦ψ(n)
)
which converges by Lemma 4.4, and hence T is KB. 2

Corollary 4.8 Let E,F be two OBSs such that F+ is normal and the intervals [x, y] of F, x ≤ y, are
weakly compact. Assume that T, S : E → F are two positive operators such that T is dominated by S, that is,
0 ≤ T ≤ S. Then, T is a KB-operator whenever S is one.

Remark 4.9 The hypothesis for the target space F in the preceding proposition is illustrated by the following
two cases in which it is fulfilled.

1. F is a reflexive OBS with a normal cone, in which case the order intervals are convex, closed and
norm bounded (by Theorem 2.3), and hence weakly compact.

2. F is a BL such that its norm is order continuous (see [1, Thm 4.9 ]).

Our main result below shows that the equivalence (2) ⇔ (3) in Theorem 3.2 remains true for weak
chain-preserving operators between OBSs. It is an improvement of Proposition 4.5 if the operator T : E → F

is defined on an OBS with a normal and generating cone.

Theorem 4.10 Let E,F be two OBSs with normal cones such that E+ is generating. Then, every weak
chain-preserving operator T : E → F is KB iff it is weak KB.

Proof The ”only if” part is obvious. For the ”if part”, let (xn) ⊂ E+ be an increasing bounded sequence.
For 0 ≤ f ∈ E′, the sequence (f (xn)) is clearly increasing such that

|f (xn)| ≤ M ∥f∥ for each n and for some M ≥ 0. (**)

Hence, f (xn) → φ (f) for every f ∈ E′
+, where φ : E′

+ → R+ is the mapping defined by φ(f) = supn∈N f(xn) .
It is easily seen that φ is in fact an additive mapping. Since E+ is normal and generating, Theorem 2.5 ensures
that E′

+ is a generating cone in E′. Therefore, Lemma 2.1 shows that φ extends uniquely to a positive linear
functional on E′ (denoted again by φ) defined by

φ (f) = φ (f1)− φ (f2) , f = f1 − f2, f1, f2 ∈ E′
+.

It follows that f (xn) → φ (f) for every f ∈ E′ . Now, if f ∈ E′, pick by Theorem 2.2 f1, f2 ∈ E′
+ with

f = f1 − f2 and ||fi|| ≤ N ||f || , i = 1, 2 for some constant N > 0. Hence, it follows from (∗∗) that

|φ (f)| ≤ 2MN ||f || , f ∈ E′.
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That is φ ∈ E′′
+. Therefore, xn

w∗

→ φ in E′′ and hence since T ′′ : E′′ → F ′′ is weak* to weak* continuous,

T ′′ (xn) = T (xn)
w∗

→ T ′′ (φ) in F ′′. Now, the hypothesis asserts that T
(
xα(n)

) w→ y in F for some subsequence(
xα(n)

)
⊂ (xn) . From the uniqueness of the weak* limit in F ′′ , we see that T ′′ (φ) = y. Therefore, T (xn)

w∗

→

y in F ′′ or T (xn)
w→ y in F. Since T is weak chain-preserving, by Lemma 4.2 the sequence (Txn) has a

monotone subsequence
(
Txψ(n)

)
. So, Lemma 4.4 shows that the subsequence

(
Txψ(n)

)
converges and hence

T is KB as required. 2

We conclude this paper by the following question to which we hinted in the introduction.

Question 4.11 Is the equivalence in Theorem 4.10 still true for all operators from E into F?
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