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1. Introduction
In the context of applications to various branches of mathematics, for example, such as theory of partial
differential equations, theory of approximations, harmonic analysis, etc., there arose great interest in nonstandart
function spaces. As examples of such spaces, we can mention Lebesgue space with variable summability index,
Morrey space, grand Lebesgue space, etc. These spaces have been considered by many authors such as Adams
[1], Bilalov, Gasymov, Guliyeva [5], Bilalov, Guseynov [6, 7], Capone, Fiorenza [11], Castilo, Rafeiro [12],
Cruz-Uribe, Fiorenza [13], Cruz-Uribe, Fiorenza, Neugebauer [14], Fiorenza, Karadzhov [20], Fiorenza, Krbec
[21], Israfilov, Tozman [27, 28], Kokilashvili, Meskhi, Rafeiro, Samko [30], Morrey [31], Samko [33], Samko,
Umarkhadzhiev [34], Sharapudinov [35], Xianling, Dun [37], Zorko [39], etc. Note the theory Lebesgue spaces
with variable exponent got a boost in 1931 when Orlicz published his seminal paper [32]. Orlicz considered the
sequences of real numbers {xn}n∈N for which the series

∑+∞
n=1 |xn|pn is convergent for pn ≥ 1 . A lot of research

has been later dedicated to this theory and any classical facts about harmonic analysis have been extended to
these spaces. More details on these facts can be found, for example, in [13–19, 22, 23, 37]. One of the important
directions of this theory is the study of Lebesgue space with variable summability index and with mixed norms.
Lebesgue spaces with variable exponents with and mixed norms were considered, for example, in [2, 24, 25].

In problems where the solutions are sought in the form of Fourier series with respect to the eigenfunctions
of some differential operators, it is always interesting to study the space of coefficients of this eigenfunction
expansion. The relationship between Fourier coefficients and function space has been expressed by the theorems
of Riesz, Paley, Hardy-Littlewood, etc. (see [3, 29, 38]). For analogues and generalizations of these results we
refer the readers to [8, 10, 36]. Vector-valued analogues can be found in [4, 9, 26].
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This work deals with the Riesz and Paley theorems in Lebesgue space with variable summability index
and with mixed norm. In the present work, we generalize Riesz and Paley theorems for the functions with
vector-valued Fourier coefficients with respect to the orthonormal and uniformly bounded system in Lebesgue
spaces with variable exponent and mixed norm. We introduce some spaces and establish a relationship between
a function and the sequence of its coefficients in these spaces. The obtained results are applied to a classical
exponential system.

2. Preliminary

Let Ω ⊂ Rn , be a measurable set, p(x) be a measurable function on Ω such that p(x) ≥ 1 . For E ⊂ Ω we
denote

p+(E) = ess sup
x∈E

p(x), p−(E) = ess inf
x∈E

p(x),

p+ = p+(Ω), p− = p−(Ω),Ω∞ = {x ∈ Ω : p(x) = ∞} .

Definition 2.1 The number

ρp(·),Ω(f) =

∫
Ω/Ω∞

|f(x)|p(x) dx+ ∥f∥L∞(Ω∞)

is called the modular of the measurable function f : Ω → R with respect to p(x) , where ∥f∥L∞(Ω∞) =

ess sup
x∈Ω∞

|f(x)| .

Denote by Lp(·)(Ω) the set of all measurable functions f : Ω → R such that ρp(·),Ω(f/λ) < +∞ for some λ > 0 .
Lp(·)(Ω) is a Banach space with respect to the norm

∥f∥Lp(·)(Ω) = inf
{
λ > 0 : ρp(·),Ω(f/λ) ≤ 1

}
.

If p(x) = p , then Lp(·)(Ω) coincides with classical Lebesgue space Lp(Ω) , i. e. if p < +∞

∥f∥Lp(Ω) = inf {λ > 0 : ρp,Ω(f/λ) ≤ 1}

and
∥f∥L∞(Ω) = inf {λ > 0 : ρ∞,Ω(f/λ) ≤ 1} .

Let q(x) , q(x) ≥ 1 be a measurable functions on Ω , and T ⊂ Rn be a measurable set. By
Lq(·)(Ω, Lp(·)(T )) denote the space of measurable functions on Ω × T such that for almost all x ∈ Ω

f(x, ·) ∈ Lp(x)(T ) and ∥f(x; ·)∥Lp(x)(T ) ∈ Lq(·)(Ω) .

Denote by lp(·)(Ω) the set of all sequences {ck(x)}k∈N of measurable functions ck(x) on Ω such that

∞∑
k=1

∫
Ω

|ck(x)|p(x) dx < +∞.

Let lp(·),p(·)−2(Ω) be the set of sequences {ck(x)}k∈N of measurable functions on Ω for which

∞∑
k=1

∫
Ω

kp(x)−2 |ck(x)|p(x) dx < +∞.
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Equipped with

∥{ck}∥lp(·)(Ω) = inf

λ > 0 :

∞∑
k=1

∫
Ω

(
|ck(x)|

λ
)p(x) ≤ 1


and

∥{ck}∥lp(·),p(·)−2(Ω) = inf

λ > 0 :

∞∑
k=1

∫
Ω

kp(x)−2

(
|ck(x)|

λ

)p(x)

≤ 1

 .

lp(·)(Ω) and lp(·),p(·)−2(Ω) are Banach spaces.

Let {φn(t)}n∈N be an orthonormal system of functions, defined in [c, d] such that for each n |φn(t)| ≤
M , a.e. in [c, d] , here M is a constant. We will need the following theorems (see [29, 38]).

Theorem 2.2 [Riesz] Let 1 < p ≤ 2 .

1) Let f ∈ Lp(c, d) , and ck =
d∫
c

f(t)φk(t)dt . Then

∥{ck}∥lq ≤ M
2
p−1 ∥f∥Lp

, q =
p

p− 1
.

2) Let {ck} ∈ lp . Then there exists f ∈ Lq(c, d) , q = p
p−1 , for which ck =

d∫
c

f(t)φk(t)dt , and

∥f∥Lq
≤ M

2
p−1 ∥{ck}∥lp .

Theorem 2.3 [Paley] 1) Let f ∈ Lp(c, d) , 1 < p ≤ 2 , and ck =
d∫
c

f(t)φk(t)dt . Then

( ∞∑
k=1

|ck|p kp−2

) 1
p

≤ A

p− 1
M

2−p
p ∥f∥Lp

.

2) Let {ck} be a sequence, such that:
∞∑
k=1

|ck|q kq−2 < +∞ , 2 ≤ q . Then there exists f ∈ Lq(c, d) for

which ck =
d∫
c

f(t)φk(t)dt , and

∥f∥Lq
≤ AqM

q−2
q

( ∞∑
k=1

|ck|q kq−2

) 1
q

(the constant A is independent on f ).
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3. A generalization of Riesz and Paley’s theorems

Consider the space Lq(·)(Ω, Lp(·)(T )) . The following results generalize Theorem 2.2 and Theorem 2.3.

Theorem 3.1 1) If f ∈ Lq(·)((a, b), Lp(·)(c, d)) , 1 < p− ≤ p(x) ≤ 2 , and ck(x) =
d∫
c

f(x; t)φk(t)dt , k ∈ N .

Then {ck} ∈ lq(·)(a, b) , q(x) = p(x)
p(x)−1 and

∥{ck}∥lq(·)(a;b) ≤ M1(p) ∥f∥Lq(·)((a,b),Lp(·)(c,d))
.

2) Let {ck} ∈ lp(x)(a, b) , 1 < p(x) ≤ 2 . Then there exists f ∈ Lp(·)((a, b), Lq(·)(c, d)) , q(x) = p(x)
p(x)−1 , for

which ck(x) =
d∫
c

f(x; t)φk(t)dt , k ∈ N , and

∥f∥Lp(·)((a,b),Lq(x)(c,d))
≤ M1(p) ∥{ck}∥lp(·)(a,b) ,

where M1(p) = max
{
M

2
p−

−1
,M

2
p+

−1
}
.

Proof 1) Let f ∈ Lq(·)((a, b), Lp(·)(c, d)) . Then for almost all x ∈ [a, b] f(x; ·) ∈ Lp(x)(c, d) . By Theorem

2.2, for almost all x ∈ [a, b] ,
∞∑
k=1

|ck(x)|q(x) < +∞ and

( ∞∑
k=1

|ck(x)|q(x)
) 1

q(x)

≤ M
2

p(x)
−1

 d∫
c

|f(x; t)|p(x) dt


1

p(x)

. (3.1)

From (3.1) we get
∞∑
k=1

(
|ck(x)|

λ

)q(x)

≤

(
M1(p) ∥f(x; ·)∥Lp(x)(c,d)

λ

)q(x)

, (3.2)

for ∀λ > 0 .
Integrating (3.2) over [a, b] , we get

∞∑
k=1

b∫
a

(
|ck(x)|

λ

)q(x)

dx ≤
b∫

a

(
M1(p) ∥f(x; ·)∥Lp(x)(c,d)

λ

)q(x)

dx.

Therefore,

inf

λ > 0 :

∞∑
k=1

b∫
a

(
|ck(x)|

λ

)q(x)

dx ≤ 1

 ≤

≤ inf

λ > 0 :

b∫
a

(
M1(p) ∥f(x; ·)∥Lp(x)(c,d)

λ

)q(x)

dx ≤ 1

 .
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Consequently,

∥{ck}∥lq(·)(a;b) ≤ ∥M1(p)f∥Lq(·)((a,b),Lp(·)(c,d))
= M1(p) ∥f∥Lq(·)((a,b),Lp(·)(c,d))

.

2) Let
∞∑
k=1

b∫
a

|ck(x)|p(x) dx < +∞ . By the Monotone convergence theorem we have
∞∑
k=1

|ck(x)|p(x) < +∞ ,

for almost all x ∈ [a, b] . Then by Theorem 2.2, for almost all x ∈ [a, b] there exists a function f(x; ·) ∈

Lq(x)(c, d) , for which ck(x) =
d∫
c

f(x; t)φk(t)dt , k ∈ N , and

∥f(x; ·)∥Lq(x)(c,d)
≤ M

2
p(x)

−1

( ∞∑
k=1

|ck(x)|p(x)
) 1

p(x)

≤ M1(p)

( ∞∑
k=1

|ck(x)|p(x)
) 1

p(x)

.

In what follows, we get

∥f(x, ·)∥p(x)Lq(x)(c,d)
≤

∞∑
k=1

(M1(p) |ck(x)|)p(x). (3.3)

Since
∥∥∥∥f(x; ·)− n∑

k=1

ck(x)φk(·)
∥∥∥∥
Lq(x)(c,d)

→ 0 , as n → ∞ the function f is measurable on [a, b] × [c, d] .

From (3.3) for ∀λ > 0 we get

(
∥f(x, ·)∥Lq(x)(c,d)

λ

)p(x)

≤
∞∑
k=1

(
M1(p) |ck(x)|

λ

)p(x)

. (3.4)

Integrating of (3.4) over the segment [a, b] gives us

b∫
a

(
∥f(x, ·)∥Lq(x)(c,d)

λ

)p(x)

dx ≤
∞∑
k=1

b∫
a

(
M1(p) |ck(x)|

λ

)p(x)

dx.

Then

inf

λ > 0 :

b∫
a

(
∥f(x, ·)∥Lq(x)(c,d)

λ

)p(x)

dx ≤ 1

 ≤

≤ inf

λ > 0 :

∞∑
k=1

b∫
a

(
M1(p) |ck(x)|

λ

)p(x)

dx ≤ 1

 .

Therefore
∥f∥Lp(·)((a;b),Lq(·)(c,d))

≤ ∥M1(p) {ck}∥lp(·)(a,b) = M1(p) ∥{ck}∥lp(·(a,b) .

2
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Theorem 3.2 1) Let f ∈ Lp(·)((a, b), Lp(·)(c, d)) , 1 < p− ≤ p(x) ≤ 2 , and ck(x) =
d∫
c

f(x; t)φk(t)dt , k ∈ N .

Then {ck} ∈ lp(·),p(·)−2(a, b) and

∥{ck}∥lp(·),p(·)−2(a,b)
≤ AM1(p)

p− − 1
∥f∥Lp(·)((a,b),Lp(·)(c,d))

.

2) Let {ck} ∈ lq(·),q(·)−2(a, b) , 2 ≤ q(·) ≤ q+ < ∞ . Then there exists f ∈ Lq(·)((a, b), Lq(·)(c, d)) for

which ck(x) =
d∫
c

f(x; t)φk(t)dt , k ∈ N , and

∥f∥Lq(·)((a,b),Lq(·)(c,d))
≤ Aq+M2(q) ∥{ck}∥lq(·),q(·)−2(a,b)

, (3.5)

where M2(q) = max
{
M

1− 2
q− ,M

1− 2
q+

}
.

Proof 1) If f ∈ Lp(·)((a, b), Lp(·)(c, d)) , then for almost all x ∈ [a, b] f(x; ·) ∈ Lp(·)(c, d) . By Theorem 2.3,
∞∑
k=1

kp(x)−2 |ck(x)|p(x) < +∞ and

∞∑
k=1

kp(x)−2 |ck(x)|p(x) ≤
(

A

p(x)− 1
M

2
p(x)

−1

)p(x)

∥f∥p(x)Lp(x)(c,d)
≤

≤
(

A

p− − 1
M1(p)

)p(x)

∥f∥p(x)Lp(x)(c,d)
. (3.6)

Take arbitrary λ > 0 . Then from (3.6) it follows that,

∞∑
k=1

b∫
a

kp(x)−2

(
|ck(x)|

λ

)p(x)

dx ≤
b∫

a

(
AM1(p) ∥f∥Lp(x)(c,d)

λ(p− − 1)

)p(x)

dx.

Thus, we obtain

∥{ck}∥lp(·),p(·)−2(a,b)
≤
∥∥∥∥AM1(p)

p− − 1
f

∥∥∥∥
Lp(·)((a,b),Lp(·)(c,d))

=

=
AM1(p)

p− − 1
∥f∥Lp(·)((a,b),Lp(·)(c,d))

.

2) Let {ck(x)}k∈N is a sequence such that:
∞∑
k=1

b∫
a

kq(x)−2 |ck(x)|q(x) dx < +∞ . By the monotone

convergence for almost all x ∈ [a, b] ,
∞∑
k=1

kq(x)−2 |ck(x)|q(x) < +∞ . Therefore by Theorem 2.3, for almost

all x ∈ [a, b] , there exists a function f(x; ·) ∈ Lq(x)(c, d) such that f(x; t) =
∞∑
k=1

ck(x)φk(t) and

∥f∥q(x)Lq(x)(c,d)
≤ (Aq(x))q(x)Mq(x)−2

∞∑
k=1

kq(x)−2 |ck(x)|q(x)
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≤ (Aq+M2(q))
q(x)

∞∑
k=1

kq(x)−2 |ck(x)|q(x) . (3.7)

Thus, for arbitrary λ > 0 dividing the both-hand sides of (3.7) by λq(x) , and integrating over the segment
[a, b] we get

b∫
a

(
∥f∥Lq(x)(c,d)

λ

)q(x)

dx ≤
∞∑
k=1

b∫
a

kq(x)−2

(
Aq+M2(q)

|ck(x)|
λ

)q(x)

dx,

i.e. (3.5) is valid. 2

Now consider the case of the system of exponents
{
eint

}
n∈Z

, t ∈ [−π, π] .

Theorem 3.3 Let f ∈ Lq(·)((a, b),W
m+1
p(·) (−π, π)) , where 1 < p− ≤ p(x) ≤ 2 , q(x) = p(x)

p(x)−1 , and ∂kf(x;−π)
∂tk

=

∂kf(x;π)
∂tk

(k = 0, ..,m) for almost all x ∈ [a, b] and cn(x) =
π∫

−π

f(x; t)e−intdt , n ∈ Z . Then φ(x) =

+∞∑
n=−∞

|nmcn(x)| ∈ Lq(·)(a, b) and

∥φ∥Lq(·)(a,b)
≤ α(p)

∥∥∥∥∂m+1f

∂tm+1

∥∥∥∥
Lq(·)((a,b),Lp(·)(−π,π)

, (3.8)

where αp−(p) =
+∞∑

n=−∞,
n ̸=0

1
|n|p− .

Proof We have

cn(x) =

π∫
−π

f(x; t)e−intdt =

− 1

in
f(x; t)e−int |t=π

t=−π +
1

in

π∫
−π

∂f(x; t)

∂t
e−intdt =

=
1

in

π∫
−π

∂f(x; t)

∂t
e−intdt = − 1

(in)2
∂f

∂t
e−int |t=π

t=−π +
1

(in)2

π∫
−π

∂2f(x; t)

∂t2
e−intdt =

= ... =
1

(in)m+1

π∫
−π

∂m+1f(x; t)

∂tm+1
e−intdt.

So, cn(x) =
cn,m+1(x)
(in)m+1 , where

cn,m+1(x) =

π∫
−π

∂m+1f(x; t)

∂tm+1
e−intdt,
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i.e. {cn,m+1(x)}n∈Z is the sequence of the Fourier coefficients of the function ∂kf(x,t)
∂tk

by
{
eint

}
n∈Z

. By
Theorem 3.1 {cn,m+1} ∈ lq(·)(a, b) and

∥{cn,m+1}∥lq(·)(a,b) ≤
∥∥∥∥∂m+1f

∂tm+1

∥∥∥∥
Lq(·)((a,b),Lp(·)(−π,π))

. (3.9)

Thus, using the Hölder’s inequality, we get

+∞∑
n=−∞

|nmcn(x)| =
+∞∑

n=−∞
n ̸=0

|cn,m+1(x)|
|n|

≤

≤

 +∞∑
n=−∞
n ̸=0

1

|n|p(x)


1

p(x) (
+∞∑

n=−∞
|cn,m+1(x)|q(x)

) 1
q(x)

≤

≤ α(p)

(
+∞∑

n=−∞
|cn,m+1(x)|q(x)

) 1
q(x)

.

Hence, we have

φ(x)q(x) =

(
+∞∑

n=−∞
|nmcn(x)|

)q(x)

≤
∞∑
k=1

(α(p) |cn,m+1(x)|)q(x) .

We get
b∫

a

(
φ(x)

λ

)q(x)

dx ≤
∞∑
k=1

b∫
a

(
α(p) |cn,m+1(x)|

λ

)q(x)

dx,

for ∀λ > 0 . Therefore ∥φ∥Lq(·)(a,b)
≤ α(p) ∥{cn,m+1}∥lq(·) (a, b) . Taking into account (3.9), we get (3.8). 2

Theorem 3.4 Let f ∈ Lq(·)((a, b),W
m
p(·)(−π, π)) , where 1 < p− ≤ p(x) ≤ 2 , m ∈ N , q(x) = p(x)

p(x)−1 and

for almost all x ∈ [a, b] ∂kf(x;−π)
∂tk

= ∂kf(x;π)
∂tk

, k = 0, ..,m − 1 , and cn(x) =
π∫

−π

f(x; t)e−intdt , n ∈ Z . Then

{nmcn} ∈ lq(·)(a, b) and

∥{nmcn}∥lq(·)(a,b) ≤
∥∥∥∥∂mf

∂tm

∥∥∥∥
Lq(·)((a,b),Lp(·)(−π,π))

.

Proof Taking into account ∂kf(x;−π)
∂tk

= ∂kf(x;π)
∂tk

, k = 0, ..,m− 1 , almost everywhere on [a, b] , we get

cn(x) =

π∫
−π

f(x; t)e−intdt =
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= − 1

in
f(x; t)e−int |t=π

t=−π +
1

in

π∫
−π

∂f(x; t)

∂t
e−intdt =

=
1

in

π∫
−π

∂f(x; t)

∂t
e−intdt = − 1

(in)2
∂f

∂t
e−int |t=π

t=−π +

+
1

(in)2

π∫
−π

∂2f(x; t)

∂t2
e−intdt = ... =

1

(in)m

π∫
−π

∂mf(x; t)

∂tm
e−intdt =

cn,m(x)

(in)m
.

Since ∂mf
∂tm ∈ Lq(·)((a, b), Lp(·)(−π, π)) , then by Theorem 3.1 we get

∥{cn,m}∥lq(·)(a,b) ≤
∥∥∥∥∂mf

∂tm

∥∥∥∥
Lq(·)((a,b),Lp(·)(−π,π))

.

From the relation cn,m(x) = (in)mcn(x) we have

∥{nmcn}∥lq(·)(a,b) = ∥{cn,m}∥lq(·)(a,b) .

2
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