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Abstract: For a class of R -modules X containing all projective R -modules, the X -Gorenstein projective R -modules
vary from projective to Gorenstein projective R -modules. We characterize the rings over which the left global X -
Gorenstein projective dimensions are finite. If further Y contains all injective R -modules, we show the existence of a
new left global Gorenstein dimension of R with respect to X and Y satisfying proper conditions. As an application we
characterize Ding-Chen rings by this new global Gorenstein dimension and show the existence of Ding-Chen rings with
infinite global Gorenstein dimension. We also show the existence of X -Gorenstein projective precovers for a large class
of rings.
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1. Introduction
Throughout this paper, R denotes a unitary associative ring and all modules are left R -modules if not specified
otherwise. As usual, we use P , I and F to denote respectively the classes of all projective, injective and flat
R -modules, and we use pd(M) , id(M) and fd(M) to denote respectively the projective, injective and flat
dimension of an R -module M . Let X be a class of R -modules that contains P and Y a class of R -modules
containing I . To provide a unified approach to the study of projective (injective) and Gorenstein projective
(injective) R -modules (please cf. [2, 6] for the original definition) and their homological dimension theory, the
authors of [1] defined and studied the modules given by the following definition:

Definition 1.1 An R -module M is called X -Gorenstein projective, if there exists an exact sequence of
projective R -modules P = · · · → P1 → P0 → P 0 → P 1 → · · · such that M = Im(P0 → P 0) and HomR(P, F )

is exact whenever F ∈ X . The sequence P is called an X -complete projective resolution. We denote by
GPX (R) the class of all X -Gorenstein projective R -modules. Dually we can define the Y -Gorenstein injective
R -modules and GIY(R) .

In fact, let X = Y be the class RMod of all left R -modules, then GPX (R) = P and GIY(R) = I . Let
X = P and Y = I , then GPX (R) and GIY(R) become the classes of Gorenstein projective modules (denoted
by GP(R)) and Gorenstein injective R -modules (denoted by GI(R))). Furthermore, Let X = F and Y = FI ,
i.e., the class of all FP-injective R -modules (see Definition 2.17), then GPX (R) and GIY(R) become respectively
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the classes of Ding projective and Ding injective R -modules defined in [9]. Plenty of works on these modules can
be found in [2, 4, 9, 11–14]. As one can see that, various topics on these relative Gorenstein modules, such as
homological dimension theory, (pre)covering and (pre)enveloping theory are studied. However, it is seemingly
lacked of a universal approach to carry out all the homological discussions once and for all.

Regarding this, the paper is dedicating to a systematical study of the global homological dimension theory
and precovering (preenveloping) theory of these modules. In details, let us denote by X -Gpd(M ) the X -
Gorenstein projective dimension of M (see the definition at the beginning of section 2). Furthermore we define
the (left) global X -Gorenstein projective dimension l.X -GPD(R) of R by l.X - GPD(R)=supf{X -Gpd(M)|M
is a (left) R -module.}. Also we have the dual definitions (see Notation 2.6). Moreover, given a class F of R -
modules, recall that, a homomorphism φ : F → M is called an F -precover of M if Hom(F ′, F ) →Hom(F ′,M)

is surjective for all F ′ ∈ F . An F -preenvelope of M can be defined dually.
The first main result of Section 2 (see Theorem 2.8) is a characterization of the rings over which the

(left) global X -Gorenstein projective dimensions are finite. Partial results of this theorem (for the unexplained
notations and definitions, please see the words above Theorem 2.8) can be found in [4, 6, 14].

Theorem 1.2 (Theorem 2.8) Let R be a ring and X be a class of R -modules that contains all projective
R -modules. Then the following statements are equivalent:

(1) l.X -GPD(R)≤ n .
(2) Each m-th (m ≥ n) syzygy in any projective resolution of any module is in GPX (R) .
(3) id(X )≤ n and pd(I )≤ n .

(4) (GPX (R), Ǐn) is a hereditary complete cotorsion pair.

(5) (GPX (R), P̂n) is a hereditary complete cotorsion pair and P̂n = Ǐn .

Note that id(X ) and pd(I) are defined respectively as sup{id(X)|X ∈ X } and sup{pd(I)|I ∈ I }. For two
classes X and Y which satisfy certain conditions, the theorem above and its dual version give rise to the
existence of a new global dimension of a ring R via the following result:

Theorem 1.3 (see Theorem 2.13) Let X and Y be respectively projectively resolving and injectively coresolving
classes of R -modules. Then l.X -GPD(R) = l.Y -GID(R)=max{id(X ), pd(Y)} (interpreted as ∞ if either
id(X ) or pd(Y) is infinite) whenever one of the following conditions is satisfied:

(1) id(X ) = id(P) and pd(Y) = pd(I) .
(2) id(X ) = pd(Y) .
(3) X -pd(Y) = Y -id(X ) .

The common value of the quantities in this theorem is denoted as l.GgldimX ,Y(R) , and is called the (left) global
Gorenstein dimension with respect to X and Y of R . We point out that this dimension becomes the left global
dimension or the left global Gorenstein dimension of a ring R (cf. [2] for the definition) by taking different X
and Y (cf. Remark 2.16). They further imply a sufficient condition for that the functor HomR(−,−) is right
balanced by GPX (R)× GIY(R) (Corollary 2.11).

As an important application, we study the global dimensions related to Ding projective and injective
modules. We prove the existence of l.GgldimF,FI(R) for certain ring R (Proposition 2.22), and we show that
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if it exists, then it coincides with the left global Gorenstein dimension of R (Theorem 2.19). At last we give a
characterization of a Ding-Chen ring (see Definition 2.18) or commutative coherent ring by l.GgldimF,FI(R) .
This discussion gives many of the results in [4, 11, 13]. As an important conclusion we get the following result:

Corollary 1.4 (see Corollary 2.25) There exists a Ding-Chen ring with infinite global Gorenstein dimension.

This shows a difference between Ding-Chen rings and n -Gorenstein rings, since for any n -Gorenstein ring,
we always have l.Ggldim(R) = id(RR) = n , but for a Ding-Chen ring R it may hold l.GgldimF,FI(R) > FI -
id(RR) .

The main result of Section 3 is the following result concerning the existence of the GPX (R) -precovers
(see Theorem 3.2 and the dual result Theorem 3.3). It derives many well-known results as corollaries when
applying to the context of [4, 6, 13].

Theorem 1.5 Let R be a ring, X a class of R -modules that contains all projective R -modules. If every
module in X has finite injective dimension, then every R -module has a GPX (R)-precover.

2. X -Gorenstein projective dimensions

Let R be a ring and M any R -module, for a given class W of R -modules, M is said to have a left W -resolution
if there exists an exact sequence · · · → Wn → · · · → W1 → W0 → M → 0 with each Wi ∈ W for i ≥ 0 , and we
call each Ki = Ker(Wi → Wi−1) the i -th syzygy of this left W -resolution. We further define W -pd(M ) as the
minimum number n (if it exists) such that there exists a left W -resolution for M with all Wi = 0 for all i > n ,
otherwise we set it equal to ∞ . Similarly we can define the right W -resolution of M , the i -th cosyzygy and the
dimension W -id(M ). For convenience, we use Ŵ (resp. W̌ ) to denote the class of R -modules with finite left
(resp. right) W -resolutions. In particular, for given two certain classes X and Y , when W = GPX (R) (resp.
W = GIY(R)), for clarity, we write W -pd(M ) (resp. W -id(M )) by X -Gpd(M ) (resp. Y -Gid(M )). For a
class of R -modules X , it is also convenient to use W -pd(X ) to denote sup{W -pd(X)|X ∈ X }, similarly the
meaning of W -id(X ) is clear. In particular, the notations pd(X ) , id(X ) and fd(X ) are also clear.

Let X be a class of R -modules and H some subclass of X . We recall that, if for any R -module X ∈ X
there exists a short exact sequence 0 → X → H → X ′ → 0 with H ∈ H and X ′ ∈ X , and it holds that
Ext1R(X ,H) = 0 , then the class H is called an Ext-injective cogenerator of X (see also, eg., [16]). Note that
by definition P is an Ext-injective cogenerator of GPX (R) .

The following is a direct result of [16, Theorem 3.1] and [1, Theorem 2.3], which will be frequently used
in the sequel.

Proposition 2.1 Let R be a ring and X a class of R -modules that contains all projective R -modules, M an
R -module with X -Gpd(M) < ∞ . Then the following statements are equivalent:

(1) X -Gpd(M) ≤ n .
(2) Each m-th (m ≥ n) syzygy in any projective resolution of M is in GPX (R) .
(3) Each m-th (m ≥ n) syzygy in any GPX (R) resolution of M is in GPX (R) .
(4) ExtmR (M,X) = 0 for all m > n and all X ∈ P .

(5) ExtmR (M,H) = 0 for all m > n and all H ∈ P̂(R) .
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(6) There exists a short exact sequence 0 → M → W → X → 0 with pd(W ) ≤ n and X ∈ GPX (R) .
(7) There exists a short exact sequence 0 → K → X → M → 0 with pd(K) = n− 1 and X ∈ GPX (R) .
(8) M admits a surjective GPX (R)-precover φ : X → M with K = kerφ satisfying pd(K) ≤ n− 1 .

We also have:

Proposition 2.2 Let R be a ring, M an R -module, and let X be a class of R -modules containing all projective
R -modules. If it holds either X -pd(M) < ∞ or id(M) < ∞ , then X -Gpd(M) = pd(M) .

Proof Suppose first X -pd(M) = n < ∞ . Apparently we have X -Gpd(M) ≤ pd(M) . For the inverse
inequality, suppose that X -Gpd(M) = n < ∞ , we shall show that pd(M) ≤ n . By Proposition 2.1(7) we have
a short exact sequence 0 → K → X → M → 0 with pd(K) = n − 1 and X ∈ GPX (R) . Thus we obtain
another short exact sequence: 0 → X → P → H → 0 with P projective and H ∈ GPX (R) . Consider the push
out diagram of X → M and X → P :

0 0y y
0 −−−−→ K −−−−→ X −−−−→ M −−−−→ 0∥∥∥ y y
0 −−−−→ K −−−−→ P −−−−→ L −−−−→ 0y y

H Hy y
0 0

It follows that pd(L) ≤ n from the second row of the diagram, while the last column splits follows from
Ext1R(H,M) = 0 since X -pd(M) = n , one has pd(M) ≤ n , as needed.

Now suppose id(M) = n < ∞ . If we still have pd(M) < ∞ , then we are through by the first part of
the proof. So assume pd(M) = ∞ , and we need to show X -Gpd(M) = ∞ . Suppose it is not the case, say X -
Gpd(M) = m , then as above once again one gets a short exact sequence 0 → M → L → H → 0 with pd(L) = n

and H ∈ GPX (R) . Thus we have a complete projective resolution of H : · · · → P1 → P0 → P 0 → P 1 → · · · .
Set N = Ker(P k → P k+1) for some k ≥ n , we have Ext1R(H,M) ∼= Extk+1

R (N,M) = 0 since id(M) = n . It
follows that M is a direct summand of L , thus we have pd(M) ≤ pd(L) ≤ m , and it contradicts. So we have
X -Gpd(M) = pd(M) = ∞ , as desired. 2

For an R -module M , it is interesting to ask how the two dimensions X -Gpd(M) and X -pd(M) are
related. The following result gives a partial answer. Let us recall that, a class X of R -modules is called
projectively resolving if X contains all projective R -modules, and for every short exact sequence 0 → X ′ →
X → X ′′ → 0 with X ′′ ∈ X the conditions X ′ ∈ X and X ∈ X are equivalent. The injectively coresolving
class of R -modules can be defined dually. It is easy to see that the class F of flat R -modules is projectively
resolving. Furthermore, if X is closed under direct sums then the class GPX (R) is projectively resolving and
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closed under arbitrary direct sums and under direct summands by an almost the same proof as that of [12,
Theorem 2.5].

Corollary 2.3 Let M be an R -module and X a projectively resolving class of R -modules. If either pd(M) < ∞

or id(M) < ∞ holds, then we have X -pd(M) ≤ X -Gpd(M) and the equality holds if and only if P̂ ∩ X = P .

Proof The first assertion follows from the obvious inequality X -pd(M) ≤ pd(M) and Proposition 2.2, while
the second assertion follows by [16, Propositon 2.3(2)]. 2

It is obvious that the class GPX (R) is usually a subclass of GP(R) by our definition. On the other hand,
let X = GP(R) , M be an R -module such that pd(M) < ∞ , by Corollary 2.3 we get that pd(M) = GP(R) -
Gpd(M) . This particularly implies that GPX (R) = P . In fact, more generally we have

Proposition 2.4 Let R be a ring, and let X ⊆ X ′ be two classes of R -modules which both contain all projective
R -modules. If GPX (R) ⊆ X ′ , then GPX ′(R) = P .

Proof Only the inclusion GPX ′(R) ⊆ P needs to be shown. Let M ∈ GPX ′(R) be an R -module. By
definition we have a short exact sequence: 0 → M ′ → P → M → 0 with P some projective R -module and
M ′ ∈ GPX ′ . In fact we have M ′ ∈ GPX (R) ⊆ X ′ since X ⊆ X ′ . Now it follows from Ext1R(M,M ′) = 0 that
the above sequence splits, and the result follows. 2

Remark 2.5 By Proposition 2.4 one may ask, for any two class X and X ′ of R -modules which both contain all
projective R -modules, in what conditions do we have GPX (R) = GPX ′(R)? In the case where l.X -GPD(R) ≤ n

or l.X ′ -GPD(R) ≤ n holds, we will show that the equality holds true if and only if X̂n = X̂ ′
n = P̂n (see Corollary

2.9 below).

We introduce some notations for later use.

Notation 2.6 The usual and well-investigated (left) finite projective dimension l.FPD(R) of R is defined
by l.FPD(R)=sup{pd(M)|M is a (left) R -module with finite left projective dimension}, and we define the
(left) global X -Gorenstein projective dimension l.X -GPD(R) of R by l.X -GPD(R)=sup{X -Gpd(M)|M is
a (left) R -module}. Similarly we define the (left) finitistic X -Gorenstein projective dimension of R by l.X -
FGPD(R)=sup{X -Gpd(M)|M is a (left) R -module with finite left X -Gorenstein projective dimension}. Note
that the (left) finite injective dimension FID(R) , the (left) global Y -Gorenstein injective dimension l.Y -GID(R)

and the (left) finitistic Y -Gorenstein injective dimension l.Y -FGID(R) of R can all be defined dually.

The next result extends [12, Proposition 2.28].

Proposition 2.7 For any ring R and any class X of R -modules that contains all projective R -modules, there
is an equality X -FGPD(R) = FPD(R) .

Proof Clearly we have l.FPD(R) ≤ l.X -FGPD(R) . For inverse inequality, note that for any R -module M

with X -Gpd(M) = n , there exists a short exact sequence 0 → M → W → X → 0 with pd(W ) = n and
X ∈ GPX (R) by Proposition 2.1(6). This shows that l.FPD(R) ≥ l.X -FGPD(R) , and it completes the proof.

2
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Now we are in a position to state the first main reult of this section. But before doing this, we need
some notations and definitions that can be found in [10]. Given a class C of R -modules, we denote by ⊥C

(resp. C⊥ ) the class of R -modules F such that Ext1R(F,C) = 0 (resp. Ext1R(C,F ) = 0) for all C ∈ C . ⊥C

(C⊥ ) is called the left (right) orthogonal class of C . Recall that a pair (F , C) of classes of R -modules is called
a cotorsion pair if F⊥ = C and ⊥C = F . Further, a cotorsion pair (A,B) is said to be complete if for every
R -module X there exist two exact sequences 0 → B → A → X → 0 and 0 → X → B′ → A′ → 0 with
A ,A′ ∈ A and B ,B′ ∈ B . Meanwhile a cotorsion pair (A,B) is said to be hereditary if for every short exact
sequence 0 → A′ → A → A′′ → 0 with A , A′′ ∈ A , then A′ ∈ A , or equivalently, if 0 → B′ → B → B′′ → 0

is exact with B′ , B ∈ B , then B′′ ∈ B . We use X̂n (resp. Y̌n ) to denote the class of R -modules M with
X -pd(M) ≤ n (resp. Y -id(M) ≤ n) for some n ≥ 0 . The following theorem is a generalization of [4, Theorems
4.1 and 4.2] and many results in [14], it reveals that the left global X -Gorenstein projective dimension of a ring
R is strictly controlled by the classes X , I and special cotorsion pairs.

Theorem 2.8 Let R be a ring and X be a class of R -modules that contains all projective R -modules. Then
the following statements are equivalent:

(1) l.X -GPD(R)≤ n .
(2) Each m-th (m ≥ n) syzygy in any projective resolution of any module is in GPX (R) .
(3) id(X )≤ n and pd(I )≤ n .
(4) (GPX (R), Ǐn) is a hereditary complete cotorsion pair.

(5) (GPX (R), P̂n) is a hereditary complete cotorsion pair and P̂n = Ǐn .

Proof
(5) ⇒ (4) is obvious. (1) ⇔ (2) is also obvious by Proposition 2.1.
(1) ⇒ (3) . Suppose l.X -GPD(R)≤ n . We first show that id(X )≤ n . Indeed, otherwise we will have

id(X )> n , then at least for some two R -modules M and X ∈ X , it holds that Extn+1
R (M,X) ̸= 0 . But

since X -GPD(R)≤ n , so by dimension shifting we get that Extn+1
R (M,X) = 0 , hence a contradiction. We

still need to show pd(I) ≤ n . Assume the contrary, then pd(I) = m ≥ n + 1 . It follows that there exists
an injective R -module I and an R -module B such that ExtmR (I,B) ̸= 0 . Choose a short exact sequence
0 → K → P → B → 0 and we have an associated long exact sequence:

· · · → ExtmR (I, P ) → ExtmR (I,B) → Extm+1
R (I,K) → · · · .

Hence we obviously have ExtmR (I, P ) ̸= 0 , but by Proposition 2.1 this contradicts with the fact that l.X -
GPD(R)≤ n and m ≥ n+ 1 .

(3) ⇒ (1) . We first show that, any exact complex of projective R -modules P = · · · → P−2 → P−1 →
P 0 → P 1 → · · · is a complete X -Gorenstein projective resolution. So let A be any R -module in X , by
hypothesis there is a finite injective resolution of A : 0 → A → I0 → I1 → · · · → In−1 → In → 0 with n

some positive integer. Set Kn−1 = Ker(In−1 → In) , it follows from the short exact sequence of complexes of
R -modules:

0 → HomR(P,Kn−1) → HomR(P, In−1) → HomR(P, In) → 0.

that HomR(P,Kn−1) is exact by the exactness of the other two complexes. Iterating this procedure we get that
HomR(P, A) is exact, as wanted.
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Now we have to show that every R -module has a GPX (R) -resolution of length no greater than n . So
let M be any R -module, we shall construct such a resolution. The construction is essentially contained in the
proof of [8, Theorem 4.1], but for the sake of completeness, we shall give it in details. Let us choose an injective
resolution of M : 0 → M → I0 → I1 → I2 → · · · . Then for each Ii we can choose a projective resolution
Pi = · · · → P i

1 → P i
0 → Ii → 0 . Set Ci

n = Ker(P i
n−1 → P i

n−2) , then Ci
n is projective for all i ≥ 0 since

pd(I) ≤ n . Let Jk be the kernel of P 0
k → P 1

k for all 0 ≤ k ≤ n− 1 , then we have the following commutative
diagram:

0 −−−−→ C −−−−→ C0
n −−−−→ C1

n −−−−→ · · ·y y y
0 −−−−→ Jn−1 −−−−→ P 0

n−1 −−−−→ P 1
n−1 −−−−→ · · ·y y y

...
...

...y y y
0 −−−−→ J0 −−−−→ P 0

0 −−−−→ P 1
0 −−−−→ · · ·y y y

0 −−−−→ M −−−−→ I0 −−−−→ I1 −−−−→ · · ·

where C = Ker(C0
n → C1

n) . Thus we get that all these R -modules Jk and C have complete X -Gorenstein
projective resolutions by the above discussion, just note that any module naturally admits a left projective
resolution. So the following resolution of M appeared in the above diagram is a desired GPX (R) -resolution of
length n :

0 → C → Jn−1 → · · · → J0 → M → 0.

(1) ⇒ (5) . Before showing this implication, we first claim that if (1) holds, then (GPX (R), X̂n) is a

cotorsion pair and X̂n = P̂n . To do this we shall show that X̂n = GPX (R)⊥ and GPX (R) =⊥ X̂n . The
inclusions

P̂n ⊆ X̂n ⊆ GPX (R)⊥

follow directly by dimension shifting and the definition. To show GPX (R)⊥ ⊆ X̂n , let M ∈ GPX (R)⊥ , then
we have a short exact sequences: 0 → M → I → L → 0 with I injective. Furthermore, by (1) and Proposition
2.1, there exists another short exact sequence 0 → K → G → L → 0 with pd(K) ≤ (n− 1) and G ∈ GPX (R) .
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Consider the pullback diagram of I → L and G → L :

0 0y y
K Ky y

0 −−−−→ M −−−−→ D −−−−→ G −−−−→ 0∥∥∥ y y
0 −−−−→ M −−−−→ I −−−−→ L −−−−→ 0y y

0 0

.

It follows from pd(I) ≤ n and pd(K) ≤ (n− 1) that pd(D) ≤ n . The middle row in the above diagram splits
since G ∈ GPX (R) , hence pd(M) ≤ n , so we have

GPX (R)⊥ ⊆ P̂n ⊆ X̂n.

Combining it with the inclusions at the beginning we get GPX (R)⊥ = P̂n = X̂n. To conclude our claim, it still

needs to show that GPX (R) =⊥(X̂n) . Obviously only the implication ⊥(X̂n) ⊆ GPX (R) is nontrivial. So let

H ∈⊥(X̂n) be any R -module, by Proposition 2.1 we have a short exact sequence 0 → L → B → H → 0 with

pd(L) ≤ (n− 1) and B ∈ GPX (R) . This sequence splits since L ∈ X̂n . It yields that H is a direct summand
of B , hence is in GPX (R) , as desired.

The fact that the cotorsion pair (GPX (R), X̂n) or (GPX (R), P̂n) is hereditary complete follows from
Proposition 2.1 and that the class GPX (R) is projectively resolving. Also we deduce that (1) ⇒ (5) , since (1)

implies (3) , for any projective resolution of M ∈ P̂n with length n , (3) and a discussion of dimension shifting
give that M ∈ Ǐn and vice versa.

(4) ⇒ (1) . Let A be any R -module. Consider the long exact sequence obtained from a projective
resolution of A : 0 → Jn → Pn−1 → · · · → P0 → A → 0 with all Pi projective. For any R -module L , we see
that Ext1R(Jn, L) ∼= Extn+1

R (A,L) . Let L vary in Ǐn , (4) yields that Jn ∈⊥(Ǐn) = GPX (R) , and (1) follows.
2

Note that some well-known results in [6] are particular cases of Theorem 2.8, also note that the assumption
l.X -GPD(R)< ∞ in [14, Proposition 3.14] can be taken off and the cotorsion pair in [14, Theorem 3.19] can
be explicitly given. The following result gives a partial answer to the question asked in Remark 2.5.

Corollary 2.9 For any two classes X and X ′ of R -modules which both contain all projective R -modules,
assume that either l.X -GPD(R)≤ n or l.X ′ -GPD(R)≤ n holds. Then the two conditions are equivalent: (1)

GPX (R) = GPX ′(R) ; (2) X̂n = X̂ ′
n = P̂n .

Proof Suppose that l.X -GPD(R)≤ n , the case where l.X ′ -GPD(R)≤ n holds can be proved similarly. We

first show the implication (1) ⇒ (2) . It follows from the proof of Theorem 2.8 that we have X̂n = P̂n = X̂ ′
n
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Hence (2) holds. Now assume that (2) holds, then X ⊆ X̂n = X̂ ′
n gives that GPX (R) ⊇ GPX ′(R) . A similar

argument shows GPX (R) ⊆ GPX ′(R) , as desired. 2

It is easy to formulate he dual version of Theorem 2.8:

Theorem 2.10 Let R be a ring and Y be a class of R -modules that contains all injective R -modules. Then
the following statements are equivalent:

(1) l.Y -GID(R)≤ n .
(2) Each m-th (m ≥ n) cosyzygy in any injective resolution of any module is in GIY(R) .
(3) pd(Y )≤ n and id(P )≤ n .

(4) (P̂n,GIY(R)) is a hereditary complete cotorsion pair.

(5) (Ǐn,GIY(R)) is a hereditary complete cotorsion pair and Ǐn = P̂n .

To state the next result we recall from [5] that, for two classes of R -modules C and D , the functor
Hom(−,−) is said to be right C × D balanced if for any two R -modules M and N , there exists a left C -
resolution M of M and a right D -resolution N of N such that Hom(M, D) and Hom(C,N) are always exact
whenever C ∈ C and D ∈ D . As a direct consequence of Theorem 2.8 and 2.10, we have the following corollary,
which extends [6, Theorem 12.1.4].

Corollary 2.11 Let R be a ring, X and Y be the classes of R -modules that contains respectively all projective
and all injective R -modules. Assume that id(X ) ≤ n and pd(Y) ≤ n , then Hom(−,−) is right balanced by
GPX (R)× GIY(R) .

Proof By Theorems 2.8 and 2.10, we get that both of the cotorsion pairs (GPX (R), Ǐn) and (Ǐn,GIY(R))

are hereditary complete, then [5, Lemma 4.1] gives the desired result. 2

Theorem 2.12 Let X ′ ⊆ X be two classes of R -modules such that X ′ is projectively resolving. If X ′ -
pd(X ) < ∞ , then l.X ′ -GPD(R)= l.X -GPD(R) . The dual result also holds.

Proof By Definition we have l.X ′ -GPD(R) ≤ l.X -GPD(R) , so it suffices to show the inverse inequality.
If l.X ′ -GPD(R) = ∞ then we are done, so suppose l.X ′ -GPD(R) = n < ∞ , and we shall show that l.X -
GPD(R) ≤ n . By Theorem 2.8, it suffices to show that id(X ) ≤ n . Let X ∈ X , then a left projective resolution
of X gives an exact sequence: 0 → Kn → Pn−1 → · · · → P0 → X → 0 where each Pi ∈ P (0 ≤ i ≤ n− 1) and
Kn is the n -th syzygy. It follows from [16, Proposition 1.2] we get that X ′ -pd(Kn) < ∞ since X ′ -pd(X) < ∞
by assumption. On the other hand by Theorem 2.8(2) we get Kn ∈ GPX ′(R) . So Proposition 2.2 implies that
Kn is projective. Now the above exact sequence implies id(X) ≤ n since by Theorem 2.8(3) and the assumption
at the beginning of the proof we have id(P) ≤ id(X ′) ≤ n . 2

Theorem 2.13 Let X and Y be respectively projectively resolving and injectively coresolving classes of R -
modules. Then l.X -GPD(R) = l.Y -GID(R)=max{id(X ) , pd(Y)} (interpreted as ∞ if either id(X ) or pd(Y)

is infinite) whenever one of the following conditions is satisfied:
(1) id(X ) = id(P) and pd(Y) = pd(I) .
(2) id(X ) = pd(Y) .
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(3) X -pd(Y) = Y -id(X ) .

Proof It is obvious that if l.X -GPD(R) = l.Y -GID(R) , then it naturally equals to max{id(X ), pd(Y)}
by Theorem 2.8(3), Theorem 2.10(3) and the inequalities id(P) ≤ id(X ) , pd(I) ≤ pd(Y) . To show that l.X -
GPD(R) = l.Y -GID(R) , it needs only to show that the two inequalities l.X -GPD(R) ≤ n and l.Y -GID(R) ≤ n

imply each other for any positive integer n . However, this is obvious by Theorem 2.8(3) and Theorem 2.10(3)
whenever the condition (1) or (2) is satisfied.

Now suppose that (3) holds, we shall show that l.X -GPD(R) ≤ n implies l.Y -GID(R) ≤ n , for the
inverse implication the proof is similar. First note that id(X ) ≤ n and X -pd(Y) = Y -id(X ) ≤ id(X ) ≤ n follows
from l.X -GPD(R) ≤ n by Theorem 2.8(3), so it needs only to show pd(Y) ≤ n . For this take any Y ∈ Y , and
it follows from a left projective resolution of Y we get an exact sequence 0 → Kn → Pn−1 → · · · → P0 → Y → 0

where each Pi ∈ P (0 ≤ i ≤ n− 1) and Kn ∈ GPX (R) by Theorem 2.8(2). Therefore, by [16, Proposition 2.2]
and the assumption we have X -pd(Kn) < ∞ . Proposition 2.2 implies that Kn is projective and so pd(Y ) ≤ n

for any Y ∈ Y , as desired. 2

We call the common value of the quantities in Theorem 2.13 the left global Gorenstein dimension of R

with respect to X and Y if one of the conditions is satisfied, and denote it by l.GgldimX ,Y(R) .
We conclude this section with a sequel of examples and applications of the above results.

Example 2.14 Let X = Y =RMod, then GPX (R) = P , GIY(R) = I and the value of the quantities
pd(R) = l.X -GPD(R) = l.Y -GID(R) = id(R) in Theorem 2.13 becomes the usual left global dimension of the
ring R .

Next for X = P and Y = I , we carry out the main result of [2] as a corollary of Theorem 2.13 (cf. [2,
Theorem 1.1]). For convenience, we rewrite for short the notations l.X -GPD(R) and l.Y -GID(R) as l.GPD(R)

and l.GID(R) respectively when X = P and Y = I .

Corollary 2.15 ([2]) Let R be a ring, then it holds the equality: l.GPD(R) = l.GID(R) .

Remark 2.16 The common value of the quantities in Corollary 2.15 is called the left global Gorenstein
dimension of R in [2]. In contrast to the proof of [2, Theorem 1.1], we do not need the notion of strongly
Gorenstein projective R -modules here. This observation shows that the left global dimension and the left
global Gorenstein dimension of a ring R can be viewed as two different types of l.GgldimX ,Y(R) by taking
proper X and Y .

Other types of X -Gorenstein projective and Y -Gorenstein injective modules are studied in [4, 13]. Let
us recall some definitions.

Definition 2.17 An R -module N is called FP-injective provided Extn≥1
R (M,N) = 0 for any finite presented

module M .

We use FI to denote the class of all FP-injective R -modules, and it is easy to check that FI is injectively
coresolving. If we set X = F and Y = FI , following [10], the corresponding modules in GPX (R) and GIY(R)

are called respectively Ding projective and Ding injective modules (which are first called strongly Gorensein flat
and Gorenstein FP-injective modules in [4, 13]).
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The following notion of Ding-Chen rings can be viewed as a generalization of that of n -Gorenstein rings
(i.e. left and right Noetherian rings with self injective dimensions at most n on both sides).

Definition 2.18 ([9]) A ring R is said to be a Ding-Chen ring if it is an n-FC ring for some integer n ≥ 0 ,
where an n -FC ring is a two-sided (left and right) coherent ring with FI -id(RR) ≤ n and FI -id(RR) ≤ n .

Our next aim is to show that, for any two-sided coherent ring R with FI -id(RR) = FI -id(RR) the
dimension l.GgldimF,FI(R) exists, and it coincides with l.Ggldim(R) (see Proposition 2.22 below). For
consistence of the notation, we write for short respectively l.SGFP(R) and l.GFID(R) instead of l.X -GPD(R)

and l.Y -GID(R) when X = F and Y = FI , as used in [4, 13].

Theorem 2.19 Let R be a ring, then l.SGFP(R)= l.GPD(R) .

Proof Obviously we have l.GPD(R) ≤ l.SGFP(R) . To show the inverse inequality, suppose that l.GPD(R) =

n < ∞ . Thus by [2, Corollary 2.7] we get pd(F) ≤ n , and Theorem 2.12 gives the result. 2

In the sequel we shall use the notation M+ to denote the character module of an R -module M , which
is defined as HomR(M,Q/Z) .

Lemma 2.20 Let R be a two-sided coherent ring, then fd(FI) = FI -id(FR) = FI -id(RR) . The similar
result also holds if we switch the left and right R -modules.

Proof (≤) First note that [3, , Theorem 3.8] implies FI -id(FR) = FI -id(RR) . For any M ∈ FI , by [3,
Lemmas 2.1 and 2.4] we have fd(M) = FI -id(M+) ≤ FI -id(FR) .

(≥) Now for any F ∈ FR , by [3, Lemma 2.3] we have FI -id(F ) = fd(F+) ≤ fd(I) ≤ fd(FI) , as
needed. 2

Lemma 2.21 Let R be a two-sided coherent ring, then id(F) = FI -id(RR) ≤ pd(IR) ≤ pd(FIR) .

Proof For any F ∈ F , by [6, Proposition 5.3.9] we have a pure exact sequence: 0 → F → F++ → F++/F → 0 .
Since R is right coherent, F++ is left flat. Now the above short pure exact sequence yields that F++/F is
left flat. Hence F is a direct summand of F++ , and by [3, , Lemmas 2.1 and 2.4] we have id(F ) ≤ id(F++) =

fd(F+) ≤ fd(IR) , on the other hand we get FI -id(RR) = fd(IR) ≤ id(F) by [3, Lemma 2.1 and Theorem
3.8], this gives the desired inequality id(F) = FI -id(RR) = fd(IR) ≤ pd(IR) ≤ pd(FIR) . 2

Proposition 2.22 Let R be a two-sided coherent ring such that FI -id(RR) = FI -id(RR) , then FI -
id(RR) ≤ l.GgldimF,FI(R) = pd(I) = pd(FI) .

Proof The existence of l.GgldimF,FI(R) follows directly from Theorem 2.13 and Lemma 2.20. By Lemma
2.21, Theorems 2.13 and 2.19 we obtain

pd(FI) = l.GgldimF,FI(R) = l.GPD(R) = max{id(P), pd(I)} = pd(I),

thus pd(FI) = pd(I) . 2
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We remark that for a two-sided coherent ring, FI -id(RR) = FI -id(RR) holds if and only if both
FI -id(RR) and FI -id(RR) are finite or infinite by [3, Corollary 3.18].

At last we shall use these results to characterize Ding-Chen rings and commutative coherent rings by
l.GgldimF,FI(R) . For this we recall from [7, Definition 1.1] that, a ring R is said to be n -perfect provided
that all flat R -modules have projective dimensions less or equal than n , i.e. pd(F) ≤ n . Note also that for a
Ding-Chen ring, the following result could also be deduced from [11, Theorem 1.1].

Theorem 2.23 Let R be a Ding-Chen ring or commutative coherent ring, if FI -id(RR) is finite, then for
any integer m ≥ FI -id(RR) , the following statements are equivalent:

(1) l.GgldimF,FI(R) = m.

(2) l.Ggldim(R) = m.

(3) pd(I) = pd(FI) = m.

(4) The m-th syzygy of a projective resolution of any R -module is Ding projective.
(5) The m-th cosyzygy of an injective resolution of any R -module is Ding injective.

(6) All Gorenstein projective modules are Ding projective and (GP(R), Ǐm) is a hereditary complete
cotorsion pair.

(7) All Gorenstein injective modules are Ding injective and (P̂m,GI(R)) is a hereditary complete cotorsion
pair.

Furthermore, each of these conditions implies that R is m-perfect. Otherwise if FI -id(RR) is infinite,
then the equivalent statements (1-3) still validates except that m is interpreted as ∞ .

Proof The equivalences of (1-5) follow from Corollary 2.15, Theorem 2.19 and Proposition 2.22. (1) ⇔ (6)

and (1) ⇔ (7) follow from Theorems 2.8, 2.12 and Corollary 2.9. As to the last statement, obeserve that
id(F) = n and pd(I) = m imply pd(F) ≤ m . 2

Remark 2.24 (1) First note that if R is an n -FC and left (n′ − n) -perfect ring with n′ ≥ n , then all the
equivalent statements in above theorem hold for some m such that n′−n ≤ m ≤ n′ . To see this, let m = pd(I)
and observe that n′−n ≤ pd(I) ≤ n′ follows from pd(F) ≤ n′−n and fd(I) = n by the proof of Lemma 2.21.

(2) Also note that there may not exist an positive integer m = n such that one of the conditions in
Theorem 2.23 is satisfied. For example, let R =

∏
F , an infinite product of a field F ; then R is a commutative

von Neumann regular ring and it is not semisimple (see [4]). Clearly, R is 0 -FC but the global dimension m

of R is strictly greater than 0, thus R is not left perfect as pd(F) = m . Hence we conclude that the value m

in Theorem 2.23 is strictly greater than 0 if it is finite (for example, this happens if F is the complex number
field). Furthermore, for any commutative von Neumann regular ring with infinite global dimension, there exists
no finite integer m such that it satisfies the equivalent conditions in the theorem above.

We restate the above remark as follows.

Corollary 2.25 There exists a Ding-Chen ring with infinite global Gorenstein dimension.
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3. X -Gorenstein projective precovers

In this section, we shall study the existence of GPX (R) -precovers. We start with the following definition,
remember that a subcategory C of an abelian category A is said to be thick, if for any short exact sequence
0 → M → M ′ → M ′′ → 0 in A , M ′ ∈ C if and only if M and M ′′ are in C .

Definition 3.1 ([10]) Given an abelian category A , a complete cotorsion pair (F , C) is called an projective
cotorsion pair whenever C is thick and F ∩ C is the class of projective objects in A .

For instance, the well-known cotorsion pair (P , RMod) is a canoical projective cotorsion pair in RMod,
in fact it is even more cogenerated by the 0 module, and for more examples one may refer to [10]. Now we turn
to the main result of this section. Recall that Theorem 2.8 implies that for any ring R with id(P) and pd(I)
finite, every module has a special GP(R) -precover, the following result shows that the first condition is enough
for the existence of GP(R) -precovers.

Theorem 3.2 Let R be a ring, X a class of R -modules that contains all projective R -modules. If every
module in X has finite injective dimension, then every R -module has a GPX (R)-precover.

Proof Suppose X is such a class. First note that, By the discussion at the beginning of “(3) ⇒ (1)” part of
the proof of Theorem 2.8, any long exact complex of projective R -modules P = · · · → P−2 → P−1 → P 0 →
P 1 → · · · is a complete X -Gorenstein projective resolution of some module M =Ker(P 0 → P 1) .

Denote P̃ the class of all exact degreewise projective complexes of R -modules. We now claim that every
complex of R -modules has a P̃ -precover. In fact, this is a direct consequence of [10, Proposition 7.3], since the
cotorsion pair (P , RMod) is a projective cotorsion pair cogenerated by some set in RMod as we saw.

Take any R -module M , we can associate a complex M [1] = · · · → 0 → M
1M→ M → 0 → · · · , which is

concentrated at degrees −1 and 0 with the module M and whose only nonzero differential ∂−1 is the identity
map of M . By what we have proved there exists a P̃ -precover g : P → M [1] where P = · · · → P−2 → P−1 →
P 0 → P 1 → · · · is an exact complex of projective R -modules. Denote G = Ker(P 0 → P 1) , thus g naturally
induces a map g̃ : G → M . Now by a same argument as in the proof of [15, Theorem A], we can show that the
map g̃ : G → M is the desired GPX (R) -precover of M , it then finishes the proof. 2

Using [10, Proposition 7.2] and a dual argument to that of [15, Theorem A], one can get the dual result
of Theorem 3.2 as follows.

Theorem 3.3 Let R be a ring, Y a class of R -modules that contains all injective R -modules. If every module
in Y has finite projective dimension, then every R -module has a GIY(R)-preenvelope.

Let X be the class of projective R -modules, we then have the following results, and one can get their
dual versions easily.

Corollary 3.4 Let R be a ring such that all projective R -modules have finite injective dimensions, then every
R -module has a Gorenstein projective precover.

In particular we get the following known result ([6, Theorem 11.5.1]):
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Corollary 3.5 Let R be an n-Gorenstein ring, then every R -module has a Gorenstein projective precover.

Proof Follows directly by Corollary 3.3 and [6, Theorem 9.1.11]. 2

Let X be the class of flat R -modules, hence we have the following:

Corollary 3.6 Let R be a ring such that all flat R -modules have finite injective dimensions, then every
R -module has a Ding projetive precover.

Thus by Lemma 2.21 we have the following result.

Corollary 3.7 Let R be a Ding-Chen ring, then every R -module has a Ding projective precover.

Similarly, take Y to be the class of FP-injective R -modules, then by the Theorem 3.3 we have the
following result.

Corollary 3.8 Let R be a ring such that all FP-injective R -modules have finite projective dimensions, then
every R -module has a Ding injective preenvelope.

For example, let R be a Ding-Chen ring with l.Ggldim(R) < ∞ , then by Theorem 2.23 all FP-injective
R -modules have finite projective dimensions. Furthermore, if l.GFI(R) is finite, then by Corollary 3.7 or
Theorem 2.8 every R -module has a Ding injective preenvelope.
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