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Abstract: In this paper we study symplectic 8-manifolds admitting Spin(7) - structure. We give examples and show
that many of the symplectic 8-manifolds constructed by Pasquotto satisfy the Chern number relations required to admit
a Spin(7) -structure.
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1. Introduction
The Lie groups G2 and Spin(7) are the exceptional holonomy groups in Berger’s classification of holonomy
groups of Riemannian manifolds. They can only appear as the holonomy groups of 7 and 8 dimensional
Riemannian manifolds, respectively. Manifolds with these holonomy groups play an important role in M-theory
and gauge theories in higher dimensions. Hence, understanding the structure of these special geometries forms
a very active research area for many geometers and physicists (cf. [4], [9], [7]). In [1] Arikan, Cho and Salur
initiate the study of 7-dimensional manifolds with both contact and G2 structures. They try to understand G2

manifolds by using the techniques coming from contact geometry. Using the associative calibration they find a
contact 1-form on a 7-manifold with G2 -structure which satisfies certain compatibility conditions. They also
construct explicit almost contact metric structures on manifolds with G2 -structures which are also studied by
Özdemir, Solgun and Aktay in [12].

There is a similar interdisciplinary research area for 8-dimensional case; namely 8-manifolds with both
symplectic and Spin(7) -structures which are studied in this paper. However, this case is harder than the
7-dimensional case because every spin 7-manifold M has a G2 structure and Arikan et al. prove that M

has an almost contact structure, too. For an 8-dimensional manifold M , being spin is not enough to have a
Spin(7) -structure. Additionally, the Pontryagin classes (or Chern classes in symplectic case) of M must satisfy
a certain equation.

In this article, we prove certain results on the existence of symplectic 8-manifolds with Spin(7) -structures
and give some examples. Some of our results heavily depend on the work of Pasquotto [13] where she constructs
8-dimensional symplectic manifolds for every Chern number system which satisfies certain modular equations.
We use Pasquotto’s constructions to find a large family of symplectic 8-manifolds which may have a Spin(7) -
structure.
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The paper is organized as follows. In Section 2 we give the preliminaries about symplectic and Spin(7) -
structures. In Section 3 we start with some examples and then we continue with summarizing Pasquotto’s
results. Finally in the same section, we show that many of her constructions satisfy the Chern number relations
satisfied by manifolds with Spin(7) -structure.

2. Preliminaries
In this section, we give some background materials.

2.1. Spin structures

Let E be an oriented n -dimensional Riemannian vector bundle over a manifold M, and let PSO(n)(E) be
its bundle of oriented orthonormal frames. There is a naturally defined universal covering homomorphism
ξ0 : Spin(n) → SO(n) with kernel {−1, 1} ≃ Z2 for n ≥ 3. If we can lift the structure group of E from SO(n)

to Spin(n) , then oriented vector bundle E is spinnable.

Definition 2.1 For n ≥ 3 , a spin structure on E is a principal Spin(n)-bundle PSpin(n)(E) together with a
2-sheeted covering

ξ : PSpin(n)(E) → PSO(n)(E)

such that ξ(p.g) = ξ(p).ξ(g) for all p ∈ PSpin(n)(E) and all g ∈ Spin(n).

An oriented Riemannian manifold M is called a spin manifold if its tangent bundle TM carries a spin
structure.

For an oriented Riemannian manifold M , the obstruction to having a spin structure is the Stiefel-Whitney
class w2(M) ∈ H2(M,Z2) . Hence, M has a spin structure if and only if w2(M) = 0.

Proposition 2.2 Let M and N be two spin manifolds. Then, M ×N and M#N are spin manifolds, too.

In dimension 8, there is a necessary condition for an oriented Riemannian manifold M to be spin. It is
given by the Â -genus, which can be computed using the following formula:

Â[M ] =
1

5760
(7p21 − 4p2)[M ] (2.1)

, where pi is the i th Pontryagin class of M . Borel and Hirzebruch [2] prove that the Â -genus must be an
integer for a spin manifold.

2.2. Symplectic structure

A symplectic form on a smooth manifold M is a closed non-degenerate differential 2-form ω where nondegenerate
means the skew-symmetric pairing ωp : TpM × TpM −→ R is nondegenerate for all p ∈ M . Since skew-
symmetric pairings are always singular in odd dimensions, M must be even dimensional. A smooth manifold
M2n with a symplectic form ω is called a symplectic manifold. Furthermore, the assigned symplectic form ω

is also called symplectic structure.
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Remark 2.3 i) If (M2n, ω) is a symplectic manifold, any even dimensional submanifold S ⊂ M with ω|S is
a symplectic manifold.
ii) If (M1, ω1) and (M2, ω2) are two symplectic manifolds, then M1×M2 is a symplectic manifold with symplectic
form ω = π∗

1ω1+π∗
2ω2 . Furthermore, there is a symplectic sum operation #S which makes M1#SM2 symplectic.

Definition 2.4 An almost complex structure on a smooth oriented manifold M is an endomorphism of the
tangent bundle J : TM → TM such that J2 = −idM .

Every symplectic manifold (M,ω) with a Riemannian metric g has an almost complex structure J on M which
is compatible with ω , i.e.

g(v, w) = ω(v, Jw)

.

2.3. Spin(7)-structure on 8-dimensional manifolds

Let

Φ0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678
(2.2)

where dxijkl = dxi∧dxj∧dxk∧dxl is the standard Cayley 4-form on R8 . The subgroup of SO(8) that preserves
Φ0 is Spin(7) (hence the action of Spin(7) on R8 preserves the Euclidean metric g0 and the orientation).

Definition 2.5 A 4-form Φ on an 8-dimensional vector space V is called admissible if there exists a basis of
V in which it can be identified with the 4-form Φ0 .

The space of admissible 4-forms on V is denoted by A(V ) ⊂
∧4

V .

Definition 2.6 A Spin(7)-structure on an 8-dimensional manifold M is an admissible 4-form Φ ∈ Γ(A(TM)) ⊂
Ω4(M) .

Each 8-manifold with a Spin(7) -structure Φ is canonically equipped with a metric g . Hence, we can
think of a Spin(7) -structure on M as a pair (Φ, g) such that for all p ∈ M there is an isomorphism between
TpM and R8 which identifies (Φp, gp) with (Φ0, g0) . In [8] (M,Φ, g) is also called an almost Spin(7) -
manifold. Furthermore, if the holonomy group of M with the Levi-Civita connection ∇g of the metric g ,
Hol(M, g) ⊆ Spin(7) , then M is called a Spin(7) -manifold. Hol(M, g) ⊆ Spin(7) if and only if ∇gΦ = 0 (or
equivalently dΦ = 0 since Φ is self-dual) [7].

Existence of a Spin(7) -structure on an 8-dimensional manifold M is equivalent to reducing the structure
group from SO(8) to its subgroup Spin(7) . Every 8-dimensional manifold with a Spin(7) -structure is a spin
manifold, but the converse is not true. Existence of a Spin(7) -structure is guaranteed by more topological
conditions. The following result gives the necessary and sufficient conditions for an 8-dimensional manifold M

to admit a Spin(7) -structure (cf. [3], [10]).
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Theorem 2.7 Let M be a differentiable 8-manifold. M admits a Spin(7)-structure if and only if w1(M) =

w2(M) = 0 and for appropriate choice of orientation on M we have that

p1(M)2 − 4p2(M)± 8χ(M) = 0. (2.3)

First, we consider some simple specific cases. In this case, the above equation can be defined by a
combination of Chern classes as in the following corollary.

Corollary 2.8 [10] Let M be a complex manifold of dimension 4. Then M admits a topological Spin(7)+ -
structure if and only if

c1[c
3
1 − 4c1c2 + 8c3] = 0 (2.4)

Proof The Pontryagin classes of M are even Chern classes of the complexified tangent bundle of M . Moreover,
the Euler class of M is the top Chern class of M . We have the following relations between the Pontryagin
classes and Chern classes of a complex vector bundle ξ , where ξR is the underlying real vector bundle of ξ .

pk(ξR) = (−1)kΣi+j=2kci(ξ)(−1)jcj(ξ)

pk(ξR) = ck(ξ)
2 − 2ck−1(ξ)ck+1(ξ) + ...± 2c2k(ξ)

p1 = c21 − 2c2,

p2 = c22 − 2c1c3 + 2c4 and χ = c4.

(2.5)

Hence,

c41 − 4c21c2 + 8c1c3 = 0. (2.6)

2

Therefore, the following holds for the product of two compact, spin 4-manifolds.

Corollary 2.9 [10] Let X and Y be compact spin 4-manifolds. Then the product M = X × Y admits a
topological Spin(7)-structure if and only if

9σ(X)σ(Y ) = 4χ(X)χ(Y ). (2.7)

In particular, X ×X has a such structure if and only if

3σ(X) = ±2χ(X), (2.8)

where σ is the signature of M and χ is the Euler characteristic of M .

3. Symplectic 8-manifolds with Spin(7)-structure

Now we give examples of symplectic 8-manifolds with Spin(7) -struc-
ture. First we construct examples using some well-known manifolds in literature. Then we use Pasquotto’s
results to show the possible existence of many more.
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Example 3.1 Let (N6, ωN ,ΩN ) be a Calabi-Yau 3-fold where ωN is the Kähler (symplectic) 2-form and ΩN

is a holomorphic volume form. When M8 = N × R2 , then the holonomy group Hol(M) ⊆ SU(3) ⊂ Spin(7) .
Thus, M8 is a symplectic Spin(7) -manifold with

ω = π∗
1ωN + π∗

2(ds ∧ dt)

,
Φ = (Re(ΩN )− ωN ∧ ds) ∧ dt− Im(ΩN ) ∧ ds− ω2

N/2

, where (s, t) are the coordinates on R2 .

Example 3.2 Let (N7, φ) be a G2 -manifold with associative 3-form φ . Then M8 = N × R has holonomy
Hol(M) ⊆ G2 ⊂ Spin(7) and so is a Spin(7) -manifold with

Φ = φ ∧ dt− (∗φ)

, where t is the coordinate on R . In [1] Arikan et al. showed that when N7 is open, then there exists a contact
structure on N7 with contact form α . Hence, M8 will also be a symplectic manifold with symplectic 2-form
ω = d(etα) .

Example 3.3 Let (M8, ωM ,ΩM ) be a Calabi-Yau 4-fold with holonomy group Hol(M) = SU(4) . Since
SU(4) = Spin(6) ⊂ Spin(7) , M is a Spin(7) -manifold with

Φ = −ω2
M

2
+ Re(ΩM ).

Clearly, ωM is the symplectic 2-form on M .

Now we construct 8-dimensional manifolds by using symplectic 4-manifolds given by Gompf [5] and Halic [6].

Example 3.4 Let E1 = CP2#9CP2 be an elliptic surface and let En denote the simply connected, relatively
minimal elliptic surface with topological Euler characteristic χ(En) = 12n > 0 and no multiple fibers. The
diffeomorphism type of En is unique, σ(En) = −8n and E⋉ may be obtained symplectically by taking the
fiber sum of n copies of a rational elliptic surface E1. In particular, for n = 2k and σ(E2k) = −16k , E2k is
spin since σ(E2k) = 0 (mod16) and χ(E2) = 24k and 3σ = 2χ holds. E2k × E2k admits a topological Spin(7)

structure since E2k is spin and satisfies the condition given by Gompf [5] .

Example 3.5 We will construct a symplectic manifold Q2 that is a torus bundle over a genus 2 surface and has
a symplectic section with square 0. First, we consider the manifold Z described by Thurston in [T]. This manifold
is a quotient of R4 by the action of a discrete group G of symplectomorphisms. The group G is generated by unit
translations parallel to the x1 -,x2 - and x3 -axes, together with the map (x1, ..., x4) → (x1 + x2, x2, x3, x4 + 1) .
The standard symplectic form dx1 ∧ dx2 + dx3 ∧ dx4 descends to a symplectic form on Z. Projection onto the
last two coordinates induces a bundle structure π : Z → T2 with torus fibers that are symplectic. We have
a section φ : T → Z given by φ(x3, x4) = (0, 0, x3, x4) , which is a symplectic embedding, and the image of
φ has a canonical normal framing via the vector field ∂

∂x1
. The manifold Z is parallelizable by the frame field

( ∂
∂x1

, ∂
∂x2

+ x4
∂

∂x1
, ∂
∂x3

, ∂
∂x4

) . Thus σ(Z) = χ(Z) = 0 and Z is spin. Then Z × Z admits Spin(7) -structure.
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Example 3.6 [K3 surface] [10] Let V n(d) ⊂ CPn+1 be the nonsingular complex hypersurface with degree d.

Then,
c1(V

n(d)) = (n+ 2− d)g

, where g is the canonical generator of H2(V n(d);Z). The following holds;

V n(d) is spin ⇐⇒ n+ d is even.

Specifically, V 2(4) = {(w0, w1, w2, w3)|w4
0 +w4

1 +w4
2 +w4

3 = 0} ⊂ CP3 is a spin manifold with signature
16 , which is called a Kummer (or K3) surface. Thus, K3×K3 admits a Spin(7) -structure.

3.1. Pasquotto’s results

In this section we summarize Pasquotto’s results. Details can be found in [13]. The Riemann-Roch theorem
gives relations which a system of integers must satisfy in order to appear as the system of Chern numbers of an
almost complex manifold. In dimension 8, these relations are given below:

−c4 + c1c3 + 3c22 + 4c2c
2
1 ≡ 0 (mod 720)

2c41 + c21c2 ≡ 0 (mod 12)
−2c4 + c1c3 ≡ 0 (mod 4)

Let a given quintuple of integer numbers (c4, c1c3, c
2
2, c

2
1c2, c

4
1) satisfy the system of congruence relations given

above. Then there exist integers (a, j, k,m, b);

a = c4
720j = −c4 + c1c3 + 3c22 + 4c2c

2
1 − c41

12k = 2c41 + c21c2
4m = −2c4 + c1c3
b = c41.

This system is equivalent to the following:

c4 = a
c1c3 = 4m+ 2a
c41 = b
c21c2 = 12k − 2b
3c22 = 720j − a− 4m− 48k + 9b.

Pasquotto proved that if a+m = 0 (mod 3) , one can construct a symplectic 8-manifold with these Chern
numbers. She applied blow-ups (either at a point or along a submanifold) or fiber sum operations to certain
manifolds, which were used as building blocks, until the given modular equations were satisfied by the resulting
manifold.

In the following subsections we summarize how the Chern numbers change under the blow-ups.

3.1.1. Blowing-up at a point

Let M be an 8-dimensional symplectic (hence almost complex) manifold and M̂ be a blow up of M at a point.
Pasquotto proves the following relations in [13].
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c4[M̂ ] = c4[M ] + 3

c1c3[M̂ ] = c1c3[M ] + 6

c22[M̂ ] = c22[M ]− 4

c21c2[M̂ ] = c21c2[M ]− 18

c41[M̂ ] = c41[M ]− 81.

Hence, (a′, b′, j′, k′,m′) change as following;

a′ = a+ 3
4m′ = 4m
720j′ = 720j
12k′ = 12k − 180
b′ = b− 81.

3.1.2. Blowing up along a submanifold

Let (a′, b′, j′, k′,m′) be the new quintuple after blowing up along a symplectic surface C , with genus g and
normal bundle νC . Then,

a′ = a+ 4(1− g)
4m′ = 4m− 4(1− g)
720j′ = 720j
12k′ = 12k − 144(1− g)− 36 < c1(νC), [C] >
b′ = b− 64(1− g)− 16 < c1(νC), [C] > .

Moreover, (a′, b′, j′, k′,m′) changes in the following way after blowing up along symplectic 4-dimensional
submanifold N with normal bundle νN :

a′ = a+ c2[N ]
4m′ = 4m+ c21[M ]− 3c2[N ]
720j′ = 720j
12k′ = 12k − 13c21[N ]− c2[N ]− 18 < c1(N)c1(νN )

−6 < c21(νN ), [N ] >
b′ = b− 6c21[N ]− 8 < c1(N)c1(νN ), [N ] > −3 < c21(νN ), [N ] >

+ < c2(νN ), [N ] > .

3.2. Symplectic spin manifolds

Let (a, j, k,m, b) be the quintuple which are related to Chern numbers as in [13].

Lemma 3.7 Suppose M8 is a connected, symplectic manifold which satisfies the quintuple (a, j, k,m, b) . If M

is a spin manifold, then
135b− 720k = 0 (mod 5760). (3.1)

Proof Â -genus, which is more generally defined, is given by the following formula for an 8 -manifold.

Â[M ] =
1

5760
(7p21 − 4p2)[M ]. (3.2)

It is an integer when M is a spin manifold.
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Since M admits an almost complex structure, the pi ’s can be written as a combination Chern numbers
in the following way p1 = c21 − 2c2 and p2 = c22 − 2c1c3 + 2c4. We have

7c41 − 28c21c2 + 24c22 + 8c1c3 − 8c4 ≡ 0 (mod 5760)
135b− 720k ≡ 0 (mod 5760).

2

Lemma 3.8 Suppose M8 is a connected, symplectic manifold which satisfies the quintuple (a, j, k,m, b) . If M

carries a Spin(7)-structure, then
9b− 48k + 32m+ 16a = 0. (3.3)

Proof
If M has a Spin(7) -structure, then p1(M)2 − 4p2(M) + 8χ(M) = 0 . Since M is symplectic, one can

write the Pontryagin classes in terms of the Chern classes; p1 = c21 − 2c2 and p2 = c22 − 2c1c3 + 2c4. Hence,

c41 − 4c21 + 8c1c3 = 0
b− 4(12k − 2b) + 8(4m+ 2a) = 0
9b− 48k + 32m+ 16a = 0.

2

3.3. Examples
In this subsection we give a concrete example of an 8-dimensional symplectic manifold which satisfies the Chern
number relations (3.1) and (3.3). These relations are satisfied by an 8-manifold with a Spin(7) -structure.
Furthermore, by using a computer software we find a huge subfamily of symplectic 8-manifolds constructed by
Pasquotto which also satisfy (3.1) and (3.3).

Example 3.9 Let E1 = CP2#9CP2 be the symplectic 4 -dimensional elliptic curve given in [5]. Then E2 =

E1#E1
E1 and En can be constructed inductively. We have

χ(En) = 12n and σ(En) = −8n implies c21(En) = 0.

Let (N,ω) be a closed symplectic 4-manifold (e.g. the elliptic curve given above) and E → N be a
complex line bundle over N . Let ρ : S → N be the S2 -bundle over N , obtained from projectifying the bundle
E ⊕ C −→ N . S must be symplectic by Thurston’s theorem [11]. The Chern classes of the 6-dimensional
manifold S on En with the fibers S2 can be calculated as follows:

c31[S] = 0
c1c2[S] = 24n
c3[S] = 24n.

Secondly, let M = S×F with F a compact Riemann surface of genus g and use product formula to calculate;

c4[M ] = 4 · 12n
c1c3[M ] = 4 · 12n
c22[M ] = 8 · 12n
c21c2[M ] = 4 · 2 · 12n
c41[M ] = 0.
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Therefore, M satisfies the equation (3.3).

Example 3.10 (8-manifolds constructed by Pasquotto)
Let M be the symplectic 8 -dimensional manifold constructed by Pasquotto in [13]. We consider the construc-
tions in two cases.

Case I: (j ̸= 0) In this case, quintuples (a,m, k, b, j) of M can be expressed as follows:

a = 48n+ 12
4m = −12
12k = −192n− 468
b = −128n− 208.

The quintuple satisfies equation (3.1). Now, let M̂ be the 8-manifold obtained by blowing up M at x

points, at y copies of E−, at z copies of F−, and at u copies of Xn− . The submanifolds E− , F− and Xn−

are defined in [13].

If M̂ admits a Spin(7) -structure, then M̂ must satisfy the equation

384n+ 96 + 39x+ 32y − 32z + (−24n− 18)u = 0.

By using the software MAGMA we see that there are many solutions, some of which are given below. Actually,
the number of positive solutions is greater than one thousand in the interval [0,50]. Furthermore, the number
of solutions gets drastically larger when the interval is larger than [0, 50].

Some of positive integer solutions (x, y, z, u, n) in the interval [0, 50] are the following quintuples:

( 2, 1, 1, 15, 4 ) ( 4, 1, 7, 14, 4 ) ( 2, 5, 8, 15, 8 ) ( 8, 1, 13, 12, 2 )
( 2, 1, 4, 11, 1 ) ( 6, 2, 14, 13, 4 ) ( 4, 1, 13, 6, 1 ) ( 2, 6, 6, 15, 4 )
( 2, 1, 4, 15, 8 ) ( 2, 5, 8, 11, 1 ) ( 8, 1, 10, 12, 1 ) ( 4, 2, 5, 14, 2 )
( 2, 1, 7, 15, 12 ) ( 4, 1, 10, 14, 6 ) ( 2, 5, 11, 15, 12 ) ( 8, 2, 11, 12, 1 )
( 2, 5, 5, 15, 4 ) ( 6, 3, 15, 13, 4 ) ( 4, 1, 13, 14, 8 ) ( 2, 6, 9, 11, 1 )

Case II: (j = 0)

In this case the constructed 8 -dimensional symplectic manifold M cannot be spin as it does not satisfy
(3.1) and even after any of the blow-ups done in the j ̸= 0 case. Hence, we won’t find any family of examples
with this method.
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