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Abstract: Let G be a finite group and Aut(G) be the group of automorphisms of G. Then, the autocentralizer of an
automorphism α ∈ Aut(G) in G is defined as CG(α) = {g ∈ G|α(g) = g}. Let Acent(G) = {CG(α)|α ∈ Aut(G)}. If
|Acent(G)| = n, then G is an n–autocentralizer group. In this paper, we classify all n–autocentralizer abelian groups
for n = 6, 7 and 8. We also obtain a lower bound on the number of autocentralizer subgroups for p–groups, where p is
a prime number. We show that if p ̸= 2, there is no n–autocentralizer p–group for n = 6, 7. Moreover, if p = 2, then
there is no 6–autocentralizer p–group.
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1. Introduction

In this paper p denotes a prime number. We denote Φ(G) , G
′
, Z(G), Aut(G) and Inn(G), as a Frattini

subgroup, commutator subgroup, the centre, the full automorphism group and the set of all inner automorphisms
of G, respectively. Let G be a finite group. If α ∈ Aut(G), then the autocentralizer of α in G is defined as
follows:

CG(α) = {g ∈ G | α(g) = g},

which is a subgroup of G.
In particular if α ∈ Inn(G), then α = Ix, for some x ∈ G, such that Ix(y) = x−1yx, for all y ∈ G. Hence,
CG(Ix) is the centralizer of x in G and denoted by CG(x) . For a finite group G, let Cent(G) = {CG(x) | x ∈
G} . In [3] Belcastra and Sherman proved that there is no n -centralizer group for n = 2, 3 and G is 4–
centralizer group if and only if G/Z(G) ∼= Z2 × Z2. In addition they showed that if G/Z(G) ∼= Zp × Zp, then
|Cent(G)| = p + 2. Ashrafi in [1] proved that if G is a nonabelian p–group, then |Cent(G)| ≥ p + 2, with
equality if and only if G/Z(G) ∼= Zp×Zp. Now for a finite group G, let Acent(G) be the set of autocentralizers
of G, that is

Acent(G) = {CG(α) | α ∈ Aut(G)}.

The group G is called n–autocentralizer, if |Acent(G)| = n. It is obvious that G is 1–autocentralizer group if
and only if G is a trivial group or Z2. Nasrabadi and Gholamian [6] showed the new results about the autocen-
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tralizers of finite groups. They showed that for any natural number n, there exists a finite n–autocentralizer
group. In addition, they determined the structure of finite n–autocentralizer groups for n ≤ 5. Furthermore,
they concluded that if G is a finite nonabelian group, then |Acent(G)| ≥ 5.

All aforementioned results motivate us to further consider finding the bounds for the number of autocentralizer
subgroups of finite non-abelian p–groups. This paper consists of three sections. In Section 2, we characterize
the abelian groups G with |Acent(G)| =6, 7 and 8. In Section 3, we show that if G is a finite non-abelian
p–group and not isomorphic to D8, Q8 and 〈x, y | x4 = y4 = 1, yxy−1 = x3〉, and |Cent(G)| = p + 2, then
|Acent(G)| ≥ |Cent(G)|+3. We conclude that there exists no finite nonabelian p–group G with |Acent(G)| = 6.

Additionally, if p is an odd prime number, no finite nonabelian p–group G with |Acent(G)| = 7 exists. Finally,
we investigate the relation between the order of G and the number of distinct autocentralizers of G. We seek the
relationship between the number of distinct centralizers and the number of distinct autocentralizers of G. To
do so, we directly compute the number of distinct autocentralizer subgroups of dihedral groups with small order.

Now in order to prove our main result, we need the following results.

Lemma 1.1 [6, Lemma 2.1]

1) Let H and K be two finite groups. Then

|Acent(H)| × |Acent(K)| ≤ |Acent(H ×K)|.

2) Let H and K be two finite groups such that (|H|, |K|) = 1. Then

|Acent(H)| × |Acent(K)| = |Acent(H ×K)|.

Proposition 1.2 [6, Proposition 2.2] Let p be a prime and G be a cyclic group of order pn. Then

|Acent(G)| =

{
n p = 2

n+ 1 p 6= 2

Lemma 1.3 [6, Lemma 2.4] Let p be a prime and G be a cyclic group of order p. Then

|Acent(G×G)| = p+ 3.

Remark 1.4 [6, Remark 2.5] If G is a finite abelian group such that it has at least two direct summands of p,

where p is a prime number, then it is obvious that

|Acent(G×G)| ≥ p+ 3.

2. Preliminary results

We utilize a result that is originally obtained by Nasrabadi and Gholamian [5] on the automorphism of G,

where G =
∑k

i=1 Z2ni with n1 > n2 > ... > nk. Indeed an automorphism of G =
∑k

i=1 Z2ni is completely
determined by its action on this generating set of G. Here, we use this result to prove the following proposition.

Proposition 2.1 Let n > 1 be a natural number, then

1803



SEIFIZADEH et al./Turk J Math

|Acent(Z2n × Z2)| = 2n+ 1.

Proof Let G = Z2n × Z2, (a, b) ∈ G and α ∈ Aut(G). Using [5] we have

α((a, b)) = (m11a+ 2n−1m21b,m12a+m22b),

where m11,m12,m21,m22 ∈ Z, m11 and m22 are odd numbers. We have one of the following cases:

1) α((a, b)) = (m11a, b). If m11 = 1, then it is obvious that, CG(α) = G. Suppose that m11 > 1. Then
m11 = 2tq + 1 where 1 ≤ t ≤ n− 1 and q is an odd number. Therefore,

CG(αt) = {(a, b) ∈ G|α((a, b)) = (a, b)}

= {(a, b) ∈ G|(am11, b) = (a, b)}

= {(a, b) ∈ G|(m11 − 1)a
2n≡ 0}

= {(a, b) ∈ G|a 2n−t

≡ 0}

= 〈2n−t〉 × Z2 = Z2t × Z2.

2) α((a, b)) = (m11a, a+ b). If m11 = 1, then CG(α) = Z2n−1 × Z2. Let m11 > 1. So m11 = 2tq + 1 where
1 ≤ t ≤ n− 1 and q is an odd number, thus

CG(αt) = {(a, b) ∈ G|α((a, b)) = (a, b)}

= {(a, b) ∈ G|(am11, a+ b) = (a, b)}

= {(a, b) ∈ G|(m11 − 1)a
2n≡ 0, a

2≡ 0}

= {(a, b) ∈ G|a 2n−t

≡ 0}

= 〈2n−t〉 × Z2 = Z2t × Z2.

3) α((a, b)) = (m11a + 2n−1b, b). If m11 = 1, Then CG(α) = Z2n . Let m11 > 1. So m11 = 2tq + 1 where
1 ≤ t ≤ n− 1 and q is an odd number, hence

CG(αt) = {(a, b) ∈ G|α((a, b)) = (a, b)}

= {(a, b) ∈ G|(am11 + 2n−1b, b) = (a, b)}

= {(a, b) ∈ G|(m11 − 1)a
2n≡ 2n−1b}

= {(a, b) ∈ G|a 2n−t

≡ 2n−t−1b}.

4) α((a, b)) = (m11a + 2n−1b, a + b). If m11 = 1, then we have easily, CG(α) = Z2n−1 . Let m11 > 1. So
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m11 = 2tq + 1 where 1 ≤ t ≤ n− 1 and q is an odd number, therefore

CG(αt) = {(a, b) ∈ G|α((a, b)) = (a, b)}

= {(a, b) ∈ G|(am11 + 2n−1b, a+ b) = (a, b)}

= {(a, b) ∈ G|(m11 − 1)a
2n≡ 2n−1b, a

2≡ 0}

= {(a, b) ∈ G|a 2n−t

≡ 2n−t−1b, a
2≡ 0}.

Now in this case if t = n− 1, then CG(αn−1) = Z2n−1 , and if 1 ≤ t < n− 1, then we have

CG(αn−1) = {(a, b) ∈ G|a 2n−t

≡ 2n−t−1b}.

Finally, by using the above results, one can see that

Acent(G) = {G,Z2n ,Z2n−1 ,Z21 × Z2, ...,Z2n−1 × Z2, {(a, b) ∈ G|a 2n−1

≡ 2n−1−1b},

..., {(a, b) ∈ G|a 2n−(n−1)

≡ 2n−(n−1)−1b}},

this completes the proof.

2

Now we can determine finite abelian groups where |Acent(G)| = 6, 7, 8 .

Proposition 2.2 i) G is a 6-autoentralizer abelian group if and only if

G ∼= Z3 × Z3 × Z2,Z3 × Z3,Z26 ,Zp5 ,Z2p5 ,Z8p,Z4p2 ,Zpq2 ,Z2pq2 ,

where p and q are distinct odd primes.

ii) G is a 7-autoentralizer abelian group if and only if

G ∼= Z23 × Z2,Z27 ,Zp6 ,Z2p6 ,Zpip2
j
,

where p is odd prime.

iii) G is an 8-autoentralizer abelian group if and only if

G ∼= Z5 × Z5 × Z2,Z5 × Z5,Z28 ,Zp7 ,Z2p7 ,Z4p3 ,Zpi
× Zp3

j
, Z2pi

× Zp3
j
,

Z4 × Zp × Zpi ,Zp × Zpi × Zpj ,Z2p × Zpi × Zpj ,

where p, pi and pj are distinct odd primes.

Proof

i) If G ∼= Z3×Z3×Z2,Z3×Z3,Z26 ,Zp5 ,Z2p5 ,Z8p,Z4p2 ,Zpq2 ,Z2pq2 , using Lemma1.1, Proposition 1.2, Lemma
1.3 and Remark 1.4, G is 6–autocentralizer group. Conversely, if G is 6–autocentralizer group, by Lemma
1.1, Proposition 1.2, Lemma 1.3 and Remark 1.4, G ∼= Z3 × Z3 × Z2,Z3 × Z3,Z26 ,Zp5 ,Z2p5 ,Z8p,Z4p2 ,

Zpq2 , Z2pq2 .
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ii) If G ∼= Z23×Z2,Z27 ,Zp6 ,Z2p6 , using Lemma 1.1, Proposition 1.2, Lemma 1.3, Remark 1.4 and Proposition
2.1 G is 7–autocentralizer group. Conversely, if G is 7–autocentralizer group, by Lemma 1.1, Proposition
1.2, Lemma 1.3, Remark 1.4 and Proposition 2.1, G ∼= Z23 × Z2,Z27 ,Zp6 ,Z2p6 .

iii) If G ∼= Z5 × Z5 × Z2,Z5 × Z5,Z28 ,Zp7 ,Z2p7 ,Z4p3 ,Zpi
× Zp3

j
,Z2pi

× Zp3
j
, Z4 × Zp × Zpi

,Zp × Zpi
× Zpj

,

Z2p × Zpi × Zpj , using Lemma 1.1, Proposition 1.2, Lemma 1.3, Remark 1.4 and Proposition 2.1, G

is 8–autocentralizer group. Conversely, if G is 8–autocentralizer group, by Lemma 1.1, Proposition
1.2, Lemma1.3, Remark 1.4 and Proposition 2.1, G ∼= Z5 × Z5 × Z2,Z5 × Z5,Z28 ,Zp7 ,Z2p7 ,Z4p3 ,Zpi ×
Zp3

j
,Z2pi × Zp3

j
, Z4 × Zp × Zpi ,Zp × Zpi × Zpj ,Z2p × Zpi × Zpj .

2

3. Main results
In this section we study the finite nonabelian p–groups, G, with |Cent(G)| = p + 2, and find bounds of the
|Acent(G)|. In [8] two techniques were provided to find the automorphisms of G . We use these techniques,
where G is a 2–generated p–group of nilpotency class two.

Theorem 3.1 Let G 6= 〈x, y|x4 = y4 = 1, yxy−1 = x3〉 be a finite 2–group such that Z(G) is not cyclic and
|Cent(G)| = 4. Then |Acent(G)| ≥ |Cent(G)|+ 3.

Proof By [3, Theorem 3], if |Cent(G)| = 4, then |G/Z(G)| ∼= Z2 × Z2, thus G/Z(G) = 〈x, y, Z(G)〉. Since
Z(G) is not cyclic, then it contains a Klien 4–subgroup 〈a, b〉, for some a, b ∈ G. Hence, we can define the
automorphism α given by α(x) = xa, α(y) = yb and α(c) = c, for all c ∈ Z(G). So CG(α) /∈ Cent(G). Now
we consider the following cases:

1) If Φ(G) < Z(G).

There exists a not trivial set R = {r1, ..., rt}, such that R = Z(G) − Φ(G), thus we have Z(G) =

〈r1, r2, ..., rt,Φ(G)〉, so we can define automorphisms β and γ of G

β :



x 7−→ x

y 7−→ y

r1 7−→ r1h, (h ∈ Φ(G), |h| = 2)

ri 7−→ ri, (2 ≤ i ≤ t)

m 7−→ m, (m ∈ Φ(G))

γ :



x 7−→ xa

y 7−→ yb

r1 7−→ r1h, (h ∈ Φ(G), |h| = 2)

ri 7−→ ri, (2 ≤ i ≤ t)

m 7−→ m, (m ∈ Φ(G))

It is immediate to verify that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(β), CG(γ) /∈
Cent(G). Therefore |Acent(G)| ≥ |Cent(G)|+ 3.

2) If Φ(G) = Z(G).

In this case G is a nilpotent group of 2 class such that G = 〈x, y〉 ( In [4] Magidin characterized the
structure of two–generator 2–groups of class 2). If Z(G) is an elementary abelian group, then G is
isomorphic with G1, G2 or G3, such that
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G1 = 〈x, y|x4 = y4 = 1, yxy−1 = x3〉,
G2 = 〈x, y|x4 = y2 = [x, y]2 = [x, y, x] = [x, y, y] = 1〉,

G3 = 〈x, y, c|x4 = y4 = c2 = 1, [x, y] = c, [x, c] = [y, c] = 1〉.

If G ∼= G1, then by [6, Lemma 3.2], we have |Acent(G)| = 5. If G ∼= G2, then we define

α :

{
x 7−→ x3

y 7−→ y[y, x]
β :

{
x 7−→ xy

y 7−→ y
γ :

{
x 7−→ xy

y 7−→ x2y

Similar to case (1), it is easy to see that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β),

CG(γ) /∈ Cent(G). So |Acent(G)| ≥ |Cent(G)|+ 3.

Also if G ∼= G3, then we define

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ y

y 7−→ x
γ :

{
x 7−→ x3

y 7−→ xy

We easily see that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G).

Thus |Acent(G)| ≥ |Cent(G)|+ 3.

Next, if Z(G) is not an elementary abelian group, then o(x) or o(y) is at least 8. Suppose that o(x) = 2n ≥ 8.

According to the order of y, we consider the following automorphisms:

i) o(y) = 2.

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ x3

y 7−→ x2n−1

y
γ :

{
x 7−→ x3

y 7−→ y

ii) o(y) ≥ 4.

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ x3

y 7−→ y
γ :

{
x 7−→ x3

y 7−→ y3

We easily check that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G).

Therefore |Acent(G)| ≥ |Cent(G)|+ 3. 2

Theorem 3.2 Let G 6= Q8, D8 be a finite 2–group such that Z(G) be cyclic and |Cent(G)| = 4. Then
|Acent(G)| ≥ |Cent(G)|+ 3.

Proof We know |Cent(G)| = 4 if and only if G/Z(G) ∼= Z2 × Z2. So

G/Z(G) = {Z(G), xZ(G), yZ(G), xyZ(G)}.

Since Z(G) is cyclic, suppose that Z(G) = 〈z〉, for some z ∈ G with |z| = 2n. If n = 1, then we have G = D8

or Q8. Applying [6, Lemma 3.3], thus in this case |Acent(G)| = 5. Hence, let n > 1. If |x| = |y| = 2, then we
can define the automorphisms α, β and γ such that

α :


x 7−→ y

y 7−→ x

z 7−→ z

β :


x 7−→ x

y 7−→ y

z 7−→ z−1

γ :


x 7−→ y

y 7−→ x

z 7−→ z−1
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It is easy to check that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈
Cent(G). So |Acent(G)| ≥ |Cent(G)|+ 3. If |x| < 2n+1, by replacing x by xzi for suitable i, we get |x| = 2.

Similarly, if |y| < 2n+1, then we get |y| = 2. So suppose |x| = 2n+1. Hence, G has a cyclic subgroup of order
2n+1. We know 2–groups of order 2n+2(n ≥ 2) with a cyclic subgroup of index two with |G : Z(G)| = 4 is the

modular group with presentation G = 〈x, y|x2n+1

= y2 = 1, xy = x2n+1〉 ([7, Theorem 5.3.4]). For this group
G, we can define the following automorphisms:

α :

{
x 7−→ xy

y 7−→ yx2n
β :

{
x 7−→ x−1

y 7−→ y
γ :

{
x 7−→ x2n−1+1y

y 7−→ yx2n

It is obvious that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G).

Therefore |Acent(G)| ≥ |Cent(G)|+ 3. 2

Corollary 3.3 If G 6= Q8, D8, 〈x, y|x4 = y4 = 1, yxy−1 = x3〉 is a finite 2–group such that |Cent(G)| = 4,

then |Acent(G)| ≥ 7.

Proposition 3.4 Let G be a finite non-2–group where |Cent(G)| = 4, then |Acent(G)| ≥ 10.

Proof Since G/Z(G) ∼= Z2 × Z2 and G is not a finite 2–group, there is a sylow p–group H of G , for some
odd prime p , such that H ≤ Z(G) . Hence H is abelian and normal in G . By Schur Zassenhause Theorem,
there is a p

′ –subgroup K of G such that G = HK. As H ≤ Z(G), we also have that K is normal in G. Thus,
G ∼= H ×K. Since G is nilpotent of class 2, K is nilpotent of class 2. So, by Lemma 1.1 and Proposition 1.2

|Acent(G)| = |Acent(H)| × |Acent(K)| ≥ 2× 5 = 10.

2

Example 3.5 Suppose G = 〈x, y | x2 = y12 = 1, xyx−1 = y−5〉. It is easy to see that G is a group of nilpotency
class two and G/Z(G) ∼= Z2×Z2, therefore |Cent(G)| = 4. By Proposition 3.4 we have |Acent(G)| ≥ 10 , Since
G ∼= C3 ×D8, applying Lemma 1.1(2), we have |Acent(G)| = 10.

Theorem 3.6 Let p be an odd prime number and G is a finite p–group such that |Cent(G)| = p + 2. Then
|Acent(G)| ≥ |Cent(G)|+ 3.

Proof By [1] if |Cent(G)| = p+ 2, then G/Z(G) ∼= Zp × Zp. Hence

G/Z(G) = {xiyjZ(G) | 0 ≤ i, j ≤ p− 1}.

If Z(G) is not cyclic, then it contains an abelian p -subgroup 〈a, b〉 such that is isomorphic with Zp×Zp. Hence,
we can define the automorphism α of G given by α(x) = xa, α(y) = yb, α(c) = c , for all c ∈ Z(G). Now it is
obvious that CG(α) /∈ Cent(G). If Z(G) is an elementary abelian group, then we consider the following cases
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1) Φ(G) < Z(G).

Similar to the proof of Theorem 3.1, we define the automorphisms β and γ of G such that

β :



x 7−→ x

y 7−→ y

r1 7−→ r1h, (h ∈ Φ(G), |h| = p)

ri 7−→ ri, (2 ≤ i ≤ t)

m 7−→ m, (m ∈ Φ(G))

γ :



x 7−→ xa

y 7−→ yb

r1 7−→ r1h, (h ∈ Φ(G), |h| = p)

ri 7−→ ri, (2 ≤ i ≤ t)

m 7−→ m, (m ∈ Φ(G))

Clearly, CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(β), CG(γ) /∈ Cent(G). Thus
|Acent(G)| ≥ |Cent(G)|+ 3.

2) Φ(G) = Z(G).

In this case G is a nilpotent group of 2 class such that G = 〈x, y〉 (In [2] Bacon and Kappe gave a
classification of two–generator p–groups of nilpotency class 2 (p odd)). Now if Z(G) is an elementary
abelian group, then G is isomorphic with G1, G2 or G3 such that

G1 = 〈x, y|xp2

= yp
2

= 1, y−1xy = xp+1〉,

G2 = 〈x, y, c|xp2

= yp
2

= cp = 1, [x, y] = c, [x, c] = [y, c] = 1〉,

G3 = 〈x, y|xp2

= yp = cp = 1, [x, y] = c, [x, c] = [y, c] = 1〉.

then we define the automorphisms α, β and γ such that

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ x−1

y 7−→ y[x, y]
γ :

{
x 7−→ x2

y 7−→ y

One can easily check that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ), and CG(α), CG(β), CG(γ) /∈
Cent(G). Therefore |Acent(G)| ≥ |Cent(G)|+ 3.

Now suppose Z(G) = 〈z〉 for some z ∈ G with |z| = pn. If n = 1, then G is isomorphic with G1, G2 such that

G1 = 〈x, y|xp2

= yp = 1, y−1xy = xp+1〉,
G2 = 〈x, y, c|xp = yp = zp = 1, [x, y] = z, [x, z] = [y, z] = 1〉.

If G ∼= G1, we can define the automorphisms α, β and γ such that

α :

{
x 7−→ xy

y 7−→ xpy
β :

{
x 7−→ x−1

y 7−→ y
γ :

{
x 7−→ xp+2

y 7−→ xpy

It is clear to see that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ), and CG(α), CG(β), CG(γ) /∈ Cent(G).

Therefore |Acent(G)| ≥ |Cent(G)|+ 3.

Similarly, if G ∼= G2, then we can define the automorphisms α, β and γ such that

α :

{
x 7−→ xy

y 7−→ y[x, y]
β :

{
x 7−→ x−1

y 7−→ y
γ :

{
x 7−→ x

y 7−→ y−1
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We can easily see that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ), and CG(α), CG(β), CG(γ) /∈ Cent(G).

So |Acent(G)| ≥ |Cent(G)|+ 3.

Let n > 1. If |x| = |y| = p, then we can define the automorphisms α, β and γ of G such that

α :


x 7−→ y

y 7−→ x

z 7−→ z

β :


x 7−→ y

y 7−→ x

z 7−→ z−1

γ :


x 7−→ x

y 7−→ y

z 7−→ z−1

It is clear that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G),

therefore |Acent(G)| ≥ |Cent(G)|+ 3. If |x| < pn+1, then by replacing a by xzi for suitable i, we get |x| = p.

Similarly, if |y| < pn+1, then we get |y| = p. So suppose |x| = pn+1. Hence, G has a cyclic subgroup of order
pn+1. We know a nonabelian p -group with a cyclic subgroup of index p, is the modular group with presentation
([7, Theorem 5.3.4]).

G ∼= 〈x, y|xpn+1

= yp = 1, xy = x1+pn

〉.

For this group G, we can define the automorphisms α, β and γ of G such that

α :

{
x 7−→ xy

y 7−→ xpn

y
β :

{
x 7−→ x−1

y 7−→ y
γ :

{
x 7−→ xp+1y

y 7−→ xpn

y

It is obvious that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G), thus
|Acent(G)| ≥ |Cent(G)|+ 3.

Now if Z(G) is not an elementary abelian group, then o(x) or o(y) is at least p3, if o(x) = pn ≥ p3 and
o(y) = p or o(y) = p2, then there exist α, β and γ ∈ Aut(G) such that

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ xp+1

y 7−→ y
γ :

{
x 7−→ xp+1

y 7−→ xpn−1

y

It is clear that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G). Hence
|Acent(G)| ≥ |Cent(G)|+ 3.

Now if o(y) > p2, we define the automorphisms α, β and γ of G such that

α :

{
x 7−→ xa

y 7−→ yb
β :

{
x 7−→ xp+1

y 7−→ y
γ :

{
x 7−→ x

y 7−→ yp+1

Easily, we see that CG(α) 6= CG(β), CG(α) 6= CG(γ), CG(β) 6= CG(γ) and CG(α), CG(β), CG(γ) /∈ Cent(G),

thus |Acent(G)| ≥ |Cent(G)|+ 3.
2

Immediate from Theorems 3.1, 3.2 and 3.6, we get the following corollary.

Corollary 3.7 If G is a finite nonabelian p–group, with |Cent(G)| = p+2, then G is not a 6–autocentralizer
p–group. Also, no finite nonabelian 7–autocentralizer p–group exists, where p is an odd prime number.
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Remark 3.8 It might be mistaken that if G and H are finite groups while |G| ≤ |H|, then |Acent(G)| ≤
|Acent(H)|. But this is not necessarily true. As shown in Table, we compute the number of distinct au-
toentralizers of some dihedral groups. For example, |D18| < |D20|, but |Acent(D18)| > |Acent(D20)|.
Moreover, if |Cent(G)| ≤ |Cent(H)| it is not necessarily true that |Acent(G)| ≤ |Acent(H)|. For example
|Cent(D16)| ≤ |Cent(D14)|, but |Acent(D14)| ≤ |Acent(D16)|. Also, we can find groups G and H such that
|Acent(G)| = |Acent(H)|, but G ≇ H. For example |Acent(S3)| = |Acent(D8)|, but S3 ≇ D8.

Table . Dihedral groups D2n when n ≤ 12.

G = D2n D6
∼= S3 D8 D10 D12 D14 D16 D18 D20 D22 D24

|Cent(G)| 5 4 7 5 9 6 11 7 13 8
|Acent(G)| 5 5 7 6 9 10 15 8 13 16

4. Conclusion
We conclude our paper with a question about the number of distinct autocentralizer of dihedral groups. Is it
true that if D2p is a dihedral group, where p is an odd prime number, then |Cent(D2p)| = |Acent(D2p)|? This
question could be of potential usefulness for the readers to carry out further research.

Proof Suppose that G = 〈a, b | ap = b2 = 1, ab = a−1〉 , where p is an odd prime number. The elements
of D2p are then 1, a, ..., ap−1, b, ab, ..., ap−1b. By [1, Lemma 2.2], we have CG(a

i) = 〈a〉 and CG(a
ib) = 〈aib〉,

for 1 ≤ i ≤ p− 1. On the other hand, CG(b) = 〈b〉. Therefore |Cent(G)| = p+ 2. We show that |Acent(G)| =
|Cent(G)| = p + 2 . Any automorphism of G is a map defined by αk,l(a) = ak and αk,l(b) = bal, where
gcd(k, p) = 1, 1 ≤ k ≤ p− 1 and 0 ≤ l ≤ p− 1. There are four cases:

i) If k = 1, l = 0. Then αk,l = id and CG(αk,l) = G.

ii) If k = 1, l 6= 0. Then CG(αk,l) = 〈a〉.

iii) If k 6= 1, l = 0. Since p is an odd prime number, one can check easily that αk,l(a
i) 6= ai and

αk,l(a
ib) 6= aib, for every 1 ≤ i ≤ p− 1. Then CG(αk,l) = 〈b〉.

iv) If k 6= 1, l 6= 0. Similarly case (iii), we have αk,l(a
i) 6= ai. Clearly αk,l(b) 6= b. Then aib ∈ CG(αk,l) if

and only if αk,l(a
ib) = aikbal = aib. It implies that aik−i = a−l. This is true if and only if i(k− 1)

p
≡ −l.

Since k 6= 1 and l 6= 0 , we have i
p
≡ −l(k − 1)−1. Thus, for fixed k and l , there is a unique i such that

CG(αk,l) = 〈aib〉. One can check that when fixing k 6= 1, we can obtain every 1 ≤ i ≤ p− 1 , by changing
l. Hence 〈aib〉 ∈ Acent(G), for every 1 ≤ i ≤ p− 1.

Therefore Acent(G) = {G, 〈a〉, 〈b〉, 〈aib〉}, for every 1 ≤ i ≤ p− 1 , this completes the proof. 2
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