т $\mathbf{B} \boldsymbol{B I t a K}$

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2020) 44: 1813 - 1823
© TÜBİTAK
doi:10.3906/mat-2004-20

On the chromatic polynomial and the domination number of k-Fibonacci cubes

Ömer EĞECİOĞLU ${ }^{1}$ © ${ }^{(0)}$ Elif SAYGI ${ }^{2}$ © ${ }^{\text {© }}$ Zülfükar SAYGI ${ }^{3, *}$ ©
${ }^{1}$ Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
${ }^{2}$ Department of Mathematics and Science Education, Faculty of Education, Hacettepe University, Ankara, Turkey
${ }^{3}$ Department of Mathematics, Faculty of Science and Literature, TOBB University of Economics and Technology, Ankara, Turkey

| Received: 06.04 .2020 | Accepted/Published Online: 17.07 .2020 | Final Version: 21.09 .2020 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Fibonacci cubes are defined as subgraphs of hypercubes, where the vertices are those without two consecutive 1 's in their binary string representation. k-Fibonacci cubes are in turn special subgraphs of Fibonacci cubes obtained by eliminating certain edges. This elimination is carried out at the step analogous to where the fundamental recursion is used to construct Fibonacci cubes themselves from the two previous cubes by link edges. In this work, we calculate the vertex chromatic polynomial of k-Fibonacci cubes for $k=1,2$. We also determine the domination number and the total domination number of k-Fibonacci cubes for $n, k \leq 12$ by using an integer programming formulation.

Key words: Hypercube, Fibonacci cube, Fibonacci number, k-Fibonacci cube, vertex coloring, domination

1. Introduction

The n-dimensional hypercube Q_{n} is the n-fold Cartesian product of the complete graph with two vertices, and can be decomposed into two copies of Q_{n-1} connected to each other by a perfect matching for $n \geq 1$. Vertices of Q_{n} are labeled with binary strings of length n. Two vertices are adjacent if the binary string representation of them differ in only one coordinate, that is, their Hamming distance is one.

Hsu defined the n-dimensional Fibonacci cube Γ_{n} as a special subgraph of Q_{n} in [5]. Γ_{n} is induced by vertices whose binary representation do not contain two consecutive 1's. For convenience, Γ_{0} is defined as Q_{0}, the graph with a single vertex and no edges. Many interesting properties of Γ_{n} including representations, recursive construction, Hamiltonicity and degree sequences is given in the survey [8]. The induced d-dimensional hypercubes in Γ_{n} are studied in $[9,11,17]$. The distance polynomial called the q-cube polynomial is defined in [18], which keeps track of the number of subcubes that are at a given distance from the all zero vertex. By extending this idea, daisy cubes including the Fibonacci cubes are defined and generalized in [10, 20]. The boundary enumerator polynomial of the induced hypercubes in Γ_{n} is considered in [19].

Special subgraphs and generalizations of the Fibonacci cubes have also been studied. For instance, by removing some vertices in Γ_{n}, Lucas cubes are obtained [13]. Fibonacci (p, r)-cubes are presented in [3]. The generalized Fibonacci cube $Q_{n}(f)$ is defined in [7], as the graph obtained from Q_{n} by removing all vertices that contain some forbidden binary string f as a factor. With this formulation one has $\Gamma_{n}=Q_{n}(11)$. Pell graphs are defined on certain ternary strings and turn out to be subgraphs of Fibonacci cubes of odd index

[^0][12]. Recently, by eliminating certain edges from the Γ_{n}, a special subgraph family called k-Fibonacci cubes Γ_{n}^{k} have been introduced (see [4, Section 3]).

In this work, we construct the vertex chromatic polynomial of k-Fibonacci cubes for $k=1,2$. We also determine the domination number and the total domination number of k-Fibonacci cubes for $n, k \leq 12$ using an integer linear programming approach as considered in $[1,6]$.

2. Preliminaries

The vertex set and the edge set of the n-dimensional Fibonacci cube $\Gamma_{n}=(V, E)$ can be written as

$$
\begin{aligned}
V & =\left\{b_{1} b_{2} \ldots b_{n} \mid b_{i} \in\{0,1\}, 1 \leq i \leq n-1 \text { with } b_{i} \cdot b_{i+1}=0\right\} \\
E & =\left\{\{u, v\} \mid u, v \in V\left(\Gamma_{n}\right) \text { and } d_{H}(u, v)=1\right\}
\end{aligned}
$$

where d_{H} denotes the Hamming distance, that is, the number of different coordinates. Note that the distance between two vertices u and v in a connected graph G is defined as the length of a shortest path between u and v in G.

It is known that the number of vertices of Γ_{n} is f_{n+2} where f_{n} is the n-th Fibonacci number. These are defined by the recursion $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$, with $f_{0}=0$ and $f_{1}=1$. Reflecting this numerical recursion, Γ_{n} has a useful decomposition called the fundamental decomposition [8], denoted symbolically by $\Gamma_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-2}$. Here, Γ_{n} is decomposed into the subgraphs induced by the vertices that start with 0 and 10, respectively. The former constitute a graph isomorphic to Γ_{n-1} and the latter constitute a graph isomorphic to Γ_{n-2}. Furthermore, there is a perfect matching between $10 \Gamma_{n-2}$ and $00 \Gamma_{n-2} \subset 0 \Gamma_{n-1}$. The edges in this matching are called link edges.
k-Fibonacci cubes Γ_{n}^{k} are defined as special subgraphs of Fibonacci cubes obtained by eliminating certain edges [4]. This elimination is carried out at the step analogous to where the fundamental recursion is used to construct Fibonacci cubes from the two previous cubes by link edges. The fundamental decomposition of Fibonacci cubes introduces f_{n} link edges. Let $n_{0}=n_{0}(k)$ be the smallest integer for which $f_{n_{0}}>k$. Then for any nonnegative integer $n<n_{0}$ the k-Fibonacci cubes are defined as $\Gamma_{n}^{k}=\Gamma_{n}$. For any integer $n \geq n_{0}$, the graphs Γ_{n}^{k} are defined by the recursion $\Gamma_{n}^{k}=0 \Gamma_{n-1}^{k}+10 \Gamma_{n-2}^{k}$ where only the first k link edges between $10 \Gamma_{n-2}^{k}$ and $00 \Gamma_{n-2}^{k} \subset 0 \Gamma_{n-1}^{k}$ are included. That is, the link edges past the first k pairs of vertices in Γ_{n-2}^{k} in the binary ordering of the vertices from the smallest to the largest are discarded. For illustrations, we present the first five 2 -Fibonacci cubes in Figure 1 and the graphs $\Gamma_{5}^{2}, \Gamma_{5}^{3}$ and Γ_{5}^{4} in Figure 2.

In Figure 3, we present the structure of the adjacency matrix A_{n} in terms of A_{n-1} and A_{n-2} and structure of the adjacency matrix A_{n}^{k} in terms of A_{n-1}^{k} and A_{n-2}^{k} of Γ_{n} and Γ_{n}^{k}, respectively.

By an admissible (vertex) coloring of a simple graph G, we mean an assignment of colors from a coloring kit with x colors to the vertices of G in such a way that no adjacent vertices are given the same color. Let $p(G, x)$ denote the number of such colorings of G. It is well known that $p(G, x)$ is a polynomial in x of degree equal to the number of vertices of G, called the chromatic polynomial of G.

A set $D \subseteq V$ is called a dominating set of G if every vertex in $V \backslash D$ is adjacent to some vertex in D. The domination number of G is defined as the minimum cardinality of a dominating set of G, denoted by $\gamma(G)$. Similarly, $D \subseteq V$ is called a total dominating set of an isolate-free graph G if every vertex in V is adjacent to some vertex in D. The total domination number of G is defined as the minimum cardinality

Figure 1. 2-Fibonacci cubes Γ_{0}^{2} through Γ_{4}^{2}.

Figure 2. k-Fibonacci cubes $\Gamma_{5}^{2}, \Gamma_{5}^{3}$ and Γ_{5}^{4}.

Figure 3. Left: Adjacency matrix A_{n} of Γ_{n} where \mathbf{I} is the $f_{n} \times f_{n}$ identity matrix, and the remaining elements are zeros. Right: Adjacency matrix A_{n}^{k} of Γ_{n}^{k} where $\mathbf{I}_{\mathbf{k}}$ is the $k \times k$ identity matrix, and the remaining elements are zeros.
of a total dominating set of G, denoted by $\gamma_{t}(G)$. Bounds on the domination number and total domination number of Γ_{n} are obtained in $[1,2,14,15]$ by using the degree information and the decomposition of Γ_{n}. Some improvements appear in [16]. By an integer linear programming formulation, the exact values of $\gamma\left(\Gamma_{n}\right)$ and $\gamma_{t}\left(\Gamma_{n}\right)$ is calculated for small values of n in [6] and [1] respectively. We use a similar approach to determine $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$ in Section 4.

3. Chromatic polynomials

To construct the chromatic polynomials of k-Fibonacci cubes Γ_{n}^{k} for $k=1,2$, first, we present two basic results that we will use in our proof in Section 3.1.

There are two extreme classes of graphs for which $p(G, x)$ is easy to compute:

$$
p\left(F_{n}, x\right)=x^{n}, \quad p\left(K_{n}, x\right)=(x)_{n}
$$

where F_{n} is the graph on n vertices with no edges, K_{n} is the complete graph on n vertices and $(x)_{n}=$ $x(x-1) \cdots(x-n+1)$ is the lower (or falling) factorial. One way to calculate the chromatic polynomial (in the power basis) is the basic recursion:

$$
\begin{equation*}
p(G, x)=p(G-e, x)-p(G / e, x) \tag{3.1}
\end{equation*}
$$

Here for $e \in E$, the graph $G-e$ in (3.1) is obtained from G by removing the edge e from E, and G / e is obtained from G by contracting the edge e. In contraction we progressively shrink e until the end points collapse into a single vertex. If multiple edges are created by this process, we collapse them into single edges.

Alternately, for an edge $e \notin E$,

$$
\begin{equation*}
p(G, x)=p(G+e, x)+p(G / e, x) \tag{3.2}
\end{equation*}
$$

where $G+e$ is the graph obtained by adding e to E. (3.2) is the recursion that can be used to express $p(G, x)$ in the lower factorial basis $\left\{(x)_{n}\right\}_{n \geq 1}$.

The chromatic polynomials of the Fibonacci cubes themselves for up to $n=5$ are as follows*:

$$
\begin{aligned}
p\left(\Gamma_{0}, x\right) & =x \\
p\left(\Gamma_{1}, x\right) & =x(x-1) \\
p\left(\Gamma_{2}, x\right) & =x(x-1)^{2} \\
p\left(\Gamma_{3}, x\right) & =x(x-1)^{2}\left(x^{2}-3 x+3\right) \\
p\left(\Gamma_{4}, x\right) & =x(x-1)\left(x^{2}-3 x+3\right)^{3} \\
p\left(\Gamma_{5}, x\right)= & x(x-1)\left(x^{11}-19 x^{10}+171 x^{9}-960 x^{8}+3732 x^{7}-10544 x^{6}\right. \\
& \left.+22088 x^{5}-34314 x^{4}+38774 x^{3}-30408 x^{2}+14942 x-3499\right)
\end{aligned}
$$

There does not seem to be a nice expression for these polynomials for arbitrary n.

3.1. Chromatic polynomials of the k-Fibonacci cubes

We need the following lemma on chromatic polynomials.

Lemma 3.1 Let $G=(V, E)$ be a simple graph, $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are subgraphs of G such that $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$. Suppose $\left|V_{1} \cap V_{2}\right|=r>0$ and the subgraph induced by $V_{1} \cap V_{2}$ in G is the complete graph K_{r} (in other words G_{1} and G_{2} share the common subgraph K_{r}). Then we have

$$
p(G, x)=\frac{p\left(G_{1}, x\right) p\left(G_{2}, x\right)}{(x)_{r}}
$$

[^1]Proof We prove this result in the form

$$
(x)_{r} p(G, x)=p\left(G_{1}, x\right) p\left(G_{2}, x\right)
$$

by constructing a bijection between a pair of admissible colorings $\left(C_{1}, C_{2}\right)$ of the pair of graphs K_{r} and G, and the pair of admissible colorings $\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$ of the graphs G_{1} and G_{2}. Given $\left(C_{1}, C_{2}\right), C_{2}^{\prime}$ is defined as the restriction of C_{2} to $G_{2} . C_{1}^{\prime}$ is defined as the admissible coloring of G_{1} obtained by renaming some of the colors (i.e. those assigned to the copy K_{r} in the coloring C_{2}) by the colors used in C_{1}. The colors that do not appear in C_{1} are left as they are in C_{2} in constructing C_{1}^{\prime}. It is easy to see that C_{1}^{\prime} and C_{2}^{\prime} are admissible colorings of G_{1} and G_{2} respectively, and that this map has an inverse.

So if G_{1} and G_{2} share only a common vertex, a common edge, or a common triangle, then

$$
\begin{aligned}
p(G, x) & =\frac{p\left(G_{1}, x\right) p\left(G_{2}, x\right)}{x} \\
p(G, x) & =\frac{p\left(G_{1}, x\right) p\left(G_{2}, x\right)}{x(x-1)} \\
p(G, x) & =\frac{p\left(G_{1}, x\right) p\left(G_{2}, x\right)}{x(x-1)(x-2)}
\end{aligned}
$$

respectively.
For $k=1$, the graphs Γ_{n}^{1} are all trees. If we think of them as rooted at the all zero vertex, starting with the trees Γ_{0}^{2} and Γ_{1}^{2} on 1 and 2 vertices, respectively, the next tree in the sequence is obtained by making the previous tree a principal subtree of the current one. Since the chromatic polynomial of a tree with m nodes is $x(x-1)^{m-1}$, we have

$$
p\left(\Gamma_{n}^{1}, x\right)=x(x-1)^{f_{n+2}-1} .
$$

For $k=2, \Gamma_{n}^{2}=\Gamma_{n}$ for $n \leq 2$ and for $n \geq 3, \Gamma_{n}^{2}$ consists of $f_{n}-1(1,2,4,7,12, \ldots)$ squares (4-cycles) glued by their edges and f_{n-1} pendant vertices (see [4]). We note that $k=2$ of the k-Fibonacci cubes is a nontrivial case in which the chromatic polynomials can be explicitly constructed.

Theorem 3.2 For $n \geq 1$, the chromatic polynomial of Γ_{n}^{2} is given by

$$
\begin{equation*}
p\left(\Gamma_{n}^{2}, x\right)=x(x-1)^{f_{n-1}+1}\left(x^{2}-3 x+3\right)^{f_{n}-1} \tag{3.3}
\end{equation*}
$$

Proof For $n=1,2$ the graphs Γ_{n}^{2} are trees on 2 and 3 vertices respectively, and therefore

$$
p\left(\Gamma_{1}^{2}, x\right)=x(x-1), \quad p\left(\Gamma_{2}^{2}, x\right)=x(x-1)^{2}
$$

which are of the form (3.3).
For $n \geq 3$, the graph Γ_{n}^{2} is constructed from Γ_{n-1}^{2} and Γ_{n-2}^{2} as symbolically indicated in Figure 4. The vertices labeled 0 and 1 are the vertices with labels $0 \ldots 00$ and $0 \ldots 01$ in Γ_{n-1}^{2} (and also in Γ_{n}^{2}), whereas the labels 0^{\prime} and 1^{\prime} are the vertices labeled $0 \ldots 00$ and $0 \ldots 01$ in Γ_{n-2}^{2}, which are labeled as $10 \ldots 00$ and $10 \ldots 01$ in Γ_{n}^{2} after the addition of the link edges. Let e denote the link edge from 1 to 1^{\prime} as shown in Figure

EGECİOGLU et al./Turk J Math

4 and put $G=\Gamma_{n}^{2}$. $G-e$ consists of the union of two graphs G_{1} and G_{2}, where G_{1} is obtained from Γ_{n-1}^{2} by adding the vertex 0^{\prime} and the edge $\left\{0,0^{\prime}\right\} ; G_{2}$ is obtained from Γ_{n-2}^{2} by adding the vertex 0 and the edge $\left\{0,0^{\prime}\right\}$. Then

$$
p\left(G_{1}, x\right)=p\left(\Gamma_{n-1}^{2}, x\right)(x-1), \quad p\left(G_{2}, x\right)=p\left(\Gamma_{n-2}^{2}, x\right)(x-1)
$$

and therefore by Lemma 3.1

$$
p(G-e, x)=\frac{p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right)(x-1)^{2}}{x(x-1)}=p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right) \frac{(x-1)}{x}
$$

In G / e, denote the vertex obtained by the identification of the endpoints 1 and 1^{\prime} of e by $v . G / e$ consists of the union of two graphs H_{1} and H_{2}, where H_{1} is obtained from Γ_{n-1}^{2} by adding the vertex 0^{\prime} and the edges $\left\{0,0^{\prime}\right\}$ and $\left\{0^{\prime}, v\right\} ; H_{2}$ is obtained from Γ_{n-2}^{2} by adding the vertex 0 and the edges $\left\{0,0^{\prime}\right\}$ and $\{0, v\} . H_{1}$ and H_{2} meet at the triangle with vertices $0,0^{\prime}, v$. Therefore

$$
p\left(H_{1}, x\right)=p\left(\Gamma_{n-1}^{2}, x\right)(x-2), \quad p\left(H_{2}, x\right)=p\left(\Gamma_{n-2}^{2}, x\right)(x-2)
$$

and by Lemma 3.1,

$$
\begin{aligned}
p(G / e, x) & =\frac{p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right)(x-2)^{2}}{x(x-1)(x-2)} \\
& =p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right) \frac{(x-2)}{x(x-1)}
\end{aligned}
$$

By recursion (3.1),

$$
\begin{aligned}
p(G, x) & =p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right)\left(\frac{x-1}{x}-\frac{(x-2)}{x(x-1)}\right) \\
& =p\left(\Gamma_{n-1}^{2}, x\right) p\left(\Gamma_{n-2}^{2}, x\right)\left(\frac{x^{2}-3 x+3}{x(x-1)}\right)
\end{aligned}
$$

and the result follows by induction on n.

Figure 4. The construction of Γ_{n}^{2} from Γ_{n-1}^{2} and Γ_{n-2}^{2} by adding $k=2$ link edges.

Remark 3.3 We have $\Gamma_{n}^{3}=\Gamma_{n}^{4}=\Gamma_{n}$ for $n \leq 4$ and therefore for these graphs the chromatic polynomials are the same as those of the Fibonacci cubes themselves. For $n=5$ we have

$$
\begin{aligned}
p\left(\Gamma_{5}^{3}, x\right)= & x(x-1)\left(x^{2}-3 x+3\right)^{2}\left(x^{7}-11 x^{6}+55 x^{5}-161 x^{4}+298 x^{3}\right. \\
& \left.-350 x^{2}+244 x-79\right) \\
p\left(\Gamma_{5}^{4}, x\right)= & x(x-1)\left(x^{11}-18 x^{10}+153 x^{9}-809 x^{8}+2955 x^{7}-7830 x^{6}\right. \\
& \left.+15367 x^{5}-22360 x^{4}+23675 x^{3}-17410 x^{2}+8026 x-1763\right) .
\end{aligned}
$$

Again, for $k \geq 3$, there does not seem to be a nice expression for these chromatic polynomials for arbitrary n.

4. Domination number and total domination number of k-Fibonacci cubes

In this section we first prove upper and lower bounds on $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$. Using the definition of Γ_{n}^{k} and the recursion $\Gamma_{n}^{k}=0 \Gamma_{n-1}^{k}+10 \Gamma_{n-2}^{k}$ we obtain the following result.

Theorem 4.1 For any positive integer n and k we have

$$
\gamma\left(\Gamma_{n}^{k+1}\right) \leq \gamma\left(\Gamma_{n}^{k}\right) \leq \gamma\left(\Gamma_{n-1}^{k}\right)+\gamma\left(\Gamma_{n-2}^{k}\right) \text { and } \gamma_{t}\left(\Gamma_{n}^{k+1}\right) \leq \gamma_{t}\left(\Gamma_{n}^{k}\right) \leq \gamma_{t}\left(\Gamma_{n-1}^{k}\right)+\gamma_{t}\left(\Gamma_{n-2}^{k}\right)
$$

Proof By the definition of k-Fibonacci cubes, Γ_{n}^{k} can be obtained from Γ_{n}^{k+1} by removing certain edges. This means that a (total) dominating set for Γ_{n}^{k} is also a (total) dominating set for Γ_{n}^{k+1}, which gives

$$
\gamma\left(\Gamma_{n}^{k+1}\right) \leq \gamma\left(\Gamma_{n}^{k}\right) \text { and } \gamma_{t}\left(\Gamma_{n}^{k+1}\right) \leq \gamma_{t}\left(\Gamma_{n}^{k}\right)
$$

Consider the fundamental decomposition of Γ_{n}^{k} into the subgraphs induced by the vertices that start with 0 and 10 , which are isomorphic to the graphs Γ_{n-1}^{k} and Γ_{n-2}^{k}, respectively. Then we have

$$
\gamma\left(\Gamma_{n}^{k}\right) \leq \gamma\left(\Gamma_{n-1}^{k}\right)+\gamma\left(\Gamma_{n-2}^{k}\right) \text { and } \gamma_{t}\left(\Gamma_{n}^{k}\right) \leq \gamma_{t}\left(\Gamma_{n-1}^{k}\right)+\gamma_{t}\left(\Gamma_{n-2}^{k}\right)
$$

Next we describe a general integer linear programming formulation used in [6] to find $\gamma\left(\Gamma_{n}\right)$. A similar approach is used in [1] to find $\gamma_{t}\left(\Gamma_{n}\right)$. We also use integer linear programming to obtain $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$.

Let $N(v)$ denote the set of vertices adjacent to v and $N[v]=N(v) \cup\{v\}$. Suppose each vertex $v \in V\left(\Gamma_{n}^{k}\right)$ is associated with a binary variable x_{v}. The problems of determining $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ can be expressed as a problem of minimizing the objective function

$$
\begin{equation*}
\sum_{v \in V\left(\Gamma_{n}^{k}\right)} x_{v} \tag{4.1}
\end{equation*}
$$

subject to the following constraints for every $v \in V\left(\Gamma_{n}^{k}\right)$:

$$
\begin{aligned}
\sum_{a \in N[v]} x_{a} & \geq 1 \text { (for the domination number) } \\
\sum_{a \in N(v)} x_{a} & \geq 1 \text { (for the total domination number). }
\end{aligned}
$$

EĞECİOĞLU et al./Turk J Math

The value of the objective function gives $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ respectively. Note that this problem has $\left|V\left(\Gamma_{n}^{k}\right)\right|=$ f_{n+2} variables and f_{n+2} constraints.

Table 1. Values of $\gamma\left(\Gamma_{n}\right)$ and $\gamma\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$.

n	2	3	4	5	6	7	8	9	10	11	12
$\left\|V\left(\Gamma_{n}^{k}\right)\right\|$	3	5	8	13	21	34	55	89	144	233	377
$\gamma\left(\Gamma_{n}\right)$	1	2	3	4	5	8	12	17	25	39	$55-60$
$\gamma\left(\Gamma_{n}^{1}\right)$	1	2	3	5	8	13	21	34	55	89	144
$\gamma\left(\Gamma_{n}^{2}\right)$	1	2	3	5	8	13	21	34	55	89	144
$\gamma\left(\Gamma_{n}^{3}\right)$	1	2	3	4	6	10	16	26	42	68	110
$\gamma\left(\Gamma_{n}^{4}\right)$	1	2	3	4	6	10	16	26	42	68	110
$\gamma\left(\Gamma_{n}^{5}\right)$	1	2	3	4	6	9	14	23	37	60	97
$\gamma\left(\Gamma_{n}^{6}\right)$	1	2	3	4	5	8	13	21	34	55	89
$\gamma\left(\Gamma_{n}^{7}\right)$	1	2	3	4	5	8	13	21	34	55	89
$\gamma\left(\Gamma_{n}^{8}\right)$	1	2	3	4	5	8	13	21	34	55	89
$\gamma\left(\Gamma_{n}^{9}\right)$	1	2	3	4	5	8	13	20	32	52	84
$\gamma\left(\Gamma_{n}^{10}\right)$	1	2	3	4	5	8	13	20	32	52	84
$\gamma\left(\Gamma_{n}^{11}\right)$	1	2	3	4	5	8	13	20	32	52	84
$\gamma\left(\Gamma_{n}^{12}\right)$	1	2	3	4	5	8	12	19	31	50	81

We implemented the integer linear programming problem (4.1) using the Gurobi ${ }^{\dagger}$ optimization package and obtained the values of $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$. We collect the known values of $\gamma\left(\Gamma_{n}\right)$ and $\gamma_{t}\left(\Gamma_{n}\right)$ for $n \leq 12$ (see, $[1,6]$) and the new values of $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$ in Table 4 and Table 2 respectively.

Here we note that $\Gamma_{n}^{k}=\Gamma_{n}$ for $f_{n}>k$, that is, $\gamma\left(\Gamma_{n}^{k}\right)=\gamma\left(\Gamma_{n}\right)$ for $f_{n}>k$ in Table 4 and $\gamma_{t}\left(\Gamma_{n}^{k}\right)=\gamma_{t}\left(\Gamma_{n}\right)$ for $f_{n}>k$ in Table 2. Furthermore, the old bounds for $\gamma\left(\Gamma_{12}\right)$ were 54-61 [1]. Our calculations improve this slightly to $55 \leq \gamma\left(\Gamma_{12}\right) \leq 60$.

Using Theorem 4.1 and the results in Tables 4 and 2 we give the following upper bounds on $\gamma\left(\Gamma_{n}^{k}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$.

Corollary 4.2 As a function of n and k we have the following upper bounds on $\gamma\left(\Gamma_{n}^{k}\right)$:

- If $n \geq 13$ and $k \in\{1,2\}$, then $\gamma\left(\Gamma_{n}^{k}\right) \leq f_{n}$.
- If $n \geq 13$ and $k \in\{3,4\}$, then $\gamma\left(\Gamma_{n}^{k}\right) \leq 42 f_{n-8}-16 f_{n-10}$.
- If $n \geq 13$ and $k=5$, then $\gamma\left(\Gamma_{n}^{k}\right) \leq 37 f_{n-8}-14 f_{n-10}$.
- If $n \geq 13$ and $k \in\{6,7,8$,$\} , then \gamma\left(\Gamma_{n}^{k}\right) \leq f_{n-1}$.
- If $n \geq 13$ and $k \in\{9,10,11\}$, then $\gamma\left(\Gamma_{n}^{k}\right) \leq 32 f_{n-8}-12 f_{n-10}$.
- If $n \geq 13$ and $k \geq 12$, then $\gamma\left(\Gamma_{n}^{k}\right) \leq 31 f_{n-8}-12 f_{n-10}$.

[^2]EĞECİOĞLU et al./Turk J Math

Table 2. Values of $\gamma_{t}\left(\Gamma_{n}\right)$ and $\gamma_{t}\left(\Gamma_{n}^{k}\right)$ for $n, k \leq 12$.

n	2	3	4	5	6	7	8	9	10	11	12
$\left\|V\left(\Gamma_{n}^{k}\right)\right\|$	3	5	8	13	21	34	55	89	144	233	377
$\gamma_{t}\left(\Gamma_{n}\right)$	2	2	3	5	7	10	13	20	30	44	65
$\gamma_{t}\left(\Gamma_{n}^{1}\right)$	2	2	3	5	8	13	21	34	55	89	144
$\gamma_{t}\left(\Gamma_{n}^{2}\right)$	2	2	3	5	8	13	21	34	55	89	144
$\gamma_{t}\left(\Gamma_{n}^{3}\right)$	2	2	3	5	8	13	21	34	55	89	144
$\gamma_{t}\left(\Gamma_{n}^{4}\right)$	2	2	3	5	8	13	21	34	55	89	144
$\gamma_{t}\left(\Gamma_{n}^{5}\right)$	2	2	3	5	7	10	16	26	42	68	110
$\gamma_{t}\left(\Gamma_{n}^{6}\right)$	2	2	3	5	7	10	16	26	42	68	110
$\gamma_{t}\left(\Gamma_{n}^{7}\right)$	2	2	3	5	7	10	16	26	42	68	110
$\gamma_{t}\left(\Gamma_{n}^{8}\right)$	2	2	3	5	7	10	15	23	37	60	97
$\gamma_{t}\left(\Gamma_{n}^{9}\right)$	2	2	3	5	7	10	14	22	36	58	94
$\gamma_{t}\left(\Gamma_{n}^{10}\right)$	2	2	3	5	7	10	14	22	36	58	94
$\gamma_{t}\left(\Gamma_{n}^{11}\right)$	2	2	3	5	7	10	14	22	36	58	94
$\gamma_{t}\left(\Gamma_{n}^{12}\right)$	2	2	3	5	7	10	14	22	35	57	92

Proof We give the proof only for the case $k \in\{1,2\}$ and note that the same proof is valid for all of the other stated cases. From Table 4 we know that $\gamma\left(\Gamma_{11}^{k}\right)=f_{11}$ and $\gamma\left(\Gamma_{12}^{k}\right)=f_{12}$ where $k \in\{1,2\}$. Then for $n \geq 13$, using Theorem 4.1 we have $\gamma\left(\Gamma_{n}^{k}\right) \leq \gamma\left(\Gamma_{n-1}^{k}\right)+\gamma\left(\Gamma_{n-2}^{k}\right) \leq f_{n}$.

Corollary 4.3 As a function of n and k we have the following upper bounds on $\gamma_{t}\left(\Gamma_{n}^{k}\right)$:

- If $n \geq 13$ and $k \in\{1,2,3,4\}$, then $\gamma_{t}\left(\Gamma_{n}^{k}\right) \leq f_{n}$.
- If $n \geq 13$ and $k \in\{5,6,7\}$, then $\gamma_{t}\left(\Gamma_{n}^{k}\right) \leq 42 f_{n-8}-16 f_{n-10}$.
- If $n \geq 13$ and $k=8$, then $\gamma_{t}\left(\Gamma_{n}^{k}\right) \leq 37 f_{n-8}-14 f_{n-10}$.
- If $n \geq 13$ and $k \in\{9,10,11\}$, then $\gamma_{t}\left(\Gamma_{n}^{k}\right) \leq 36 f_{n-8}-14 f_{n-10}$.
- If $n \geq 13$ and $k \geq 12$, then $\gamma_{t}\left(\Gamma_{n}^{k}\right) \leq 35 f_{n-8}-13 f_{n-10}$.

We find the exact values of domination and total domination numbers of Γ_{n}^{k} for $k \in\{1,2\}$.

Proposition 4.4 For any positive integer $n \geq 2$ and $k \in\{1,2\}$ we have $\gamma\left(\Gamma_{n}^{k}\right)=\gamma_{t}\left(\Gamma_{n}^{k}\right)=f_{n}$.
Proof Assume that $k \in\{1,2\}$. From Tables 4 and 2 the statement is clear for $n \leq 12$. For $n \geq 13$, using the definition of domination and total domination numbers, Corollaries 4.2 and 4.3 we know that $\gamma\left(\Gamma_{n}^{k}\right) \leq \gamma_{t}\left(\Gamma_{n}^{k}\right) \leq f_{n}$. Furthermore, Theorem 4.1 implies that $\gamma\left(\Gamma_{n}^{2}\right) \leq \gamma\left(\Gamma_{n}^{1}\right)$. So, it is enough to show that $\gamma\left(\Gamma_{n}^{2}\right) \geq f_{n}$.

Let α and β be any Fibonacci string of length $n-3$ and $n-4$ respectively, and u, v be vertices of Γ_{n}^{2} whose string representations are $\alpha 010$ and $\beta 0101$ respectively. We know that the number of such $\alpha 010$'s are
f_{n-1} and the number of such $\beta 0101$'s are f_{n-2}. By the definition of Γ_{n}^{2} we know that the degrees of such u 's are 1 and the degrees of such v 's are 2 , that is, the closed neighborhood of these vertices are $N[u]=\{\alpha 010, \alpha 000\}$ and $N[v]=\{\beta 0101, \beta 0100, \beta 0001\}$. Let D be a minimal dominating set for Γ_{n}^{2}. Then to dominate each u and v, D must include at least one vertex from $N[u]$ and one vertex from $N[v]$. Since $N[u] \cap N[v]=\emptyset$, we have $|D| \geq f_{n-1}+f_{n-2}=f_{n}$ which completes the proof.

Remark 4.5 In Tables 4 and 2 we observe that $\gamma\left(\Gamma_{n}^{6}\right)=\gamma\left(\Gamma_{n}^{7}\right)=\gamma\left(\Gamma_{n}^{8}\right)=f_{n-1}$ for $6 \leq n \leq 12$ and $\gamma_{t}\left(\Gamma_{n}^{3}\right)=\gamma_{t}\left(\Gamma_{n}^{4}\right)=f_{n}$ for $2 \leq n \leq 12$. However the technique we used in the proof of Proposition 4.4 is not enough to prove these observations.

Acknowledgment

The work of the second is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no. 117R032.

References

[1] Azarija J, Klavžar S, Rho Y, Sim S. On domination-type invariants of Fibonacci cubes and hypercubes. Ars Mathematica Contemporanea 2018; 14: 387-395. doi: 10.26493/1855-3974.1172.bae
[2] Castro A, Klavžar S, Mollard M, Rho Y. On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes. Computers \& Mathematics with Applications 2011; 61: 2655-2660. doi: 10.1016/j.camwa.2011.03.012
[3] Egiazarian K, Astola J. On generalized Fibonacci cubes and unitary transforms. Applicable Algebra in Engineering, Communication and Computing 1997; 8: 371-377. doi: 10.1007/s002000050074
[4] Eğecioğlu Ö, Saygı E, Saygı Z. k-Fibonacci cubes: A family of subgraphs of Fibonacci cubes. International Journal of Foundations of Computer Science 2020; 31 (5): 639-661. doi: 10.1142/S0129054120500318
[5] Hsu WJ. Fibonacci cubes - a new interconnection technology. IEEE Transactions on Parallel and Distributed Systems 1993; 4: 3-12. doi: 10.1109/71.205649
[6] Ilić A, Milošević M. The parameters of Fibonacci and Lucas cubes. Ars Mathematica Contemporanea 2017; 12; 25-29. doi: 10.26493/1855-3974.915.f48
[7] Ilić A, Klavžar S, Rho Y. Generalized Fibonacci cubes. Discrete Mathematics 2012; 312: 2-11. doi: 10.1016/j.disc.2011.02.015
[8] Klavžar S. Structure of Fibonacci cubes: a survey. Journal of Combinatorial Optimization; 25: 505-522. doi: 10.1007/s10878-011-9433-z
[9] Klavžar S, Mollard M. Cube polynomial of Fibonacci and Lucas cube. Acta Applicandae Mathematicae 2012; 117: 93-105. doi: 10.1007/s10440-011-9652-4
[10] Klavžar S, Mollard M. Daisy cubes and distance cube polynomial. European Journal of Combinatorics 2019; 80: 214-223. doi: 10.1016/j.ejc.2018.02.019
[11] Mollard M. Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes. Discrete Applied Mathematics 2017; 219: 219-221. doi: 10.1016/j.dam.2016.10.029
[12] Munarini E. Pell graphs. Discrete Mathematics 2019; 342 (8): 2415-2428. doi: 10.1016/j.disc.2019.05.008
[13] Munarini E, Cippo CP, Zagaglia Salvi N. On the Lucas cubes. Fibonacci Quarterly 2001; 39: 12-21.

EĞECİOĞLU et al./Turk J Math

[14] Pike DA, Zou Y. The domination number of Fibonacci cubes. Journal of Combinatorial Mathematics and Combinatorial Computing 2012; 80: 433-444.
[15] Sayg ${ }_{1}$ E. Upper bounds on the domination and total domination number of Fibonacci cubes. SDU Journal of Natural and Applied Sciences; 21 (3): 782-785. doi: 10.19113/sdufbed. 05851
[16] Saygı E. On the domination number and the total domination number of Fibonacci cubes. Ars Mathematica Contemporanea 2019; 16: 245-255. doi: 10.26493/1855-3974.1591.92e
[17] Saygı E, Eğecioğlu Ö. Counting disjoint hypercubes in Fibonacci cubes. Discrete Applied Mathematics 2016; 215: 231-237. doi: 10.1016/j.dam.2016.07.004
[18] Saygı E, Eğecioğlu Ö. q-cube enumerator polynomial of Fibonacci cubes. Discrete Applied Mathematics 2017; 226: 127-137. doi:10.1016/j.dam.2017.04.026
[19] Saygı E, Eğecioğlu Ö. Boundary enumerator polynomial of hypercubes in Fibonacci cubes. Discrete Applied Mathematics 2019; 266: 191-199. doi: 10.1016/j.dam.2018.05.015
[20] Taranenko A. Daisy cubes: a characterization and a generalization. European Journal of Combinatorics 2020; 85: 103058. doi: 10.1016/j.ejc.2019.103058

[^0]: *Correspondence: zsaygi@etu.edu.tr
 2010 AMS Mathematics Subject Classification: 05C69, 05C15, 68R10, 11B39.

[^1]: *As computed by the ChromaticPolynomial functionality of Mathematica.

[^2]: †'System Specification: Intel Core i7-4770K @3.50GHz, 12 GB RAM, 64-bit operating system.

