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Abstract: Fibonacci cubes are defined as subgraphs of hypercubes, where the vertices are those without two consecutive
1’s in their binary string representation. k -Fibonacci cubes are in turn special subgraphs of Fibonacci cubes obtained
by eliminating certain edges. This elimination is carried out at the step analogous to where the fundamental recursion
is used to construct Fibonacci cubes themselves from the two previous cubes by link edges. In this work, we calculate
the vertex chromatic polynomial of k -Fibonacci cubes for k = 1, 2 . We also determine the domination number and the
total domination number of k -Fibonacci cubes for n, k ≤ 12 by using an integer programming formulation.
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1. Introduction
The n -dimensional hypercube Qn is the n -fold Cartesian product of the complete graph with two vertices, and
can be decomposed into two copies of Qn−1 connected to each other by a perfect matching for n ≥ 1 . Vertices
of Qn are labeled with binary strings of length n . Two vertices are adjacent if the binary string representation
of them differ in only one coordinate, that is, their Hamming distance is one.

Hsu defined the n -dimensional Fibonacci cube Γn as a special subgraph of Qn in [5]. Γn is induced
by vertices whose binary representation do not contain two consecutive 1’s. For convenience, Γ0 is defined as
Q0 , the graph with a single vertex and no edges. Many interesting properties of Γn including representations,
recursive construction, Hamiltonicity and degree sequences is given in the survey [8]. The induced d -dimensional
hypercubes in Γn are studied in [9, 11, 17]. The distance polynomial called the q -cube polynomial is defined
in [18], which keeps track of the number of subcubes that are at a given distance from the all zero vertex. By
extending this idea, daisy cubes including the Fibonacci cubes are defined and generalized in [10, 20]. The
boundary enumerator polynomial of the induced hypercubes in Γn is considered in [19].

Special subgraphs and generalizations of the Fibonacci cubes have also been studied. For instance, by
removing some vertices in Γn , Lucas cubes are obtained [13]. Fibonacci (p, r) -cubes are presented in [3]. The
generalized Fibonacci cube Qn(f) is defined in [7], as the graph obtained from Qn by removing all vertices
that contain some forbidden binary string f as a factor. With this formulation one has Γn = Qn(11) . Pell
graphs are defined on certain ternary strings and turn out to be subgraphs of Fibonacci cubes of odd index
∗Correspondence: zsaygi@etu.edu.tr
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[12]. Recently, by eliminating certain edges from the Γn , a special subgraph family called k -Fibonacci cubes
Γk
n have been introduced (see [4, Section 3]).

In this work, we construct the vertex chromatic polynomial of k -Fibonacci cubes for k = 1, 2 . We also
determine the domination number and the total domination number of k -Fibonacci cubes for n, k ≤ 12 using
an integer linear programming approach as considered in [1, 6].

2. Preliminaries
The vertex set and the edge set of the n -dimensional Fibonacci cube Γn = (V,E) can be written as

V = {b1b2 . . . bn | bi ∈ {0, 1}, 1 ≤ i ≤ n− 1 with bi · bi+1 = 0}

E = {{u, v} | u, v ∈ V (Γn) and dH(u, v) = 1},

where dH denotes the Hamming distance, that is, the number of different coordinates. Note that the distance
between two vertices u and v in a connected graph G is defined as the length of a shortest path between u

and v in G .
It is known that the number of vertices of Γn is fn+2 where fn is the n -th Fibonacci number. These

are defined by the recursion fn = fn−1 + fn−2 for n ≥ 2 , with f0 = 0 and f1 = 1 . Reflecting this numerical
recursion, Γn has a useful decomposition called the fundamental decomposition [8], denoted symbolically by
Γn = 0Γn−1 + 10Γn−2 . Here, Γn is decomposed into the subgraphs induced by the vertices that start with
0 and 10, respectively. The former constitute a graph isomorphic to Γn−1 and the latter constitute a graph
isomorphic to Γn−2 . Furthermore, there is a perfect matching between 10Γn−2 and 00Γn−2 ⊂ 0Γn−1 . The
edges in this matching are called link edges.

k -Fibonacci cubes Γk
n are defined as special subgraphs of Fibonacci cubes obtained by eliminating certain

edges [4]. This elimination is carried out at the step analogous to where the fundamental recursion is used to
construct Fibonacci cubes from the two previous cubes by link edges. The fundamental decomposition of
Fibonacci cubes introduces fn link edges. Let n0 = n0(k) be the smallest integer for which fn0

> k . Then
for any nonnegative integer n < n0 the k -Fibonacci cubes are defined as Γk

n = Γn . For any integer n ≥ n0 ,
the graphs Γk

n are defined by the recursion Γk
n = 0Γk

n−1 + 10Γk
n−2 where only the first k link edges between

10Γk
n−2 and 00Γk

n−2 ⊂ 0Γk
n−1 are included. That is, the link edges past the first k pairs of vertices in Γk

n−2 in
the binary ordering of the vertices from the smallest to the largest are discarded. For illustrations, we present
the first five 2 -Fibonacci cubes in Figure 1 and the graphs Γ2

5 , Γ3
5 and Γ4

5 in Figure 2.
In Figure 3, we present the structure of the adjacency matrix An in terms of An−1 and An−2 and

structure of the adjacency matrix Ak
n in terms of Ak

n−1 and Ak
n−2 of Γn and Γk

n , respectively.
By an admissible (vertex) coloring of a simple graph G , we mean an assignment of colors from a coloring

kit with x colors to the vertices of G in such a way that no adjacent vertices are given the same color. Let
p(G, x) denote the number of such colorings of G . It is well known that p(G, x) is a polynomial in x of degree
equal to the number of vertices of G , called the chromatic polynomial of G .

A set D ⊆ V is called a dominating set of G if every vertex in V \ D is adjacent to some vertex in
D . The domination number of G is defined as the minimum cardinality of a dominating set of G , denoted
by γ(G) . Similarly, D ⊆ V is called a total dominating set of an isolate-free graph G if every vertex in V

is adjacent to some vertex in D . The total domination number of G is defined as the minimum cardinality
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Figure 1. 2 -Fibonacci cubes Γ2
0 through Γ2

4 .

Figure 2. k -Fibonacci cubes Γ2
5 , Γ3

5 and Γ4
5 .

Figure 3. Left: Adjacency matrix An of Γn where I is the fn × fn identity matrix, and the remaining elements are
zeros. Right: Adjacency matrix Ak

n of Γk
n where Ik is the k×k identity matrix, and the remaining elements are zeros.

of a total dominating set of G , denoted by γt(G) . Bounds on the domination number and total domination
number of Γn are obtained in [1, 2, 14, 15] by using the degree information and the decomposition of Γn . Some
improvements appear in [16]. By an integer linear programming formulation, the exact values of γ(Γn) and
γt(Γn) is calculated for small values of n in [6] and [1] respectively. We use a similar approach to determine
γ(Γk

n) and γt(Γ
k
n) for n, k ≤ 12 in Section 4.
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3. Chromatic polynomials

To construct the chromatic polynomials of k -Fibonacci cubes Γk
n for k = 1, 2 , first, we present two basic results

that we will use in our proof in Section 3.1.
There are two extreme classes of graphs for which p(G, x) is easy to compute:

p(Fn, x) = xn, p(Kn, x) = (x)n

where Fn is the graph on n vertices with no edges, Kn is the complete graph on n vertices and (x)n =

x(x− 1) · · · (x−n+1) is the lower (or falling) factorial. One way to calculate the chromatic polynomial (in the
power basis) is the basic recursion:

p(G, x) = p(G− e, x)− p(G/e, x) . (3.1)

Here for e ∈ E , the graph G − e in (3.1) is obtained from G by removing the edge e from E , and G/e is
obtained from G by contracting the edge e . In contraction we progressively shrink e until the end points
collapse into a single vertex. If multiple edges are created by this process, we collapse them into single edges.

Alternately, for an edge e ̸∈ E ,

p(G, x) = p(G+ e, x) + p(G/e, x) . (3.2)

where G+ e is the graph obtained by adding e to E . (3.2) is the recursion that can be used to express p(G, x)

in the lower factorial basis {(x)n}n≥1 .
The chromatic polynomials of the Fibonacci cubes themselves for up to n = 5 are as follows∗:

p(Γ0, x) = x

p(Γ1, x) = x(x− 1)

p(Γ2, x) = x(x− 1)2

p(Γ3, x) = x(x− 1)2(x2 − 3x+ 3)

p(Γ4, x) = x(x− 1)(x2 − 3x+ 3)3

p(Γ5, x) = x(x− 1)(x11 − 19x10 + 171x9 − 960x8 + 3732x7 − 10544x6

+22088x5 − 34314x4 + 38774x3 − 30408x2 + 14942x− 3499).

There does not seem to be a nice expression for these polynomials for arbitrary n .

3.1. Chromatic polynomials of the k -Fibonacci cubes
We need the following lemma on chromatic polynomials.

Lemma 3.1 Let G = (V,E) be a simple graph, G1 = (V1, E1) and G2 = (V2, E2) are subgraphs of G such
that V = V1 ∪ V2 and E = E1 ∪ E2 . Suppose |V1 ∩ V2| = r > 0 and the subgraph induced by V1 ∩ V2 in G is
the complete graph Kr (in other words G1 and G2 share the common subgraph Kr ). Then we have

p(G, x) =
p(G1, x)p(G2, x)

(x)r
.

∗As computed by the ChromaticPolynomial functionality of Mathematica.
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Proof We prove this result in the form

(x)r p(G, x) = p(G1, x)p(G2, x)

by constructing a bijection between a pair of admissible colorings (C1, C2) of the pair of graphs Kr and G ,
and the pair of admissible colorings (C ′

1, C
′
2) of the graphs G1 and G2 . Given (C1, C2) , C ′

2 is defined as the
restriction of C2 to G2 . C ′

1 is defined as the admissible coloring of G1 obtained by renaming some of the colors
(i.e. those assigned to the copy Kr in the coloring C2 ) by the colors used in C1 . The colors that do not appear
in C1 are left as they are in C2 in constructing C ′

1 . It is easy to see that C ′
1 and C ′

2 are admissible colorings
of G1 and G2 respectively, and that this map has an inverse. 2

So if G1 and G2 share only a common vertex, a common edge, or a common triangle, then

p(G, x) =
p(G1, x)p(G2, x)

x
,

p(G, x) =
p(G1, x)p(G2, x)

x(x− 1)
,

p(G, x) =
p(G1, x)p(G2, x)

x(x− 1)(x− 2)
,

respectively.
For k = 1 , the graphs Γ1

n are all trees. If we think of them as rooted at the all zero vertex, starting with
the trees Γ2

0 and Γ2
1 on 1 and 2 vertices, respectively, the next tree in the sequence is obtained by making the

previous tree a principal subtree of the current one. Since the chromatic polynomial of a tree with m nodes is
x(x− 1)m−1 , we have

p(Γ1
n, x) = x(x− 1)fn+2−1 .

For k = 2 , Γ2
n = Γn for n ≤ 2 and for n ≥ 3 , Γ2

n consists of fn − 1 (1, 2, 4, 7, 12, . . .) squares (4-cycles)
glued by their edges and fn−1 pendant vertices (see [4]). We note that k = 2 of the k -Fibonacci cubes is a
nontrivial case in which the chromatic polynomials can be explicitly constructed.

Theorem 3.2 For n ≥ 1 , the chromatic polynomial of Γ2
n is given by

p(Γ2
n, x) = x(x− 1)fn−1+1(x2 − 3x+ 3)fn−1 . (3.3)

Proof For n = 1, 2 the graphs Γ2
n are trees on 2 and 3 vertices respectively, and therefore

p(Γ2
1, x) = x(x− 1), p(Γ2

2, x) = x(x− 1)2

which are of the form (3.3).
For n ≥ 3 , the graph Γ2

n is constructed from Γ2
n−1 and Γ2

n−2 as symbolically indicated in Figure 4. The
vertices labeled 0 and 1 are the vertices with labels 0 . . . 00 and 0 . . . 01 in Γ2

n−1 (and also in Γ2
n ), whereas

the labels 0′ and 1′ are the vertices labeled 0 . . . 00 and 0 . . . 01 in Γ2
n−2 , which are labeled as 10 . . . 00 and

10 . . . 01 in Γ2
n after the addition of the link edges. Let e denote the link edge from 1 to 1′ as shown in Figure
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4 and put G = Γ2
n . G − e consists of the union of two graphs G1 and G2 , where G1 is obtained from Γ2

n−1

by adding the vertex 0′ and the edge {0, 0′} ; G2 is obtained from Γ2
n−2 by adding the vertex 0 and the edge

{0, 0′} . Then

p(G1, x) = p(Γ2
n−1, x)(x− 1), p(G2, x) = p(Γ2

n−2, x)(x− 1),

and therefore by Lemma 3.1

p(G− e, x) =
p(Γ2

n−1, x)p(Γ
2
n−2, x)(x− 1)2

x(x− 1)
= p(Γ2

n−1, x)p(Γ
2
n−2, x)

(x− 1)

x
.

In G/e , denote the vertex obtained by the identification of the endpoints 1 and 1′ of e by v . G/e consists of
the union of two graphs H1 and H2 , where H1 is obtained from Γ2

n−1 by adding the vertex 0′ and the edges
{0, 0′} and {0′, v} ; H2 is obtained from Γ2

n−2 by adding the vertex 0 and the edges {0, 0′} and {0, v} . H1

and H2 meet at the triangle with vertices 0, 0′, v . Therefore

p(H1, x) = p(Γ2
n−1, x)(x− 2), p(H2, x) = p(Γ2

n−2, x)(x− 2),

and by Lemma 3.1,

p(G/e, x) =
p(Γ2

n−1, x)p(Γ
2
n−2, x)(x− 2)2

x(x− 1)(x− 2)

= p(Γ2
n−1, x)p(Γ

2
n−2, x)

(x− 2)

x(x− 1)
.

By recursion (3.1),

p(G, x) = p(Γ2
n−1, x)p(Γ

2
n−2, x)

(
x− 1

x
− (x− 2)

x(x− 1)

)

= p(Γ2
n−1, x)p(Γ

2
n−2, x)

(
x2 − 3x+ 3

x(x− 1)

)

and the result follows by induction on n . 2

Figure 4. The construction of Γ2
n from Γ2

n−1 and Γ2
n−2 by adding k = 2 link edges.
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Remark 3.3 We have Γ3
n = Γ4

n = Γn for n ≤ 4 and therefore for these graphs the chromatic polynomials are
the same as those of the Fibonacci cubes themselves. For n = 5 we have

p(Γ3
5, x) = x(x− 1)(x2 − 3x+ 3)2

(
x7 − 11x6 + 55x5 − 161x4 + 298x3

−350x2 + 244x− 79
)
,

p(Γ4
5, x) = x(x− 1)

(
x11 − 18x10 + 153x9 − 809x8 + 2955x7 − 7830x6

+15367x5 − 22360x4 + 23675x3 − 17410x2 + 8026x− 1763
)
.

Again, for k ≥ 3 , there does not seem to be a nice expression for these chromatic polynomials for arbitrary
n .

4. Domination number and total domination number of k -Fibonacci cubes
In this section we first prove upper and lower bounds on γ(Γk

n) and γt(Γ
k
n) . Using the definition of Γk

n and the
recursion Γk

n = 0Γk
n−1 + 10Γk

n−2 we obtain the following result.

Theorem 4.1 For any positive integer n and k we have

γ(Γk+1
n ) ≤ γ(Γk

n) ≤ γ(Γk
n−1) + γ(Γk

n−2) and γt(Γ
k+1
n ) ≤ γt(Γ

k
n) ≤ γt(Γ

k
n−1) + γt(Γ

k
n−2) .

Proof By the definition of k -Fibonacci cubes, Γk
n can be obtained from Γk+1

n by removing certain edges.
This means that a (total) dominating set for Γk

n is also a (total) dominating set for Γk+1
n , which gives

γ(Γk+1
n ) ≤ γ(Γk

n) and γt(Γ
k+1
n ) ≤ γt(Γ

k
n) .

Consider the fundamental decomposition of Γk
n into the subgraphs induced by the vertices that start with 0

and 10, which are isomorphic to the graphs Γk
n−1 and Γk

n−2 , respectively. Then we have

γ(Γk
n) ≤ γ(Γk

n−1) + γ(Γk
n−2) and γt(Γ

k
n) ≤ γt(Γ

k
n−1) + γt(Γ

k
n−2) .

2

Next we describe a general integer linear programming formulation used in [6] to find γ(Γn) . A similar
approach is used in [1] to find γt(Γn) . We also use integer linear programming to obtain γ(Γk

n) and γt(Γ
k
n) for

n, k ≤ 12 .
Let N(v) denote the set of vertices adjacent to v and N [v] = N(v)∪{v} . Suppose each vertex v ∈ V (Γk

n)

is associated with a binary variable xv . The problems of determining γ(Γk
n) and γt(Γ

k
n) can be expressed as a

problem of minimizing the objective function ∑
v∈V (Γk

n)

xv (4.1)

subject to the following constraints for every v ∈ V (Γk
n) :∑

a∈N [v]

xa ≥ 1 (for the domination number),

∑
a∈N(v)

xa ≥ 1 (for the total domination number).
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The value of the objective function gives γ(Γk
n) and γt(Γ

k
n) respectively. Note that this problem has |V (Γk

n)| =
fn+2 variables and fn+2 constraints.

Table 1. Values of γ(Γn) and γ(Γk
n) for n, k ≤ 12 .

n 2 3 4 5 6 7 8 9 10 11 12
|V (Γk

n)| 3 5 8 13 21 34 55 89 144 233 377
γ(Γn) 1 2 3 4 5 8 12 17 25 39 55-60
γ(Γ1

n) 1 2 3 5 8 13 21 34 55 89 144
γ(Γ2

n) 1 2 3 5 8 13 21 34 55 89 144
γ(Γ3

n) 1 2 3 4 6 10 16 26 42 68 110
γ(Γ4

n) 1 2 3 4 6 10 16 26 42 68 110
γ(Γ5

n) 1 2 3 4 6 9 14 23 37 60 97
γ(Γ6

n) 1 2 3 4 5 8 13 21 34 55 89
γ(Γ7

n) 1 2 3 4 5 8 13 21 34 55 89
γ(Γ8

n) 1 2 3 4 5 8 13 21 34 55 89
γ(Γ9

n) 1 2 3 4 5 8 13 20 32 52 84
γ(Γ10

n ) 1 2 3 4 5 8 13 20 32 52 84
γ(Γ11

n ) 1 2 3 4 5 8 13 20 32 52 84
γ(Γ12

n ) 1 2 3 4 5 8 12 19 31 50 81

We implemented the integer linear programming problem (4.1) using the Gurobi† optimization package
and obtained the values of γ(Γk

n) and γt(Γ
k
n) for n, k ≤ 12 . We collect the known values of γ(Γn) and γt(Γn)

for n ≤ 12 (see, [1, 6]) and the new values of γ(Γk
n) and γt(Γ

k
n) for n, k ≤ 12 in Table 4 and Table 2 respectively.

Here we note that Γk
n = Γn for fn > k , that is, γ(Γk

n) = γ(Γn) for fn > k in Table 4 and γt(Γ
k
n) = γt(Γn)

for fn > k in Table 2. Furthermore, the old bounds for γ(Γ12) were 54-61 [1]. Our calculations improve this
slightly to 55 ≤ γ(Γ12) ≤ 60 .

Using Theorem 4.1 and the results in Tables 4 and 2 we give the following upper bounds on γ(Γk
n) and

γt(Γ
k
n) .

Corollary 4.2 As a function of n and k we have the following upper bounds on γ(Γk
n) :

• If n ≥ 13 and k ∈ {1, 2} , then γ(Γk
n) ≤ fn .

• If n ≥ 13 and k ∈ {3, 4} , then γ(Γk
n) ≤ 42fn−8 − 16fn−10 .

• If n ≥ 13 and k = 5 , then γ(Γk
n) ≤ 37fn−8 − 14fn−10 .

• If n ≥ 13 and k ∈ {6, 7, 8, } , then γ(Γk
n) ≤ fn−1 .

• If n ≥ 13 and k ∈ {9, 10, 11} , then γ(Γk
n) ≤ 32fn−8 − 12fn−10 .

• If n ≥ 13 and k ≥ 12 , then γ(Γk
n) ≤ 31fn−8 − 12fn−10 .

†System Specification: Intel Core i7-4770K @3.50GHz, 12 GB RAM, 64-bit operating system.
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Table 2. Values of γt(Γn) and γt(Γ
k
n) for n, k ≤ 12 .

n 2 3 4 5 6 7 8 9 10 11 12
|V (Γk

n)| 3 5 8 13 21 34 55 89 144 233 377
γt(Γn) 2 2 3 5 7 10 13 20 30 44 65
γt(Γ

1
n) 2 2 3 5 8 13 21 34 55 89 144

γt(Γ
2
n) 2 2 3 5 8 13 21 34 55 89 144

γt(Γ
3
n) 2 2 3 5 8 13 21 34 55 89 144

γt(Γ
4
n) 2 2 3 5 8 13 21 34 55 89 144

γt(Γ
5
n) 2 2 3 5 7 10 16 26 42 68 110

γt(Γ
6
n) 2 2 3 5 7 10 16 26 42 68 110

γt(Γ
7
n) 2 2 3 5 7 10 16 26 42 68 110

γt(Γ
8
n) 2 2 3 5 7 10 15 23 37 60 97

γt(Γ
9
n) 2 2 3 5 7 10 14 22 36 58 94

γt(Γ
10
n ) 2 2 3 5 7 10 14 22 36 58 94

γt(Γ
11
n ) 2 2 3 5 7 10 14 22 36 58 94

γt(Γ
12
n ) 2 2 3 5 7 10 14 22 35 57 92

Proof We give the proof only for the case k ∈ {1, 2} and note that the same proof is valid for all of the other
stated cases. From Table 4 we know that γ(Γk

11) = f11 and γ(Γk
12) = f12 where k ∈ {1, 2} . Then for n ≥ 13 ,

using Theorem 4.1 we have γ(Γk
n) ≤ γ(Γk

n−1) + γ(Γk
n−2) ≤ fn . 2

Corollary 4.3 As a function of n and k we have the following upper bounds on γt(Γ
k
n) :

• If n ≥ 13 and k ∈ {1, 2, 3, 4} , then γt(Γ
k
n) ≤ fn .

• If n ≥ 13 and k ∈ {5, 6, 7} , then γt(Γ
k
n) ≤ 42fn−8 − 16fn−10 .

• If n ≥ 13 and k = 8 , then γt(Γ
k
n) ≤ 37fn−8 − 14fn−10 .

• If n ≥ 13 and k ∈ {9, 10, 11} , then γt(Γ
k
n) ≤ 36fn−8 − 14fn−10 .

• If n ≥ 13 and k ≥ 12 , then γt(Γ
k
n) ≤ 35fn−8 − 13fn−10 .

We find the exact values of domination and total domination numbers of Γk
n for k ∈ {1, 2} .

Proposition 4.4 For any positive integer n ≥ 2 and k ∈ {1, 2} we have γ(Γk
n) = γt(Γ

k
n) = fn .

Proof Assume that k ∈ {1, 2} . From Tables 4 and 2 the statement is clear for n ≤ 12 . For n ≥ 13 ,
using the definition of domination and total domination numbers, Corollaries 4.2 and 4.3 we know that
γ(Γk

n) ≤ γt(Γ
k
n) ≤ fn . Furthermore, Theorem 4.1 implies that γ(Γ2

n) ≤ γ(Γ1
n) . So, it is enough to show

that γ(Γ2
n) ≥ fn .

Let α and β be any Fibonacci string of length n− 3 and n− 4 respectively, and u, v be vertices of Γ2
n

whose string representations are α010 and β0101 respectively. We know that the number of such α010 ’s are
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fn−1 and the number of such β0101 ’s are fn−2 . By the definition of Γ2
n we know that the degrees of such u ’s are

1 and the degrees of such v ’s are 2, that is, the closed neighborhood of these vertices are N [u] = {α010, α000}
and N [v] = {β0101, β0100, β0001} . Let D be a minimal dominating set for Γ2

n . Then to dominate each u and
v , D must include at least one vertex from N [u] and one vertex from N [v] . Since N [u] ∩N [v] = ∅ , we have
|D| ≥ fn−1 + fn−2 = fn which completes the proof. 2

Remark 4.5 In Tables 4 and 2 we observe that γ(Γ6
n) = γ(Γ7

n) = γ(Γ8
n) = fn−1 for 6 ≤ n ≤ 12 and

γt(Γ
3
n) = γt(Γ

4
n) = fn for 2 ≤ n ≤ 12 . However the technique we used in the proof of Proposition 4.4 is not

enough to prove these observations.
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