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Abstract: This paper is concerned with the existence of positive solutions for the fourth order Kirchhoff type problem{
∆2u− (a+ b

∫
Ω
|∇u|2dx)△u = λf(u(x)), in Ω,

u = △u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω , a > 0, b ≥ 0 are constants, λ ∈ R is a
parameter. For the case f(u) ≡ u , we use an argument based on the linear eigenvalue problems of fourth order elliptic
equations to show that there exists a unique positive solution for all λ > Λ1,a , here Λ1,a is the first eigenvalue of the
above problem with b = 0 ; For the case f is sublinear, we prove that there exists a positive solution for all λ > 0 and
no positive solution for λ < 0 by using bifurcation method.
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1. Introduction
In this paper, we consider the following nonlinear fourth order Kirchhoff type problem{

∆2u− (a+ b
∫
Ω
|∇u|2dx)4u = λf(u(x)), in Ω,

u = 4u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω , a > 0, b ≥ 0 are constants, λ ∈ R is
a parameter, f : R → R is continuous.

Problem (1.1) is closely related to the extensible beam model and Berger plate model which was proposed
in [32] and [6], respectively.

In [32], to describe the deflection of an extensible beam of length L with hinged ends, Woinowsky-Krieger
studied the equation

∂2u

∂t2
+
EI

ρA

∂4u

∂x4
− (

H

ρ
+

E

2ρL

∫ L

0

|∂u
∂x

|2dx)∂
2u

∂x2
= 0, (1.2)

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t ; the letters H,E, ρ, I
and A denote, respectively, the tension in the rest position, the Young elasticity modulus, the density, the
cross-sectional moment of inertia and the cross-sectional area. This model was proposed to modify the theory
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of the dynamic Euler-Bernoulli beam, assuming a nonlinear dependence of the axial strain on the deformation
of the gradient. Owing to its importance in engineering, physics and material mechanics, since such model was
proposed, this class of problems has been studied. These studies are focused on the properties of its solutions,
as can be seen in [4,5,10,27] and references therein.

In 1955, Berger [6] studied the equation

∂2u

∂t2
+∆2u+ (Q+

∫
Ω

|∇u|2dx)4u = f(u, ut, x) (1.3)

which is called the Berger plate model [8], as a simplification of the von Karman plate equation which describes
large deflection of plate, where the parameter Q describes in-plane forces applied to the plate and the function
f represents transverse loads which may depend on the displacement u and the velocity ut .

Problem (1.1) is a generalization of the stationary problem associated with problem (1.2) in dimension
one or problem (1.3) in dimension two.

In one-dimensional case (N = 1), by using variational methods and some fixed point theorems in cones,
the existence and multiplicity results for (1.1) with other boundary conditions are considered in [22–25]. In
multidimensional case, also by using the variational methods, [12,13,31] studied the existence and multiplicity
of nontrivial solutions for (1.1); and for similar problems in the whole space RN , see [3,7,11,26,29,33–35] and
the reference therein.

To the best of our knowledge, when parameter λ varies in R , the bifurcation phenomena and global
behavior of positive solutions for fourth order nonlocal problem like (1.1) have not been discussed. It is
worth pointing out that, although global bifurcation theory has been applied to deal with fourth order local
problems[similar to (1.1) with b = 0 ] in [16,18,21,28], but when b 6= 0 , the nonlocal term under the integral
sign in equation will causes some mathematical difficulties which make the study of the problem particularly
interesting, as shown by [1,9,14,19,20,30] in which second order Kirchhoff type problems have been considered.

Motivated by the above works described, this paper will study global bifurcation phenomena and the
existence of positive solutions for problem (1.1).

Concretely, we are concerned with problem (1.1) under the two cases: f(u) ≡ u or f is sublinear. For
f(u) ≡ u , (1.1) can be seen as a nonlinear eigenvalue problem, we use an argument based on the linear eigenvalue
problems of fourth order equations to get the existence and uniqueness of positive solution for all λ > Λ1,a ,
where Λ1,a is the first eigenvalue of (1.1) with b = 0 ; For the case f is sublinear, we study global bifurcation
phenomena of (1.1) and prove that there exists a positive solution for all λ > 0 and no positive solution for
λ < 0 .

The rest of paper is arranged as follows: In Section 2, as preliminaries, we first construct the operator
equation corresponding to (1.1). In Section 3, we deal with the case f(u) ≡ u based on the linear eigenvalue
problem of fourth order equations and their properties. Finally, for the case f is sublinear, we discuss the global
bifurcation phenomena and existence of positive solutions for (1.1) in Section 4.
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2. Preliminaries
Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω . Denote µk (k = 1, 2, . . .) the eigenvalues and
φk the corresponding eigenfunctions of the eigenvalue problem{

−∆u = µu, in Ω,
u = 0, on ∂Ω,

(2.1)

it is well known that 0 < µ1 < µ2 ≤ µ3 ≤ . . . ≤ µk −→ ∞ and φ1 > 0 for x ∈ Ω .
Consider the space H = H2(Ω) ∩H1

0 (Ω) . The inequalities below are well known:∫
Ω

|4u|2dx ≥ µ1

∫
Ω

|∇u|2dx,
∫
Ω

|4u|2dx ≥ µ2
1

∫
Ω

|u|2dx, u ∈ H. (2.2)

Then, it is easy to show that H is a Hilbert space with the norm

‖u‖ = (

∫
Ω

|4u|2dx) 1
2 . (2.3)

We say that u ∈ H is a weak solution of problem (1.1) if∫
Ω

∆u∆vdx+ (a+ b

∫
Ω

|∇u|2dx)
∫
Ω

∇u · ∇vdx = λ

∫
Ω

f(u)vdx, (2.4)

for any v ∈ H .
Let P := {u ∈ H : u ≥ 0, a.e. in Ω} and U := P ∪ (−P ) .

Proposition 2.1 For each g ∈ H , there exists a weak solution u ∈ H to the problem{
∆2u− (a+ b

∫
Ω
|∇u|2dx)4u = g(x), in Ω,

u = 4u = 0, on ∂Ω,
(2.5)

and if g ∈ U , then u is unique. Moreover, the operator T : U → U defined by

T (g) := u

is compact.
Proof. When g ≡ 0 , it is obviously that (2.5) has only a unique solution u = 0 . Next, we prove the existence
and uniqueness of solutions for (2.5) with g 6= 0 .

For constant R ≥ 0 , consider the linear problem{
∆2u− (a+ bR)4u = g(x), in Ω,
u = 4u = 0, on ∂Ω

(2.6)

which is equivalent to the system {
−4u = w, in Ω,
u = 0, on ∂Ω,{

−∆w + (a+ bR)w = g(x), in Ω,
w = 0, on ∂Ω.
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Since −(a+ bR) < µ1 , then by the elliptic a priori estimates, (see e.g., Gilbarg and Trudinger [15], Gupta [17]),
(2.6) has a unique solution uR ∈ H ∩H4(Ω) and

‖uR‖H4(Ω) ≤ C1‖g‖L2(Ω) (2.7)

for some constant C1 > 0 . Moreover, if uR ∈ H is a weak solution then 4uR = 0 on ∂Ω in the trace sense
and, in particular, 4uR ∈ H and there exist some constant C2 > 0 such that

‖4uR‖H ≤ C2‖g‖L2(Ω). (2.8)

Multiplying the equation in (2.6) by uR and integrating, we have

∫
Ω

|∇uR|2dx =

∫
Ω
g(x)uR(x)dx−

∫
Ω
|∆uR|2dx

a+ bR
. (2.9)

Then to get a solution of (2.5), we only need to find R such that

R = y(R) :=

∫
Ω
g(x)uR(x)dx−

∫
Ω
|∆uR|2dx

a+ bR
=

∫
Ω

|∇uR|2dx, (2.10)

that is, find a fixed point of R = y(R) . Obviously, y(0) > 0 . On the other hand, by (2.7) and (2.8) we have

|y(R)| =
|
∫
Ω
g(x)uR(x)dx−

∫
Ω
|∆uR|2dx|

a+ bR
≤ C. (2.11)

This concludes the existence of fixed point for R = y(R) .
Now, we show that if g ∈ U , the solution of (2.5) is unique. Without loss of generality, we assume on the

contrary that for some g ∈ P , there exist two solutions u 6= ũ . By the maximum principle for the Laplacian,
we have

u(x) ≥ 0, 4u(x) ≤ 0, a.e. x ∈ Ω; ũ(x) ≥ 0, 4ũ(x) ≤ 0, a.e. x ∈ Ω. (2.12)

Since u and ũ satisfy the equation in (2.5), then

∆2u−∆2ũ− [a+ b

∫
Ω

|∇u|2dx](∆u−∆ũ)− b[

∫
Ω

|∇u|2dx−
∫
Ω

|∇ũ|2dx]∆ũ = 0. (2.13)

If
∫
Ω
|∇u|2dx =

∫
Ω
|∇ũ|2dx , (2.13) implies that u− ũ is the trivial solution of (2.5) with g ≡ 0 , then u = ũ .

If we assume that
∫
Ω
|∇u|2dx >

∫
Ω
|∇ũ|2dx , then by (2.13) and (2.12) we have

∆2u−∆2ũ− [a+ b

∫
Ω

|∇u|2dx](∆u−∆ũ) ≤ 0,

by the maximum principle again, we conclude that

∆(u− ũ) ≥ 0, u− ũ ≤ 0. (2.14)
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On the other hand, from the assumption
∫
Ω
|∇u|2dx >

∫
Ω
|∇ũ|2dx we have

0 <

∫
Ω

|∇u|2dx−
∫
Ω

|∇ũ|2dx

= −
∫
Ω

u4udx+

∫
Ω

ũ4ũdx

=

∫
Ω

[ũ(4ũ−4u) +4u(ũ− u)]dx,

(2.15)

which contradicts with (2.14). The uniqueness of solutions for (2.5) is proved.
At the end, let T : U → H ∩H4(Ω) be the operator defined by Tg = u , where u is the solution of (2.5).

Then by (2.7), (2.8) and the maximum principle, we can easily get that T : U → U is compact. 2

3. Nonlinear eigenvalue problem

In this section, we study (1.1) with f(u) ≡ u , that is the nonlinear eigenvalue problem{
∆2u− (a+ b

∫
Ω
|∇u|2dx)4u = λu, in Ω,

u = 4u = 0, on ∂Ω.
(3.1)

The solutions of (3.1) are closely related to the following linear eigenvalue problem:{
∆2u−A∆u = Λu, in Ω,
u = ∆u = 0, on ∂Ω.

(3.2)

Given a positive constant A , denoting the eigenvalues of problem (3.2) by Λk,A (k = 1, 2, . . .) , then we have
the following results:
Lemma 3.1

(i) If A1, A2 are positive constants such that A1 < A2 , then Λ1,A1
< Λ1,A2

.
(ii) Let B,C be two fixed positive constants. Consider the map

Λ1(τ) := Λ1,B+τC , τ ≥ 0,

then Λ1(·) is a continuous and strictly inreasing function and

Λ1(0) = Λ1,B , lim
τ→+∞

Λ1(τ) = +∞. (3.3)

Proof. We can easily see that the eigenvalues of problem (3.2) are Λk,A = µk(µk + A) (k = 1, 2, . . .) ,
and the corresponding eigenfunctions are still φk . In particular, the principal eigenvalue of problem (3.2)
is Λ1,A = µ1(µ1 +A) and the Λ1,A -eigenfunction φ1 > 0 in Ω . Then (i) and (ii) are immediate consequences.
2

By using Lemma 3.1, we prove the following results on the nonlinear eigenvalue problem (3.1):
Theorem 3.1 Problem (3.1) has a positive solution uλ if and only if λ ∈ (Λ1,a,+∞) , moreover, the solution
uλ is unique and satisfying

lim
λ→Λ1,a

‖uλ‖ = 0, lim
λ→+∞

‖uλ‖ = +∞. (3.4)
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Proof. Assume that u is a positive solution of (3.1), then
∫
Ω
|∇u|2dx > 0 , consequently by Lemma 3.1 (i)

we have
λ = Λ1,a+b

∫
Ω
|∇u|2dx > Λ1,a.

To any λ ∈ (Λ1,a,+∞) , by Lemma 3.1 (ii), there exists a unique t0(λ) > 0 such that

Λ1,a+bt0 = λ,

moreover,
lim

λ→Λ1,a

t0(λ) = 0, lim
λ→+∞

t0(λ) = +∞. (3.5)

For the fixed t0 , take appropriate principal eigenfunction φ1(x) of (3.2) associated to Λ1,a+bt0 such that

∫
Ω

|∇φ1|2dx = t0, (3.6)

then it is easy to see that uλ = φ1 > 0 is a positive solution of (3.1). And in fact, φ1(x) = cλφ1(x) , where cλ
is a positive constant depending on λ .

To prove the uniqueness, we assume that there exist two positive solutions u 6= v , since

λ = Λ1,a+b
∫
Ω
|∇u|2dx = Λ1,a+b

∫
Ω
|∇v|2dx,

then Lemma 3.1 (ii) guarantees that
∫
Ω
|∇u|2dx =

∫
Ω
|∇v|2dx and u is proportional to v , which implies that

u = v .
Finally, we prove (3.4). Since the unique positive solution of (3.1) is uλ = φ1(x) = cλφ1(x) , then by

(3.6) and (3.5), we have

lim
λ→Λ1,a

∫
Ω

|∇uλ|2dx = lim
λ→Λ1,a

cλ

∫
Ω

|∇φ1|2dx→ 0, (3.7)

and similarly

lim
λ→+∞

∫
Ω

|∇uλ|2dx = lim
λ→+∞

cλ

∫
Ω

|∇φ1|2dx→ +∞, (3.8)

that is
lim

λ→Λ1,a

cλ → 0, lim
λ→+∞

cλ → +∞, (3.9)

then (3.4) is an immediate consequence. 2

4. The sublinear case
In this section, we consider (1.1) when the nonlinear term f is sublinear which means that f satisfying:

(H1) f : R → R is continuous, f(s) > 0 for all s > 0 , f(0) = 0 and f0 := lim
s→0+

f(s)
s = +∞;

(H2) f∞ := lim
s→+∞

f(s)
s = 0.

We will study global bifurcation phenomena of (1.1) and prove that there exists a positive solution for
all λ > 0 and no positive solution for λ < 0 .

1829



WANG and WANG/Turk J Math

We first state some notations. Let Bρ := {u ∈ H : ‖u‖ < ρ} . For any u ∈ H , denote u+ = max{u, 0} .
Define the operator F : R×H 7→ H by

F (λ, u)(x) := T (λf(u+(x))), (4.1)

where T is the operator defined in Proposition 2.1. Then, it is easy to see that u ∈ H is a weak nonnegative
solution of (1.1) if and only if

u = F (λ, u). (4.2)

In order to prove the main result of this section, we need the following lemmas.
Lemma 4.1 For any fixed λ < 0 , there exists a number ρ > 0 such that

deg(I − F (λ, ·), Bρ(0), 0) = 1.

Proof. First, we claim that there exists δ > 0 such that

u 6= tF (λ, u) = tT (λf(u+)) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exist sequence {un} in H \ 0 with ‖un‖ −→ 0 and {tn} in [0, 1] such that

un = tnF (λ, un) = tnT (λf(u
+
n )),

that is {
∆2un − (a+ b

∫
Ω
|∇un|2dx)4un = tnλf(u

+
n (x)) ≤ 0, in Ω,

un = 4un = 0, on ∂Ω.
(4.3)

By (4.3) and the maximum principle we can easily get that un(x) ≤ 0 for x ∈ Ω , which implies f(u+n ) = 0

according to (H1). Then (4.3) has only a unique solution un = 0 , a contradiction with un ∈ H \ 0 .
Take ρ ∈ (0, δ] , according to the homotopy invariance of topological degree, we have

deg(I − F (λ, ·), Bρ(0), 0) = deg(I,Bρ(0), 0) = 1.

2

Lemma 4.2 For any fixed λ > 0 , there exists a number ρ > 0 such that

deg(I − F (λ, ·), Bρ(0), 0) = 0.

Proof. First, take a ψ ∈ H,ψ > 0 in Ω, we claim that there exists δ > 0 such that

u 6= T (λf(u+) + tψ) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exist sequence {un} in H \ 0 with ‖un‖ −→ 0 and {tn} in [0, 1] such that

un = T (λf(u+n ) + tnψ),

that is {
∆2un − (a+ b

∫
Ω
|∇un|2dx)4un = λf(u+n ) + tnψ, in Ω,

un = 4un = 0, on ∂Ω.
(4.4)
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Since tnψ > 0 , by the maximum principle we have that un(x) > 0 for a.e. x ∈ Ω.

On the other hand, ‖un‖ −→ 0 implies that∫
Ω

|∇un|2dx ≤ C

for some positive constant C . Hence, according to Lemma 3.1 we have that

Λ1,a+b
∫
Ω
|∇un|2dx ≤ Λ1,a+bC := Λ.

Fix this value of Λ , since un(x) −→ 0 for a.e. x ∈ Ω , then according to (H1), for n large we have that
λf(u+n ) > Λun . Combining this with 4un(x) ≤ 0 for a.e. x ∈ Ω we can get

∆2un − (a+ bC)4un ≥ ∆2un − (a+ b

∫
Ω

|∇un|2dx)4un = λf(u+n ) + tnψ > Λun,

which implies that Λ1,a+bC > Λ , a contradiction.
Take ρ ∈ (0, δ] , according to the homotopy invariance of topological degree, we have

deg(I − F (λ, ·), Bρ(0), 0) = deg(I − T (λf(·) + ψ), Bρ(0), 0) = 0.

2

Now, we are ready to consider the bifurcation of positive solutions of (1.1) from the line of trivial solutions
{(λ, 0) ∈ R×H : λ ∈ R} .
Theorem 4.1 Assume that (H1) and (H2) hold. Then from (0, 0) there emanate an unbounded continuum
C0 of positive solutions of (1.1) in R×H .
Proof of Theorem 4.1. By an argument similar to that of [2, Proposition 3.5], using Lemma 4.1 and 4.2, we
can show that (0, 0) is a bifurcation point from the line of trivial solutions {(λ, 0) ∈ R × H : λ ∈ R} for the
equation (4.2), and there exists a connected component C0 of positive solutions of (4.2) containing (0, 0) , either

(i) C0 is unbounded in R×H , or
(ii) C0 ∩ [R \ 0× {0}] 6= ∅ .
To prove the unboundedness of C0 , we only need to show that the case (ii) cannot occur, that is: C0

cannot meet (λ, 0) for any λ 6= 0 . It is easy to see that for λ < 0 problem (1.1) does not possess a positive
solution. For the case λ > 0 , we assume on the contrary that there exist some λ0 > 0 and a sequence of
parameters {λn} and corresponding positive solutions {un} of (1.1) such that λn −→ λ0 and ‖un‖ −→ 0 .
Since un(x) −→ 0 for a.e. x ∈ Ω , then by (H1), for fixed ε ∈ (0, λ0) there exists n0 ∈ N such that when n > n0

we have

∆2un − (a+ b

∫
Ω

|∇un|2dx)4un = λnf(un) ≥ (λ0 − ε)f(un) > Λun, (4.5)

where Λ is defined as in Lemma 4.2. Now, we can get a contradiction in a similar way that in the proof of
Lemma 4.2. 2

The main result of this section is following:
Theorem 4.2 Assume that (H1) and (H2) hold, then (1.1) has a positive solution if and only if λ > 0 .
Proof. By Theorem 4.1, there exists an unbounded continuum C0 ∈ R ×H of positive solutions of (1.1). We
will show that ‖u‖ is bounded for any fixed λ > 0 , that is, C0 cannot blow up at finite λ ∈ (0,+∞) . Assume on
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the contrary that there exist λ0 > 0 and a sequence of parameters {λn} and corresponding positive solutions
{un} of (1.1) such that λn −→ λ0 , ‖un‖ −→ ∞ . Since

∆2un − (a+ b

∫
Ω

|∇un|2dx)4un = λnf(un), (4.6)

divide (4.6) by ‖un‖ and set vn = un

∥un∥ , then we get

∆2vn − (a+ b

∫
Ω

|∇un|2dx)4vn = λn
f(un)

‖un‖
= λn

f(un)

un
vn. (4.7)

Multiplying (4.7) by vn and integrating, we obtain

∫
Ω

|∇vn(x)|2dx =

∫
Ω
λn

f(un(x))
un

v2n(x)dx−
∫
Ω
|∆vn(x)|2dx

a+ b
∫
Ω
|∇un(x)|2dx

. (4.8)

Since
∫
Ω
|4vn|2dx = ‖vn‖2 ≡ 1 , and by (2.2) and (H2) we have

∫
Ω
λn

f(un(x))
un

v2n(x)dx −→ 0 as n −→ ∞ , this
contradict with (4.8).

The above conclusion means that ‖u‖ is bounded for any fixed λ > 0 . Combining this with the
unboundedness of C0 , we conclude that sup{λ| (λ, u) ∈ C0} = ∞ , then for any λ > 0 there exists a positive
solution for (1.1). 2
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