Turkish Journal of Mathematics Turk J Math

(2020) 44: 1835 — 1851
© TUBITAK
TUBITAK Research Article doi:10.3906 /mat-1909-83

http://journals.tubitak.gov.tr/math/

Lattice ordered semigroups and ['-hypersemigroups

Niovi KEHAYOPULU~
Nikomidias 18, Kesariani, Greece

Received: 24.09.2019 . Accepted/Published Online: 21.07.2020 . Final Version: 21.09.2020

Abstract: As we have already seen in Turkish Journal of Mathematics (2019) 43: 2592-2601 many results on
hypersemigroups do not need any proof as they can be obtained from lattice ordered semigroups. The present paper goes
a step further, to show that many results on I'-hypersemigroups as well can be obtained from lattice ordered semigroups.
It can be instructive to prove them directly, but even in that case the proofs go along the lines of lattice ordered semigroups
(or poe-semigroups). In the investigation, we faced the problem to correct the definition of I'-hypersemigroups given in

the existing bibliography.
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1. Introduction
Kovécs was the first who observed that the regular rings (introduced by J. von Neumann) can be characterized
by the property AN B = AB for every right ideal A and every left ideal B, where AB is the set of all finite
sums of the form > a;b;; a; € A, b; € B [14]. Iséki studied regularity for semigroups characterizing the von
Neumann regular semigroups as semigroups satisfying the property A N B = AB for every right ideal A and
every left ideal B [5]. The author of the present paper introduced the concept of regularity in case of ordered
semigroups as follows: An ordered semigroup is said to be regular if for every a € S there exists x € S such
that a < aza. It is shown in [9] that an ordered semigroup S is regular if and only if for every right ideal A
and every left ideal B of S we have AN B = (AB], equivalently AN B C (AB], where (AB] is the subset of
S defined by (AB] ={t€ S|t < ab for some a € A,b € B}.

The concept of a I'-semigroup has been introduced by M.K. Sen in the International Symposium New
Delhi 1981, as an extension of the concept of a I'-ring introduced by Nobusawa [15], as follows: Given two
nonempty sets S and I', S is called a I'-semigroup [17] if the following assertions are satisfied:

(1) aab € S and aaf €T and

(2) (aad)Bc = a(abB)c = aa(bBc)
for all a,b,c € .S and all o, €T.

In 1986 Sen and Saha gave a second definition of a I'-semigroup as follows:

Definition 1.1 Let S = {a,b,c,...... }oand T = {a, 8,7, ...... } be two nonempty sets. Then S is called a
I -semigroup [18] if
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(1) aabe S and

(2) (aad)Be = aa(bBc)
for all a,b,c €S and all a,B €T.

One can find this definition of I'-semigroups in [21] where the notion of a radical in a I'-semigroup and the
notion of I'S-act over a I'-semigroup have been introduced, in [19] and [20] where the notions of regular
and orthodox T'-semigroups have been introduced and studied and in [16] where the maximum idempotent-
separating congruence on an inverse I'-semigroup has been studied. But still, we cannot say that I' is a set
of binary operations on M to work on it. Perhaps that was the reason that later some authors defined the
I'-semigroup as follows: If S is a semigroup and I' is a nonempty set, then S is called a I'-semigroup if there
is a mapping
SxIT'xS—S8](a,v,b) — ayb

such that (ayb)uc = avy(buc) for all a,b,c € S and all v,u € I'. Which means that a semigroup S is a
I'-semigroup if there is a mapping of S x I' x S into S (a,~,b) — ayb such that

f(f(a,% b), s 6) = f(a,% f b, C))

for all a,b,c € M and all v, € T'. As we see, the definition given by Sen and Saha (Definition 1.1) is
much more useful for the investigation if we add the missing third condition in it. Adding the uniqueness
condition in Definition 1.1, in an expression of the form A1T'AsT'As ... T'A, (or a1y1a272a3 ... Ynay ), We can
put parentheses in any place beginning with some a; and ending in some a;. So the definition of a I'-semigroup

has been given in Scientiae Mathematicae Japonicae [10] as follows:

Definition 1.2 [10] For two nonempty sets M and T', denote by MT'M the set defined by
MTM :={ayb|a,be M,yeT}.

Then M is called a T'-semigroup if the following assertions are satisfied:
(1) MTM C M
(2) if a,b,c,d € M and v,u €T such that a=c, vy =p and b=d, then ayb = cud
(3) (ayb)pc = ay(buc) for all a,b,c € M and all y,u €T

We can omit the definition of the MT'M and write condition (1) as follows as well: For every a,b € M
and every v € I', we have ayb € M.

In other words, a I'-semigroup is a nonempty set M with a set I' of binary operations on M , satisfying
the associativity condition (ayb)uc = ay(buc) for all a,b,c € M and all vy, u €T.

If we have only the conditions (1) and (2), then this is the definition of a I'-groupoid.

An hypergroupoid is a nonempty set S with an hyperoperation “o” on S (: to each a,b € S assigns

a unique nonempty subset a o b of S) and an operation “x” on P*(S) such that A+ B = U (aod)
(a,b)e AxB

for every A, B € P*(S); P*(S) being the set of (all) nonempty subsets of S. An hypergroupoid S is called
hypersemigroup if {z}* (yoz) = (zoy)*{z} for every x,y,z € S. For any x,y € S, we have {a}*{y} =zoy
[11].
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We have seen in [13] that many results on hypersemigroups do not need any proof since they are obtained
from lattice ordered semigroups. We can prove them just to show how a direct proof (in the language of
semigroups) works. In the present paper we go a step further to show that many results on I'-hypersemigroups
as well can be obtained from lattice ordered semigroups and do not need any proof unless we want to show how
one can prove them independently.

After some preliminaries from lattice ordered semigroups, the definition of a I'-hypersemigroup is given
and the associative relation is shown in it (Proposition 3.17) to be able to put parentheses in expressions of the
form A;TA;T A;....T'A,, (otherwise no investigation on the subject is possible).

The concept of regular I'-hypersemigroup has been introduced and, extending the theorem by Iséki [5],
it is shown that a I'-hypersemigroup M is regular if and only if for every right ideal A and every left ideal
B of M we have AN B = AT'B, equivalently AN B C AI'B. It is proved that the same result can be also
obtained as corollary of the corresponding result on lattice ordered semigroup.

Under the same methodology, every result on lattice ordered semigroups in Turkish Journal of Mathe-
matics [12, 13], every result in section 2 of the present paper, and many results on lattice ordered semigroups,
Ve or poe-semigroups, hold automatically for I'-hypersemigroups as well, do not need any proof -as they follow
from more general statements about ordered semigroups; one can prove them just to show how a direct proof
works, but even in that case this direct proof goes along the lines of le, Ve or poe-semigroups.

When is convenient and no confusion is possible, we identify the singleton {a} by the element a and
write, for example, al'MTa instead of {a}I'MT{a}, al'M instead of {a}I'M .

2. On lattice ordered semigroups

An ordered groupoid (shortly po-groupoid) is a groupoid S with an order “<” on it such that a < b implies
ac < be and ca < ¢b for every ¢ € S. If the multiplication on S is associative, then S is called an ordered
semigroup (po-semigroup). A lattice ordered semigroup (shortly [-semigroup) is a semigroup S which is at the
same time a lattice such that a(bV¢) = abVac and (aV b)c = acV be for all a,b,c € S [1-4]. An le-semigroup
is an l-semigroup having a greatest element with respect to the order of S, usually denoted by e (: e > a for
all a € S). The poe-groupoids and the poe-semigroups are also po-groupoids and po-semigroups respectively
having a greatest element with respect to the order. An element a of a poe-groupoid S is called a right ideal
element if ae < a; it is called a left ideal element if ea < a [6, 7]. By an ideal element of S we mean an element
that is both a right and a left ideal element of S. An element b of a poe-semigroup S is called a bi-ideal
element of S [6, 8] if beb < b. For an element a of an le-semigroup S, denote by r(a), I(a) the right and
the left ideal element of S, respectively, generated by a and we have r(a) = a V ae and I(a) = a V ea (see
also [13]). Denote by r(l(a)) the ideal element of S generated by a; and we have r(I(a)) = aVeaV aeV eae.
Indeed, the element a V ea V ae V eae is an ideal element of S containing a; and if ¢ is an ideal element of S
such that ¢ > a, then aVeaVaeVeae <tVetVteVete=1t. It might be noted here that, for any a € S,
r(l(a)) = I(r(a)). For further information see also [7, 13].

Definition 2.1 [6, 7] A poe-semigroup S is said to be regular if, for every a € S, we have a < aea.

The following theorem holds:

Theorem 2.2 (see also [6, 8]) Let S be an le-semigroup. The following are equivalent:
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(1) S is regular.
(2) a ANb=ab for every right ideal element a and every left ideal element b of S.
(3) aAb < ab for every right ideal element a and every left ideal element b of S.

Proof (1) = (2). Since S is regular, we have
aNb<(aAble(aNb) < (ae)b<ab<aeAeb<aAb,

thus we get a A b= ab.
The implication (2) = (3) is obvious.
(3) = (1). Let a € S. By hypothesis, we have

a<r(@)Al(a) < r(a)l(a) = (aVae)(aVea) =a®VaeaV ae’a

= a’v aea,

then a? < a®V aea® < aea from which a < aea and so S is regular. O

Definition 2.3 [7] A poe-semigroup S is said to be intra-reqular if, for every a € S, we have a < ea’e.

Theorem 2.4 (see also [7]) An le-semigroup S is intra-reqular if and only if
for every right ideal element a and every left ideal element b of S, we have a A b < ba.
Proof =. Let a be a right ideal element and b a left ideal element of S. Since S is intra-regular, we have
bAha<eAa)e=elbAa)bAa)e.

Since e(bAa) <eb and (bAa)e < ae, we have e(bAa)(bAa)e < (eb)(ae) < ba. Thus we have bAa < ba.
<. Let a € S. By hypothesis, we have

S
IN

r(a) ANl(a) =l(a)r(a) = (a Vea)(aV ae)

a?Vea®ValeV ea’e.

Then we have

a® < (a® Vea® Vv a*e Veae)(a® V ea® V a’e V ea’e) < ea’e V ea?,

a’e < ea’e? V ea’e = ea’e, then a < ea? V ea’e, and then ea? < e(ea2 V eaQe)a = e2a® Vv e2aea < ea’e. Thus

we get a < ea?e and so S is intra-regular. O

Definition 2.5 [6, 7] An le-semigroup S is called right (resp. left) regular if, for every a € S, we have
a < a’e (resp. a < ea?).

Definition 2.6 [6] A poe-groupoid S is called right (resp. left) duo if the right (resp. left) ideal elements of S
are left (resp. right) ideal elements of S as well (that is, ideal elements of S ).
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Theorem 2.7 An le-semigroup S is right reqular and right duo if and only if for any right ideal elements a, b
of S, we have
aA\b=ab.

Proof =—. Let a,b be right ideal elements of S. Then ab < ae < a; since S is right duo, b is a left
ideal element of S as well, so ab < eb < b. Thus we have ab < a A b. Since S is right regular, we have
aAb<(anb)(aAb)e. Since a Ab< a,b, we have (a Ab)e <aeAbe<aAb. Then aAb< (aAb)(aAb) < ab.

Thus we have a A b= ab.
<. Let a be a right ideal element of S. Since e is a right ideal element of S, by hypothesis, we have

a=eAa=cea,so ais a left ideal element of S and S is right duo. Let now a € S. By hypothesis, we have

a<r(a)Ar(a) = r(a)r(a)=(aVae)(aV ae)

a’V aea V a’e V aeae

Since ae is a right ideal element of S and S is right duo, ae is a left ideal element of S as well; that is
e(ae) < ae and so a(eae) < a’e. Hence we obtain a < a? V aea V a’e, then a? < a®V a’ea V a®e < aea V a’e.
Thus we get a < aea V a’e, and then a(ea) < aeaea V a*e?a < aeaea V a’e. Since a(eae) < a’e, we have
aeaea < a%ea < a2e, and thus aea < a2e. Since a < aea V a?e and aea < aze, we have a < a?e and S is right
regular. O

In a similar way we prove the following theorem.

Theorem 2.8 An le-semigroup S is left reqular and left duo if and only if for any left ideal elements a, b of S,

we have
aA\b=ba.
Definition 2.9 [7] Let S be a po-groupoid. An element t of S is called semiprime if, for any a € S such that

a? <t, we have a < t.

Theorem 2.10 (see also [7]) An le-semigroup S is intra-reqular if and only if the ideal elements of S are

semiprime.

Proof =. Let t be an ideal element of S and a € S such that a? < t. Since S is intra-regular, we have
a < ea’e < ete < t,so a <t and t is semiprime.
<. Let a € S. The element r(I(a?) is an ideal element of S such that a*® < r(I(a?)). Since r(l(a?)) is

semiprime, we have a < r(l(a?)) = a® V ea® V a’e V ea®e. Then

a® < (a®> Vea® Va’eVea®e)(a® Vea® V a’e V ea’e) < ea’ V ed’e.

2

2 2 < ea?a V eaea < ea e,

Then a?e < ea2e V ea?e? = ea?e. Hence we obtain a < ea® V ea’e and then a2

from which ea? < e2a?e < ea’e. We have a < ea® V ea’e and ea? < ea®e, thus we have a < ea’e and S is

intra-regular. O

Proposition 2.11 If a poe-semigroup S is right (or left) regular, then it is intra-regular.

Proof Let S be right regular and a € S. Then a < a?e < a(aQe)e < ea®e, then a < ea?e and S is

intra-regular. If S is left regular, then a < ea® < e(ea?)a < ea’e and again S is intra-regular. O
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Proposition 2.12 An le-semigroup S is right regular if and only if, for any a € S, we have
r(a) = r(a?), equivalently r(a) < r(a?).
Proof = . Let a € S. Since S is right regular, we have
r(a) =aVae < a’eVa’e® = a’e < a® Vae = r(a?).

On the other hand, r(a?) = a? V a’e < ae < aV ae = r(a). Thus we have r(a) = r(a?).

<. Let a € S. By hypothesis, we have

a<r(a) <r(a?) =d®Va’e < ae,

then a? < a®e. Since a < a? V a’e and a? < a®e, we have a < a’e and S is right regular. O

In a similar way we prove the following proposition.
Proposition 2.13 An le-semigroup S is left reqular if and only if, for any a € S, we have
I(a) = I(a?), equivalently 1(a) < I(a?).
Theorem 2.14 An le-semigroup S is right reqular if and only if the right ideal elements of S are semiprime.

Proof —. Let ¢ be a right ideal element of S and a € S such that a® < t. Since S is right regular, we have
a<a’e<te<tandsoa<t.

<. Let a € S. Since 7(a?) is a right ideal element of S, by hypothesis, it is semiprime. Since a? < r(a?), we
have a < T(a2) = a2 Va®e. Then a? < a®Va®e < a’e. Since a < a?V a%e and a? < a?e, we have a < a?e and
so S is right regular. O

In a similar way the following theorem holds.
Theorem 2.15 An le-semigroup S is left reqular if and only if the left ideal elements of S are semiprime.

Definition 2.16 A poe-groupoid S is called right (resp. left) simple if the element “e” is the only right (resp.
left) ideal element of S. That is, if a is a right (resp. left) ideal element of S, then a = e.

Proposition 2.17 A poe-semigroup S is right (resp. left) simple if and only if, for every a € S, we have

ae =e (resp. ea =c¢e).

Proof Let S be right simple and a € S. The element ae is a right ideal element of S (as (ae)e = ae? < ae).
Since S is right simple, we have ae = e.
Assuming ae = e for every a € S, let t be a right ideal element of S. Then we have e =te <t and then t = e

and so S is right simple. O

A right (left) ideal element or bi-ideal element a of S is called proper if a # e.

Theorem 2.18 A poe-semigroup S is right (resp. left) simple if and only if does not contain proper right (resp.

left) ideal elements.
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Proof —. Let S be aright simple and a be a right ideal element of S. Since .S is right simple, by Proposition
2.17, we have ae = e. Since a is a right ideal element of S, we have ae < a. Thus we have e < a and so a = e.
<. Assuming S does not contain proper right ideal elements, let a € S. Since ae is a right ideal element of

S, by hypothesis, we have ae = e. By Proposition 2.17, S is right simple. O

Proposition 2.19 If a poe-semigroup S is both right and left simple, then it is reqular.

Proof Let a € S. Since S is right and left simple, by Proposition 2.17, we have ae = ea = e. Then we have

a < e=ae=alea), thus a < aea, and S is regular. O

Theorem 2.20 A poe-semigroup S is both right and left simple if and only if does not contain proper bi-ideal
elements.

Proof =—. Let b be a bi-ideal element of S. Then beb < b. Since S is right and left simple, by Proposition
2.17, we have be = eb = e. Thus we have b > (be)b =eb=¢e and so b=e.

<=. Let a be a right ideal element of S. Then a is a bi-ideal element of S; indeed (ae)a < a? < ae < a.
Since S does not contain proper bi-ideal elements, we have a = e and so S is right simple. Let now a be a left

ideal element of S. Since a is a bi-ideal element of S, by hypothesis, we have a = e and so S is left simple. O

3. On I'-hypersemigroups

Taking into account the definition of a I'-groupoid given in [10], a I'-hypergroupoid can be defined as follows:

Definition 3.1 Let M and I' be two nonempty sets. The set M is called a T -hypergroupoid if the following

assertions are satisfied:
(i) if a,b€ M and v €T, then O # ayb C M and
(i) if a,b,c,d € M and v, € T such that a=c¢, y=p and b=d, then avyb = cud.

In other words, a I'-hypergroupoid is a nonempty set M with a set I" of binary hyperoperations on M .

Definition 3.2 If M is a T -hypergroupoid, then for every v € T' we denote by 7 the operation on P*(M)
(induced by the hyperoperation 7 ) defined by

J:P*(M)xP*(M)—P*(M)| (A, B) —» AyB,

where

A3B = U ayb.
a€AbeEB

It is easy to see that this operation is well defined.
Definition 3.3 If M is a T -hypergroupoid, we denote by T' the operation on P*(M) defined by
I':P*(M)xP*(M)—P*(M)| (A B)— A'B,

where

ATB := | ] 47B.
yel’

1841



KEHAYOPULU/Turk J Math

This is also well defined.

Remark 3.4 For any nonempty subsets A, B of a T -hypergroupoid, we have

AFB:UAWB:U( U mb): U

yel’ vel' ac€AbeB acAbeB,yel
Lemma 3.5 If M is an hypergroupoid then, for any x,y € M and any v € I, we have
{zi 7y} = 27y
Proof Let z,y € M and v € I". By Definition 3.2, we have

Lyt = J  ww=aw

ue{z},ve{y}

Lemma 3.6 Let M be a I'-hypergroupoid, A,B,C,D nonempty subsets of M and vy €T'. If AC B and C C D,
then ANC C ByD.

Proof Let z € A5C. By Definition 3.2, x € a7yc for some a € A, ¢ € C. Since a € B and ¢ € D, again by

Definition 3.2, we get ayc C ByD, so z € ByD. Thus we have A5C C BYyD. O

Lemma 3.7 Let M be a T -hypergroupoid, x € M and A, B mnonempty subsets of M. Then we have the
following:

(1) x € ATB if and only if © € avyb for somea € A;be B,y €T

(2) ifac A, be B and v €T, then ayb C AT'B.

Proof (1). It follows immediately from Remark 3.4. The property (2) is an immediate consequence of (1). O

Lemma 3.8 If M is a T'-hypergroupoid, A, B,C, D nonempty subsets of M, A C B and C C D, then
AT'C C BT'D.
Proof Let x € ATC. By Lemma 3.7(1), we have = € ayc for some a € A, v €T, ce C. Since a € B, vy €T

and ¢ € D, by Lemma 3.7(2), we have ayc C BT'D, so « € BI'D. Thus we have AT'C C BT'D. O

Definition 3.9 Let M be a I'-hypergroupoid. A nonempty subset A of M is called a right (resp. left) ideal of
M if ATM C A (resp. MTAC A). If a subset of M is both a right and a left ideal of M, then it is called an
ideal of M .

Proposition 3.10 Let M be a I -hypergroupoid. The following are equivalent:
(1) A is a right ideal of M.
(2) Ifac A, v€T and m € M, then aym C A.
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Proof (1)=(2). Let a€ A, vy €T and m € M. By Lemma 3.7(2), we have aym C AT'M . By hypothesis,
AT'M C A. Thus we have aym C A.

(2) = (1). Let # € ATM . According to Lemma 3.7(1), we have = € aym for some a € A, vy €', me M.
By hypothesis, we have aym C A. Thus we have z € A, so A'M C A and A is a right ideal of M. a

In a similar way we prove the following proposition.

Proposition 3.11 If M is a ' -hypergroupoid, then the following are equivalent:
(1) B is a left ideal of M.
(2) Ifae B, vy€T and m € M, then mya C B.

Proposition 3.12 Let M be a I -hypergroupoid. If A is a right ideal of M and B is a left ideal of M, then
ANB#{.

Proof Let A be a right ideal and B a left ideal of M. Take an element a € A, an element b € B and an
element vy € ' (A,B,I' #0). Since a € A, b€ M and v € I', by Lemma 3.7(2), we have ayb C A'M . Since
A is a right ideal of M, we have ATM C A and so ayb C A. Since a € M, b € B and v € I, again by Lemma
3.7(2), we have ayb C MT'B. Since B is a left ideal of M, we have MT'B C B, thus we have ayb C B. Since
ayb C AN B and avyb # 0 (by Def. 3.1), we have AN B # 0. O

Proposition 3.13 Let M be a T -hypergroupoid and A;, B € P*(M), i € I. Then we have the following:
(1) (U A)rB= U (AlI'B)

icl i€l
(2) BI(U A9 = U (BUA).

Proof (1) Let z € (UI A;)I'B. By Lemma 3.7(1), = € avb for some a € UI A;, vel be B. Since a € 4;
ic i€
for some j € I, v €T and b € B, by Lemma 3.7(2), we have ayb C A;,T'B C UI (A;T'B). Then z € UI (A;,T'B).
i€ i€
Let now z € UI (A;I'B). Then x € A;I'B for some j € I. By Lemma 3.7(1), z € ayb for some a € A;,
i€
~veTl, be B. Since a € UIA“ v €T and b € B, by Lemma 3.7(2), we have ayb C (UIAi>FB- Then we have
ic i€

icl

The proof of property (2) is similar. O

Definition 3.14 A T'-hypergroupoid M is called T -hypersemigroup if, for any a,b,c € M and any ~v,p € T',
we have

{a}7(buc) = (avb)i{c}.
Proposition 3.15 Every semigroup (S,-) is a I -hypersemigroup.

Proof Take an element v not contained in S, consider I' = {7}, and the hyperoperation v on S defined by

v: 8 xS =P S) | (a,b) = ayb:= {ab}.
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Then (5,T") is a I'-hypersemigroup. Indeed, if a,b,c € M then, by Definition 3.2, we have

{a}y(re) = | avu= | avu=ay(be) = {a(be)},

u€byc u=bc

(@ofet = |J wye= {J wre = (ab)re = {(ab)e} = {a(be)},

u€ayb u=ab

and so {a}7(b7¢) = (ayb)7{c} .
Second Proof Take an element v ¢ S, consider I' = {~}, and the hyperoperation v on S defined by

v: S8 x8—=PS)| (a,b) = ayb:={a,b,ab}.

The operation « is well defined and we have {a}7(byc) = (ayb)7{c}. Indeed, by Definition 3.2,

{aty(bye) = U ayu = U ayu = aybU ayc U ay(be)
u€bye ue{b,c,bc}

= {a,b,c,ab,ac,be,a(be)},

(avb)7{c} = U uyc = U wye = aye U byc U (ab)ye
u€avyb u€{a,b,ab}

= {a,b,c,ab,ac,be, (ab)c}.

Since a(bc) = (ab)c, we have {a}7(byc) = (avyb)F¥{c}.
Example 3.16 We consider the semigroup defined by Table 1.

Table 1. Multiplication table of the semigroup of the Example 3.16.
b

C
a
a

=
=2 I I e

a
a
b

C

According to the first proof of Proposition 3.15, Table 2 defines a T -hypersemigroup.

Table 2. The hypersemigroup of the Example 3.16 that corresponds to the first proof of Proposition 3.15.

vl a b c

a | {a} | {a} | {a}
b | {a} | {a} | {a}
c | {a} | {b} | {c}

According to the second proof of Proposition 3.15, Table 3 defines a T -hypersemigroup.
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Table 3. The hypersemigroup of the Example 3.16 that corresponds to the second proof of Proposition 3.15.

a b c

fa} | {ab} | {ac}
{a,b} | {a,b} | {a,b,c}
fact | {bc} | {c}

O |lT|® |2

Proposition 3.17 If M is a I -hypersemigroup then, for any nonempty subsets A, B,C of M we have
(ATB)I'C = AT(BT'C).

Proof Let z € (ATB)I'C. By Lemma 3.7(1), we have x € uuc for some v € ATB, p €T, ¢ € C. Since
u € AT'B, again by Lemma 3.7(1), we have u € ayb for some a € A, v € I'; b € B. Then we have

{u}m{c} (by Lemma 3.5)
(avb)i{c} (by Lemma 3.6)
{a}7(buc) (by Definition 3.14)
{a}T(bpc) (by Definition 3.3).

T € upc

N

N

Since b € B, p € I" and ¢ € C, by Lemma 3.7(2), we have buc C BI'C'. Then, by Lemma 3.8, {a}I'(buc) C
AT(BT'C), thus we get x € AT'(BT'C) and so (AI'B)I'C C AT'(BT'C).

Let now z € AT'(BT'C). By Lemma 3.7(1), we have z € ayu for some a € A, v € T, u € BI'C and
u € buc for some b€ B, peI', c € C. As in the previous case, we have

r € ayu = {a}7{u} € {a}7(buc) = (@B)E{c} < (arb)T{c}.

Since a € A, v € T, b € B, by Lemma 3.7(2), we have ayb C AT'B. Then, by Lemma 3.8, (avb)['{c} C
(ATB)I'C, then = € (AI'B)I'C and so AI'(BT'C) C (AT'B)I'C. O

From Proposition 3.17 we have the following corollary.
Corollary 3.18 If M is a I'-hypersemigroup, then the set (P*(M),T") is a semigroup.

Definition 3.19 A T'-hypersemigroup M is called regular if for every a € M there exist x € M and ~,p € T
such that

a € (ayz)p{a}.
Proposition 3.20 A T -hypersemigroup M is reqular if and only if for any nonempty subset A of M, we have

ACATMTA.

Proof =—. Let A be a nonempty set and a € A. Since M is regular, there exist x € M and v, € I' such
that a € (ayx)@{a}. Since a € A, vy € ', € M, by Lemma 3.7(2), we have ayz C AT'M . Then, by Lemma
3.6, (ayx)p{a} C (AT M)i{a}. By Definition 3.3, (ATM)f{a} C (ATM)I'{a}. By Lemma 3.8 and Proposition
3.17, we have (ATM)I'{a} C (ATM)I'A = ATMTA. Thus we get a € ATMT'A and so A C ATMTA.
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<. Let a € M. By hypothesis, we have {a} C ({a}FM)F{a}. By Lemma 3.7(1), a € upa for some
u€{a}I’'M, peT. Since u € {a}I'M, again by Lemma 3.7(1), u € ayzx for some v € I', x € M. By Lemma
3.5, upa = {u}n{a} and, by Lemma 3.6, {u}u{a} C (ayz)i{a}. Thus we get a € (ayz)u{a}, and M is
regular. O

Proposition 3.20 gives us a second, equivalent concept of regularity in I'-hypersemigroups.
Denote by R(A) (resp. L(A)) the right (resp. left) ideal of M generated by A, and we have the following

proposition.

Proposition 3.21 If M is a I'-hypersemigroup then, for any nonempty subset A of M, we have

(1) R(A)=AUATM and

(2) L(A)=AUMTA.
Proof (1) The set AU AT'M is a right ideal of M containing A. In fact, it is a nonempty subset of S and
we have

(AUATM)TM = ATM U (ATM)T'M (by Prop. 3.13(1))

AT'M U AT(MTM) (by Prop. 3.17)
AT'M (since MT'M C M)
C AUAI'M.

If now T is a right ideal of M containing A, then we have AUAI'M C TUTT'M =T and property (1) holds.
The proof of property (2) is similar. O

Theorem 3.22 Let M be a I'-hypersemigroup. The following are equivalent:
(1) M is regular.
(2) AN B = ATB for any right ideal A and any left ideal B of M.
(3) ANB C AT'B for any right ideal A and any left ideal B of M.

Proof (1) = (2). Let M be regular, A be a right ideal and B a left ideal of M. By Proposition 3.12,
AN B #1. Since M is regular, by Proposition 3.20, Lemma 3.8 and Proposition 3.17, we have

ANB C (ANB)JI'MT(ANB)C ATMTB = AI(MT'B) C ATB
C ATMNMI'BC ANB.

Thus we have AN B = AT'B.
The implication (2) = (3) is obvious.
(3) = (1). Let A be a nonempty subset of M. By hypothesis, we have
A C R(ANL(A)=R(ATL(A) = (AUATM)I'(AU MTA) (by Prop. 3.21)
= ATAUATMTAUAT(MTM)I'A (by Prop. 3.13 and Prop. 3.17).

Since MT'M C M, by Lemma 3.8, we have AT (MTM)I'A C ATMTA. Then we have A C ATAU ATMT A,
and then
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ATA C (ATAUATMTA)T'A (by Lemma 3.8)
= ATATAUAT'(MTA)TA (by Prop. 3.13(1) and Prop. 3.17)
C ATMTA (since AC M and MTA C M).

Then we have A C AU MT A and, by Proposition 3.20, M is regular. O

Remark 3.23 We have A C ATMTA for every A € P*(M) if and only if a € {a}TMT{a} for every a € M.
Indeed, if a € al'MTa for every a € M and b € A, then b € (b'M)T'b, then b € xvb for some x € bI'M ,
vy el and x € buy for some pel', ye M, and so

b€ zyb = {z}y{b} C (buy)7{b} C (buy)I'{d} C (ALM)I'A = ATMT'A,

thus we have A C ATMT A. The rest is obvious.

Example 3.24 We consider the set M = {a,b,c} and let T = {vy,u} the hyperoperations on M defined by
Tables 4 and 5.

Table 4. The «-hyperoperation of the Example 3.24.

a b c

a | {a,b} | {a,b} | {c}
b | {a,b} | {a,b} | {c}
c | {c} [} |A{c}

Table 5. The p-hyperoperation of the Example 3.24.

Wl a b c
a | {a,b} | {a,b} | {c}
b | {ab} | {b} | {c}
¢ [ {c} [H{c} | A{c}

This is a T -hypersemigroup as {x}¥(yuz) = (zyy)i{z} for all z,y,z € M and all v,u € T'. We
had to check 108 cases to verify it by hand (computer programs are necessary). It is an example of a regular

I -hypersemigroup as well. Indeed, for example,

a € (aya)p{a} = U upa = U upa = apa U bua = {a,b} (by Def. 3.2),
u€aya ue{a,b}
be (na)a{d} as (bya){b} = {a,b}{b} = apb Ubyb = {a,b} (by Def. 3.2)
c € (eyo)p{c} as (eye)uf{c} = {c}uf{c} = cuc = {c} (by Lemma 8.5).
We remark that the sets {c} and M are the only right (resp. left) ideals of S; this being so, they are the
only ideals of S. Theorem 8.22 can be applied. Indeed, {c}N{c} = {c}T{c}(={c}) and {c}NM = {c}T M (= {c})

(the hyperoperations v and pu are commutative).
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Theorem 3.22 as Corollary to Theorem 2.2

Let (M,T) be a I'-hypersemigroup. By Corollary 3.18, (P*(M),T’) is a semigroup. The inclusion relation
“C7 is clearly an order on P*(M), M being the greatest element of P*(M) and, for any A, B € P*(M),
AUB and AN B being the supremum and the infimum of A and B, respectively (with respect to this order).
Moreover, by Proposition 3.13, for any nonempty subsets A, B,C of M, we have (AU B)I'C = ATC U BT'C
and AT'(BUC) = AT'BU AI'C. Thus (P*(M),T',C) is an le-semigroup.

Let now M be a regular I'-hypersemigroup, A a right ideal and B a left ideal in M. Then (P*(M),T, C)
is a regular le-semigroup, A is a right ideal element and B is a left ideal element of (P*(M),T",C). By Theorem
2.2(1) = (2), we have inf{A, B} = AT'B, that is AN B = AT'B.

Suppose M is a I'-hypersemigroup such that AN B C AT'B for every right ideal A and every left ideal
B of M. Then ANB C AI'B for every right ideal element A and every left ideal element B of (P*(M),I', Q).
By Theorem 2.2(3) = (1), (P*(M),T',C) is a regular le-semigroup, that is A C ATMT A for any A € P*(M)
and so, by Proposition 3.20, M is regular.

Note From every result of section 2, a corresponding result on a I'-hypersemigroup can be obtained. Thus we

have the following results and the necessary definitions.

Definition 3.25 A T'-hypersemigroup M is called intra-reqular if for every a € M there exist x,y € M and
v, 1, p € T such that

a € (zya)i(apy).
The Example 3.24 is an example of an intra-regular I'-hypersemigroup as, for example,

a € (ava)p(aya) = {a,b}, b € (a0)(byb) = {a, b}, ¢ € (aye)p(cya) = {c}.

Theorem 3.26 (see Theorem 2./) A T -hypersemigroup M is intra-reqular if and only if, for every right ideal
A and every left ideal B of M, we have AN B C BT'A.

Definition 3.27 A T -hypersemigroup M s called right (resp. left) regular if for every a € M there exist
xeM and v,pu €' such that

a € (aya)pfz} (resp. a € {x}y(apa)).
The Example 3.24 is an example of right regular I'-hypersemigroups as, for example,
a € (ava)i{a}, b € (byb)r{b}, c € (eye)n{c}.
The Example 3.24 is at the same time an example of left regular I'-hypersemigroups as, for example,
a € {a}¥(aya), b € {a}u(bb), ¢ € {c}7(cye).

A T-hypersemigroup M is called right (resp. left) duo if every right (resp. left) ideal of M is at the same time
a left (resp. right) ideal (that is, an ideal) of M.

Theorem 3.28 (see Theorem 2.7 and Theorem 2.8) A T -hypersemigroup M is right (resp. left) reqular and
right (resp. left) duo if and only if for every right (resp. left) ideals A, B of S we have AN B = AT'B (resp.
ANB=DBTA).
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A nonempty subset T of a I'-hypergroupoid M is called semiprime if for any nonempty subset A of M
such that ATA CT we have A CT.

Theorem 3.29 (see Theorem 2.10) A T -hypersemigroup M is intra-regular if and only if the ideals of M are

semiprime.

Proposition 3.30 (see Proposition 2.11) If a T -hypersemigroup is right (or left reqular), then it is intra-reqular.

We have already seen that the Example 3.24 is an example of a right (resp. left) regular I'-hypersemigroup.
This being so, by Proposition 3.30, it is an example of intra-regular I'-hypersemigroup as well (its independent

proof has been given above).

Proposition 3.31 (see Proposition 2.12 and Proposition 2.13) A T -hypersemigroup M is right regular if and
only if, for every nonempty subset A of M, we have R(A) = R(AT A), equivalently R(A) C R(AT'A).

1t is left regular if and only if, for every nonempty subset A of M, we have L(A) = L(AT'A), equivalently
L(A) C L(ATA).

Theorem 3.32 (see Theorem 2.1/ and Theorem 2.15) A T -hypersemigroup M is right (resp. left) regular if
and only if the right (resp. left) ideals of M are semiprime.

A T-hypergroupoid M is called right (resp. left) simple if M is the only right (resp. left) ideal of M.

Proposition 3.33 (see Proposition 2.17) A T -hypersemigroup M is right (resp. left simple) if and only if, for
every nonempty subset A of S, we have ATM = M (resp. MTA =M ).

Theorem 3.34 (see Theorem 2.18) A T'-hypersemigroup M is right (resp. left) simple if and only if does not
contain proper right (resp. left) ideals.

Proposition 3.35 (see Proposition 2.19) If a T -hypersemigroup is both right and left simple, then it is reqular.

A nonempty subset B of a I'-hypersemigroup M is called a bi-ideal of M if BIT'BI'B C B.

Theorem 3.36 (see Theorem 2.20) A T -hypersemigroup is both right and left simple if and only if does not

contain proper bi-ideals.

We do not need to prove the results given above. According to section 2, we know that they hold. They
are obtained as corollaries of the corresponding results of section 2 in the way indicated to get Theorem 3.22 as
corollary to Theorem 2.2.

Let us only give the proof of Theorem 3.36 to compare its proof with that one on poe-semigroups given

in Theorem 2.20 and see how similar is.

Proof of Theorem 3.36 —>. Let B be a bi-ideal of M. Then BI'MI'B C B. By Proposition 3.33, we
have BI'M = MI'B = M. Thus we have B D (BTM)I'B= MI'B=M andso B= M.
<. Let A be a right (or left) ideal of M. Then A is a bi-ideal of M and so A =M.

Theorem 3.36 as Corollary to Theorem 2.20
=—>. Let M be a I'-hypersemigroup both right and left simple. Then (P*(M),T’,C) is a poe-semigroup both

1849



KEHAYOPULU/Turk J Math

right and left simple. By Theorem 2.20, P*(M) does not contain proper bi-ideal elements. So M does not
contain proper bi-ideals.

<. Let M be a I'-hypersemigroup not containing proper bi-ideals. Then (P*(M),T’, C) is a poe-semigroup
not containing proper bi-ideal elements. By Theorem 2.20, P*(M) is right and left simple. So M is right and

left simple as well. O

4. Conclusion

From every result of an le-semigroup based on right (left) ideal elements, ideal elements, bi-ideal elements or
quasi-ideal elements [13], a corresponding result of a I'- hypersemigroup based on right (left) ideals, ideals,
bi-ideals or quasi-ideals can be obtained. From many results on regular or intra-regular le-semigroups (and not
only), analogous results for I'-hypersemigroups can be obtained. This is because, if M is a I'-hypersemigroup,
then the set P*(M) of nonempty subsets of M endowed with the operation “I'” and the inclusion relation “C”

is an [e-semigroup. Moreover
(1) A is a right (resp. left) ideal of M if and only if it is a right (resp. left) ideal element of (P*(M),T,C).
(2) A is a bi-ideal of M if and only if it is a bi-ideal element of (P*(M),T,C).
(3) The I'-hypersemigroup M is regular if and only if the le-semigroup (P*(M),T',C) is regular.
(4) The I'-hypersemigroup M is intra-regular if and only if the le-semigroup (P*(M),T",C) is intra-regular.

(5) The I'-hypersemigroup M is right (resp. left) regular if and only if the le-semigroup (P*(M),T,Q) is
right (resp. left) regular.

(6) The I'-hypersemigroup M is right (resp. left) simple if and only if the poe-semigroup (P*(M),T',Q) is
right (resp. left) simple.

We can say the same if we replace the word le-semigroup with Ve-semigroup or poe-semigroup.

So, many results on I'-hypersemigroups are direct consequences of more general theorems about lattice
ordered semigroups. It can be instructive to prove them directly, just to show how an independent proof works,
but this independent proof goes along the lines of the le, Ve or poe-semigroups.

This is not exactly the case for ordered I'-hypersemigroups, but even in that case, the main idea also
comes from the le, Ve or poe-semigroups and the proofs go along the lines of the le, Ve or poe-semigroups.
We will see it in a forthcoming paper in which we will examine the results given (without proof), in the last
part of the paper, for ordered I'-hypersemigroups.

The results on ordered semigroups that hold for T'-hypersemigroups (most of them hold), by easy

modification for ordered I'-hypersemigroups also hold. O

As there are people interested in examples of I'-hypersemigroups, we might say the following:

Creation of examples for I'-hypersemigroups is not an easy task. For a given example a computer program
to generate it and another one to check its validation is needed.

Even for an ordered semigroup of order 4 or 5, for example, it is impossible to write an example given

by a table of multiplication and an order by hand. For somebody who is no expert on the subject, it is difficult

1850



KEHAYOPULU/Turk J Math

even to check the examples by hand if he does not know the Light’s associativity test and its extended form for

ordered semigroups.

With my thanks to the anonymous referees for their time to read the paper.
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