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Abstract: As we have already seen in Turkish Journal of Mathematics (2019) 43: 2592–2601 many results on
hypersemigroups do not need any proof as they can be obtained from lattice ordered semigroups. The present paper goes
a step further, to show that many results on Γ -hypersemigroups as well can be obtained from lattice ordered semigroups.
It can be instructive to prove them directly, but even in that case the proofs go along the lines of lattice ordered semigroups
(or poe -semigroups). In the investigation, we faced the problem to correct the definition of Γ -hypersemigroups given in
the existing bibliography.
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1. Introduction
Kovács was the first who observed that the regular rings (introduced by J. von Neumann) can be characterized
by the property A ∩ B = AB for every right ideal A and every left ideal B , where AB is the set of all finite
sums of the form

∑
aibi ; ai ∈ A , bi ∈ B [14]. Iséki studied regularity for semigroups characterizing the von

Neumann regular semigroups as semigroups satisfying the property A ∩ B = AB for every right ideal A and
every left ideal B [5]. The author of the present paper introduced the concept of regularity in case of ordered
semigroups as follows: An ordered semigroup is said to be regular if for every a ∈ S there exists x ∈ S such
that a ≤ axa . It is shown in [9] that an ordered semigroup S is regular if and only if for every right ideal A

and every left ideal B of S we have A ∩ B = (AB] , equivalently A ∩ B ⊆ (AB] , where (AB] is the subset of
S defined by (AB] = {t ∈ S | t ≤ ab for some a ∈ A, b ∈ B} .

The concept of a Γ -semigroup has been introduced by M.K. Sen in the International Symposium New
Delhi 1981, as an extension of the concept of a Γ -ring introduced by Nobusawa [15], as follows: Given two
nonempty sets S and Γ , S is called a Γ -semigroup [17] if the following assertions are satisfied:

(1) aαb ∈ S and αaβ ∈ Γ and
(2) (aαb)βc = a(αbβ)c = aα(bβc)

for all a, b, c ∈ S and all α, β ∈ Γ .
In 1986 Sen and Saha gave a second definition of a Γ -semigroup as follows:

Definition 1.1 Let S = {a, b, c, ......} and Γ = {α, β, γ, ......} be two nonempty sets. Then S is called a
Γ-semigroup [18] if
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(1) aαb ∈ S and
(2) (aαb)βc = aα(bβc)

for all a, b, c ∈ S and all α, β ∈ Γ .

One can find this definition of Γ -semigroups in [21] where the notion of a radical in a Γ -semigroup and the
notion of ΓS -act over a Γ -semigroup have been introduced, in [19] and [20] where the notions of regular
and orthodox Γ -semigroups have been introduced and studied and in [16] where the maximum idempotent-
separating congruence on an inverse Γ -semigroup has been studied. But still, we cannot say that Γ is a set
of binary operations on M to work on it. Perhaps that was the reason that later some authors defined the
Γ -semigroup as follows: If S is a semigroup and Γ is a nonempty set, then S is called a Γ -semigroup if there
is a mapping

S × Γ× S → S | (a, γ, b) → aγb

such that (aγb)µc = aγ(bµc) for all a, b, c ∈ S and all γ, µ ∈ Γ . Which means that a semigroup S is a
Γ -semigroup if there is a mapping of S × Γ× S into S (a, γ, b) → aγb such that

f
(
f(a, γ, b), µ, c

)
= f

(
a, γ, f(b, µ, c)

)
for all a, b, c ∈ M and all γ, µ ∈ Γ . As we see, the definition given by Sen and Saha (Definition 1.1) is
much more useful for the investigation if we add the missing third condition in it. Adding the uniqueness
condition in Definition 1.1, in an expression of the form A1ΓA2ΓA3 . . . ΓAn (or a1γ1a2γ2a3 . . . γnan ), we can
put parentheses in any place beginning with some ai and ending in some aj . So the definition of a Γ -semigroup
has been given in Scientiae Mathematicae Japonicae [10] as follows:

Definition 1.2 [10] For two nonempty sets M and Γ , denote by MΓM the set defined by

MΓM := {aγb | a, b ∈ M, γ ∈ Γ}.

Then M is called a Γ-semigroup if the following assertions are satisfied:
(1) MΓM ⊆ M

(2) if a, b, c, d ∈ M and γ, µ ∈ Γ such that a = c , γ = µ and b = d , then aγb = cµd

(3) (aγb)µc = aγ(bµc) for all a, b, c ∈ M and all γ, µ ∈ Γ .

We can omit the definition of the MΓM and write condition (1) as follows as well: For every a, b ∈ M

and every γ ∈ Γ , we have aγb ∈ M .
In other words, a Γ -semigroup is a nonempty set M with a set Γ of binary operations on M , satisfying

the associativity condition (aγb)µc = aγ(bµc) for all a, b, c ∈ M and all γ, µ ∈ Γ .
If we have only the conditions (1) and (2), then this is the definition of a Γ -groupoid.
An hypergroupoid is a nonempty set S with an hyperoperation “◦” on S (: to each a, b ∈ S assigns

a unique nonempty subset a ◦ b of S ) and an operation “∗” on P∗(S) such that A ∗ B =
∪

(a,b)∈A×B

(a ◦ b)

for every A,B ∈ P∗(S) ; P∗(S) being the set of (all) nonempty subsets of S . An hypergroupoid S is called
hypersemigroup if {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} for every x, y, z ∈ S . For any x, y ∈ S , we have {x} ∗ {y} = x ◦ y
[11].
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We have seen in [13] that many results on hypersemigroups do not need any proof since they are obtained
from lattice ordered semigroups. We can prove them just to show how a direct proof (in the language of
semigroups) works. In the present paper we go a step further to show that many results on Γ -hypersemigroups
as well can be obtained from lattice ordered semigroups and do not need any proof unless we want to show how
one can prove them independently.

After some preliminaries from lattice ordered semigroups, the definition of a Γ -hypersemigroup is given
and the associative relation is shown in it (Proposition 3.17) to be able to put parentheses in expressions of the
form A1ΓA2ΓA3.....ΓAn (otherwise no investigation on the subject is possible).

The concept of regular Γ -hypersemigroup has been introduced and, extending the theorem by Iséki [5],
it is shown that a Γ -hypersemigroup M is regular if and only if for every right ideal A and every left ideal
B of M we have A ∩ B = AΓB , equivalently A ∩ B ⊆ AΓB . It is proved that the same result can be also
obtained as corollary of the corresponding result on lattice ordered semigroup.

Under the same methodology, every result on lattice ordered semigroups in Turkish Journal of Mathe-
matics [12, 13], every result in section 2 of the present paper, and many results on lattice ordered semigroups,
∨e or poe -semigroups, hold automatically for Γ -hypersemigroups as well, do not need any proof -as they follow
from more general statements about ordered semigroups; one can prove them just to show how a direct proof
works, but even in that case this direct proof goes along the lines of le , ∨e or poe -semigroups.

When is convenient and no confusion is possible, we identify the singleton {a} by the element a and
write, for example, aΓMΓa instead of {a}ΓMΓ{a} , aΓM instead of {a}ΓM .

2. On lattice ordered semigroups

An ordered groupoid (shortly po -groupoid) is a groupoid S with an order “≤” on it such that a ≤ b implies
ac ≤ bc and ca ≤ cb for every c ∈ S . If the multiplication on S is associative, then S is called an ordered
semigroup (po -semigroup). A lattice ordered semigroup (shortly l-semigroup) is a semigroup S which is at the
same time a lattice such that a(b∨ c) = ab∨ ac and (a∨ b)c = ac∨ bc for all a, b, c ∈ S [1–4]. An le-semigroup
is an l -semigroup having a greatest element with respect to the order of S , usually denoted by e (: e ≥ a for
all a ∈ S ). The poe -groupoids and the poe -semigroups are also po -groupoids and po -semigroups respectively
having a greatest element with respect to the order. An element a of a poe -groupoid S is called a right ideal
element if ae ≤ a ; it is called a left ideal element if ea ≤ a [6, 7]. By an ideal element of S we mean an element
that is both a right and a left ideal element of S . An element b of a poe -semigroup S is called a bi-ideal
element of S [6, 8] if beb ≤ b . For an element a of an le -semigroup S , denote by r(a) , l(a) the right and
the left ideal element of S , respectively, generated by a and we have r(a) = a ∨ ae and l(a) = a ∨ ea (see
also [13]). Denote by r(l(a)) the ideal element of S generated by a ; and we have r(l(a)) = a ∨ ea ∨ ae ∨ eae .
Indeed, the element a ∨ ea ∨ ae ∨ eae is an ideal element of S containing a ; and if t is an ideal element of S

such that t ≥ a , then a ∨ ea ∨ ae ∨ eae ≤ t ∨ et ∨ te ∨ ete = t . It might be noted here that, for any a ∈ S ,
r(l(a)) = l(r(a)) . For further information see also [7, 13].

Definition 2.1 [6, 7] A poe-semigroup S is said to be regular if, for every a ∈ S , we have a ≤ aea .

The following theorem holds:

Theorem 2.2 (see also [6, 8]) Let S be an le-semigroup. The following are equivalent:
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(1) S is regular.
(2) a ∧ b = ab for every right ideal element a and every left ideal element b of S.
(3) a ∧ b ≤ ab for every right ideal element a and every left ideal element b of S.

Proof (1) =⇒ (2) . Since S is regular, we have

a ∧ b ≤ (a ∧ b)e(a ∧ b) ≤ (ae)b ≤ ab ≤ ae ∧ eb ≤ a ∧ b,

thus we get a ∧ b = ab .
The implication (2) ⇒ (3) is obvious.
(3) =⇒ (1) . Let a ∈ S . By hypothesis, we have

a ≤ r(a) ∧ l(a) ≤ r(a)l(a) = (a ∨ ae)(a ∨ ea) = a2 ∨ aea ∨ ae2a

= a2 ∨ aea,

then a2 ≤ a3 ∨ aea2 ≤ aea from which a ≤ aea and so S is regular. 2

Definition 2.3 [7] A poe-semigroup S is said to be intra-regular if, for every a ∈ S , we have a ≤ ea2e .

Theorem 2.4 (see also [7]) An le-semigroup S is intra-regular if and only if

for every right ideal element a and every left ideal element b of S, we have a ∧ b ≤ ba.

Proof =⇒ . Let a be a right ideal element and b a left ideal element of S . Since S is intra-regular, we have

b ∧ a ≤ e(b ∧ a)2e = e(b ∧ a)(b ∧ a)e.

Since e(b ∧ a) ≤ eb and (b ∧ a)e ≤ ae , we have e(b ∧ a)(b ∧ a)e ≤ (eb)(ae) ≤ ba . Thus we have b ∧ a ≤ ba .
⇐= . Let a ∈ S . By hypothesis, we have

a ≤ r(a) ∧ l(a) = l(a)r(a) = (a ∨ ea)(a ∨ ae)

= a2 ∨ ea2 ∨ a2e ∨ ea2e.

Then we have
a2 ≤ (a2 ∨ ea2 ∨ a2e ∨ ea2e)(a2 ∨ ea2 ∨ a2e ∨ ea2e) ≤ ea2e ∨ ea2,

a2e ≤ ea2e2 ∨ ea2e = ea2e , then a ≤ ea2 ∨ ea2e , and then ea2 ≤ e(ea2 ∨ ea2e)a = e2a3 ∨ e2a2ea ≤ ea2e . Thus
we get a ≤ ea2e and so S is intra-regular. 2

Definition 2.5 [6, 7] An le-semigroup S is called right (resp. left) regular if, for every a ∈ S , we have

a ≤ a2e (resp. a ≤ ea2).

Definition 2.6 [6] A poe-groupoid S is called right (resp. left) duo if the right (resp. left) ideal elements of S
are left (resp. right) ideal elements of S as well (that is, ideal elements of S ).
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Theorem 2.7 An le-semigroup S is right regular and right duo if and only if for any right ideal elements a, b
of S, we have

a ∧ b = ab.

Proof =⇒ . Let a, b be right ideal elements of S . Then ab ≤ ae ≤ a ; since S is right duo, b is a left
ideal element of S as well, so ab ≤ eb ≤ b . Thus we have ab ≤ a ∧ b . Since S is right regular, we have
a ∧ b ≤ (a ∧ b)(a ∧ b)e . Since a ∧ b ≤ a, b , we have (a ∧ b)e ≤ ae ∧ be ≤ a ∧ b . Then a ∧ b ≤ (a ∧ b)(a ∧ b) ≤ ab .
Thus we have a ∧ b = ab .
⇐= . Let a be a right ideal element of S . Since e is a right ideal element of S , by hypothesis, we have
a = e ∧ a = ea , so a is a left ideal element of S and S is right duo. Let now a ∈ S . By hypothesis, we have

a ≤ r(a) ∧ r(a) = r(a)r(a) = (a ∨ ae)(a ∨ ae)

= a2 ∨ aea ∨ a2e ∨ aeae

Since ae is a right ideal element of S and S is right duo, ae is a left ideal element of S as well; that is
e(ae) ≤ ae and so a(eae) ≤ a2e . Hence we obtain a ≤ a2 ∨ aea ∨ a2e , then a2 ≤ a3 ∨ a2ea ∨ a3e ≤ aea ∨ a2e .
Thus we get a ≤ aea ∨ a2e , and then a(ea) ≤ aeaea ∨ a2e2a ≤ aeaea ∨ a2e . Since a(eae) ≤ a2e , we have
aeaea ≤ a2ea ≤ a2e , and thus aea ≤ a2e . Since a ≤ aea∨ a2e and aea ≤ a2e , we have a ≤ a2e and S is right
regular. 2

In a similar way we prove the following theorem.

Theorem 2.8 An le-semigroup S is left regular and left duo if and only if for any left ideal elements a, b of S,
we have

a ∧ b = ba.

Definition 2.9 [7] Let S be a po-groupoid. An element t of S is called semiprime if, for any a ∈ S such that
a2 ≤ t , we have a ≤ t .

Theorem 2.10 (see also [7]) An le-semigroup S is intra-regular if and only if the ideal elements of S are
semiprime.

Proof =⇒ . Let t be an ideal element of S and a ∈ S such that a2 ≤ t . Since S is intra-regular, we have
a ≤ ea2e ≤ ete ≤ t , so a ≤ t and t is semiprime.
⇐= . Let a ∈ S . The element r(l(a2) is an ideal element of S such that a2 ≤ r(l(a2)) . Since r(l(a2)) is
semiprime, we have a ≤ r(l(a2)) = a2 ∨ ea2 ∨ a2e ∨ ea2e . Then

a2 ≤ (a2 ∨ ea2 ∨ a2e ∨ ea2e)(a2 ∨ ea2 ∨ a2e ∨ ea2e) ≤ ea2 ∨ ea2e.

Then a2e ≤ ea2e ∨ ea2e2 = ea2e . Hence we obtain a ≤ ea2 ∨ ea2e and then a2 ≤ ea2a ∨ ea2ea ≤ ea2e,

from which ea2 ≤ e2a2e ≤ ea2e . We have a ≤ ea2 ∨ ea2e and ea2 ≤ ea2e , thus we have a ≤ ea2e and S is
intra-regular. 2

Proposition 2.11 If a poe-semigroup S is right (or left) regular, then it is intra-regular.

Proof Let S be right regular and a ∈ S . Then a ≤ a2e ≤ a(a2e)e ≤ ea2e, then a ≤ ea2e and S is
intra-regular. If S is left regular, then a ≤ ea2 ≤ e(ea2)a ≤ ea2e and again S is intra-regular. 2
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Proposition 2.12 An le-semigroup S is right regular if and only if, for any a ∈ S , we have

r(a) = r(a2), equivalently r(a) ≤ r(a2).

Proof =⇒ . Let a ∈ S . Since S is right regular, we have

r(a) = a ∨ ae ≤ a2e ∨ a2e2 = a2e ≤ a2 ∨ a2e = r(a2).

On the other hand, r(a2) = a2 ∨ a2e ≤ ae ≤ a ∨ ae = r(a) . Thus we have r(a) = r(a2) .
⇐= . Let a ∈ S . By hypothesis, we have

a ≤ r(a) ≤ r(a2) = a2 ∨ a2e ≤ ae,

then a2 ≤ a2e . Since a ≤ a2 ∨ a2e and a2 ≤ a2e , we have a ≤ a2e and S is right regular. 2

In a similar way we prove the following proposition.

Proposition 2.13 An le-semigroup S is left regular if and only if, for any a ∈ S , we have

l(a) = l(a2), equivalently l(a) ≤ l(a2).

Theorem 2.14 An le-semigroup S is right regular if and only if the right ideal elements of S are semiprime.

Proof =⇒ . Let t be a right ideal element of S and a ∈ S such that a2 ≤ t . Since S is right regular, we have
a ≤ a2e ≤ te ≤ t and so a ≤ t .
⇐= . Let a ∈ S . Since r(a2) is a right ideal element of S , by hypothesis, it is semiprime. Since a2 ≤ r(a2) , we
have a ≤ r(a2) = a2 ∨ a2e . Then a2 ≤ a3 ∨ a3e ≤ a2e . Since a ≤ a2 ∨ a2e and a2 ≤ a2e , we have a ≤ a2e and
so S is right regular. 2

In a similar way the following theorem holds.

Theorem 2.15 An le-semigroup S is left regular if and only if the left ideal elements of S are semiprime.

Definition 2.16 A poe-groupoid S is called right (resp. left) simple if the element “e” is the only right (resp.
left) ideal element of S. That is, if a is a right (resp. left) ideal element of S, then a = e .

Proposition 2.17 A poe-semigroup S is right (resp. left) simple if and only if, for every a ∈ S , we have
ae = e (resp. ea = e).

Proof Let S be right simple and a ∈ S . The element ae is a right ideal element of S (as (ae)e = ae2 ≤ ae).
Since S is right simple, we have ae = e .
Assuming ae = e for every a ∈ S , let t be a right ideal element of S . Then we have e = te ≤ t and then t = e

and so S is right simple. 2

A right (left) ideal element or bi-ideal element a of S is called proper if a ̸= e .

Theorem 2.18 A poe-semigroup S is right (resp. left) simple if and only if does not contain proper right (resp.
left) ideal elements.
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Proof =⇒ . Let S be a right simple and a be a right ideal element of S . Since S is right simple, by Proposition
2.17, we have ae = e . Since a is a right ideal element of S , we have ae ≤ a . Thus we have e ≤ a and so a = e .
⇐= . Assuming S does not contain proper right ideal elements, let a ∈ S . Since ae is a right ideal element of
S , by hypothesis, we have ae = e . By Proposition 2.17, S is right simple. 2

Proposition 2.19 If a poe-semigroup S is both right and left simple, then it is regular.

Proof Let a ∈ S . Since S is right and left simple, by Proposition 2.17, we have ae = ea = e . Then we have
a ≤ e = ae = a(ea) , thus a ≤ aea , and S is regular. 2

Theorem 2.20 A poe-semigroup S is both right and left simple if and only if does not contain proper bi-ideal
elements.

Proof =⇒ . Let b be a bi-ideal element of S . Then beb ≤ b . Since S is right and left simple, by Proposition
2.17, we have be = eb = e . Thus we have b ≥ (be)b = eb = e and so b = e .
⇐= . Let a be a right ideal element of S . Then a is a bi-ideal element of S ; indeed (ae)a ≤ a2 ≤ ae ≤ a .
Since S does not contain proper bi-ideal elements, we have a = e and so S is right simple. Let now a be a left
ideal element of S . Since a is a bi-ideal element of S , by hypothesis, we have a = e and so S is left simple.2

3. On Γ-hypersemigroups

Taking into account the definition of a Γ -groupoid given in [10], a Γ -hypergroupoid can be defined as follows:

Definition 3.1 Let M and Γ be two nonempty sets. The set M is called a Γ-hypergroupoid if the following
assertions are satisfied:

(i) if a, b ∈ M and γ ∈ Γ , then ∅ ̸= aγb ⊆ M and
(ii) if a, b, c, d ∈ M and γ, µ ∈ Γ such that a = c , γ = µ and b = d , then aγb = cµd .

In other words, a Γ -hypergroupoid is a nonempty set M with a set Γ of binary hyperoperations on M .

Definition 3.2 If M is a Γ-hypergroupoid, then for every γ ∈ Γ we denote by γ the operation on P∗(M)

(induced by the hyperoperation γ ) defined by

γ : P∗(M)× P∗(M) → P∗(M) | (A,B) → AγB,

where
AγB :=

∪
a∈A,b∈B

aγb.

It is easy to see that this operation is well defined.

Definition 3.3 If M is a Γ-hypergroupoid, we denote by Γ the operation on P∗(M) defined by

Γ : P∗(M)× P∗(M) → P∗(M) | (A,B) → AΓB,

where
AΓB :=

∪
γ∈Γ

AγB.
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This is also well defined.

Remark 3.4 For any nonempty subsets A , B of a Γ-hypergroupoid, we have

AΓB =
∪
γ∈Γ

AγB =
∪
γ∈Γ

( ∪
a∈A,b∈B

aγb
)
=

∪
a∈A,b∈B,γ∈Γ

aγb.

Lemma 3.5 If M is an hypergroupoid then, for any x, y ∈ M and any γ ∈ Γ , we have

{x}γ{y} = xγy.

Proof Let x, y ∈ M and γ ∈ Γ . By Definition 3.2, we have

{x}γ{y} =
∪

u∈{x},v∈{y}

uγv = xγy.

2

Lemma 3.6 Let M be a Γ-hypergroupoid, A,B,C,D nonempty subsets of M and γ ∈ Γ . If A ⊆ B and C ⊆ D ,
then AγC ⊆ BγD .

Proof Let x ∈ AγC . By Definition 3.2, x ∈ aγc for some a ∈ A , c ∈ C . Since a ∈ B and c ∈ D , again by
Definition 3.2, we get aγc ⊆ BγD , so x ∈ BγD . Thus we have AγC ⊆ BγD . 2

Lemma 3.7 Let M be a Γ-hypergroupoid, x ∈ M and A , B nonempty subsets of M. Then we have the
following:

(1) x ∈ AΓB if and only if x ∈ aγb for some a ∈ A, b ∈ B, γ ∈ Γ

(2) if a ∈ A , b ∈ B and γ ∈ Γ , then aγb ⊆ AΓB .

Proof (1). It follows immediately from Remark 3.4. The property (2) is an immediate consequence of (1). 2

Lemma 3.8 If M is a Γ-hypergroupoid, A,B,C,D nonempty subsets of M , A ⊆ B and C ⊆ D , then

AΓC ⊆ BΓD.

Proof Let x ∈ AΓC . By Lemma 3.7(1), we have x ∈ aγc for some a ∈ A , γ ∈ Γ , c ∈ C . Since a ∈ B , γ ∈ Γ

and c ∈ D , by Lemma 3.7(2), we have aγc ⊆ BΓD , so x ∈ BΓD . Thus we have AΓC ⊆ BΓD . 2

Definition 3.9 Let M be a Γ-hypergroupoid. A nonempty subset A of M is called a right (resp. left) ideal of
M if AΓM ⊆ A (resp. MΓA ⊆ A). If a subset of M is both a right and a left ideal of M , then it is called an
ideal of M .

Proposition 3.10 Let M be a Γ-hypergroupoid. The following are equivalent:
(1) A is a right ideal of M.
(2) If a ∈ A , γ ∈ Γ and m ∈ M , then aγm ⊆ A .
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Proof (1) =⇒ (2) . Let a ∈ A , γ ∈ Γ and m ∈ M . By Lemma 3.7(2), we have aγm ⊆ AΓM . By hypothesis,
AΓM ⊆ A . Thus we have aγm ⊆ A .
(2) =⇒ (1) . Let x ∈ AΓM . According to Lemma 3.7(1), we have x ∈ aγm for some a ∈ A , γ ∈ Γ , m ∈ M .
By hypothesis, we have aγm ⊆ A . Thus we have x ∈ A , so AΓM ⊆ A and A is a right ideal of M . 2

In a similar way we prove the following proposition.

Proposition 3.11 If M is a Γ-hypergroupoid, then the following are equivalent:
(1) B is a left ideal of M.
(2) If a ∈ B , γ ∈ Γ and m ∈ M , then mγa ⊆ B .

Proposition 3.12 Let M be a Γ-hypergroupoid. If A is a right ideal of M and B is a left ideal of M, then

A ∩B ̸= ∅.

Proof Let A be a right ideal and B a left ideal of M . Take an element a ∈ A , an element b ∈ B and an
element γ ∈ Γ (A,B,Γ ̸= ∅) . Since a ∈ A , b ∈ M and γ ∈ Γ , by Lemma 3.7(2), we have aγb ⊆ AΓM . Since
A is a right ideal of M , we have AΓM ⊆ A and so aγb ⊆ A . Since a ∈ M , b ∈ B and γ ∈ Γ , again by Lemma
3.7(2), we have aγb ⊆ MΓB . Since B is a left ideal of M , we have MΓB ⊆ B , thus we have aγb ⊆ B . Since
aγb ⊆ A ∩B and aγb ̸= ∅ (by Def. 3.1), we have A ∩B ̸= ∅ . 2

Proposition 3.13 Let M be a Γ-hypergroupoid and Ai, B ∈ P∗(M) , i ∈ I . Then we have the following:
(1) (

∪
i∈I

Ai)ΓB =
∪
i∈I

(AiΓB)

(2) BΓ(
∪
i∈I

Ai) =
∪
i∈I

(BΓAi) .

Proof (1) Let x ∈ (
∪
i∈I

Ai)ΓB . By Lemma 3.7(1), x ∈ aγb for some a ∈
∪
i∈I

Ai , γ ∈ Γ b ∈ B . Since a ∈ Aj

for some j ∈ I , γ ∈ Γ and b ∈ B , by Lemma 3.7(2), we have aγb ⊆ AjΓB ⊆
∪
i∈I

(AiΓB) . Then x ∈
∪
i∈I

(AiΓB) .

Let now x ∈
∪
i∈I

(AiΓB) . Then x ∈ AjΓB for some j ∈ I . By Lemma 3.7(1), x ∈ aγb for some a ∈ Aj ,

γ ∈ Γ , b ∈ B . Since a ∈
∪
i∈I

Ai , γ ∈ Γ and b ∈ B , by Lemma 3.7(2), we have aγb ⊆ (
∪
i∈I

Ai)ΓB . Then we have

x ∈ (
∪
i∈I

Ai)ΓB .

The proof of property (2) is similar. 2

Definition 3.14 A Γ-hypergroupoid M is called Γ-hypersemigroup if, for any a, b, c ∈ M and any γ, µ ∈ Γ ,
we have

{a}γ(bµc) = (aγb)µ{c}.

Proposition 3.15 Every semigroup (S, ·) is a Γ-hypersemigroup.

Proof Take an element γ not contained in S , consider Γ = {γ} , and the hyperoperation γ on S defined by

γ : S × S → P∗(S) | (a, b) → aγb := {ab}.
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Then (S,Γ) is a Γ -hypersemigroup. Indeed, if a, b, c ∈ M then, by Definition 3.2, we have

{a}γ(bγc) =
∪

u∈bγc

aγu =
∪
u=bc

aγu = aγ(bc) = {a(bc)},

(aγb)γ{c} =
∪

u∈aγb

uγc =
∪

u=ab

uγc = (ab)γc = {(ab)c} = {a(bc)},

and so {a}γ(bγc) = (aγb)γ{c} .
Second Proof Take an element γ ̸∈ S , consider Γ = {γ} , and the hyperoperation γ on S defined by

γ : S × S → P∗(S) | (a, b) → aγb := {a, b, ab}.

The operation γ is well defined and we have {a}γ(bγc) = (aγb)γ{c} . Indeed, by Definition 3.2,

{a}γ(bγc) =
∪

u∈bγc

aγu =
∪

u∈{b,c,bc}

aγu = aγb ∪ aγc ∪ aγ(bc)

= {a, b, c, ab, ac, bc, a(bc)},

(aγb)γ{c} =
∪

u∈aγb

uγc =
∪

u∈{a,b,ab}

uγc = aγc ∪ bγc ∪ (ab)γc

= {a, b, c, ab, ac, bc, (ab)c}.

Since a(bc) = (ab)c , we have {a}γ(bγc) = (aγb)γ{c} . 2

Example 3.16 We consider the semigroup defined by Table 1.

Table 1. Multiplication table of the semigroup of the Example 3.16.

· a b c
a a a a
b a a a
c a b c

According to the first proof of Proposition 3.15, Table 2 defines a Γ-hypersemigroup.

Table 2. The hypersemigroup of the Example 3.16 that corresponds to the first proof of Proposition 3.15.

γ a b c
a {a} {a} {a}
b {a} {a} {a}
c {a} {b} {c}

According to the second proof of Proposition 3.15, Table 3 defines a Γ-hypersemigroup.
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Table 3. The hypersemigroup of the Example 3.16 that corresponds to the second proof of Proposition 3.15.

γ a b c
a {a} {a,b} {a,c}
b {a,b} {a,b} {a,b,c}
c {a,c} {b,c} {c}

Proposition 3.17 If M is a Γ-hypersemigroup then, for any nonempty subsets A,B,C of M we have

(AΓB)ΓC = AΓ(BΓC).

Proof Let x ∈ (AΓB)ΓC . By Lemma 3.7(1), we have x ∈ uµc for some u ∈ AΓB , µ ∈ Γ , c ∈ C . Since
u ∈ AΓB , again by Lemma 3.7(1), we have u ∈ aγb for some a ∈ A , γ ∈ Γ , b ∈ B . Then we have

x ∈ uµc = {u}µ{c} (by Lemma 3.5)

⊆ (aγb)µ{c} (by Lemma 3.6)

= {a}γ(bµc) (by Definition 3.14)

⊆ {a}Γ(bµc) (by Definition 3.3).

Since b ∈ B , µ ∈ Γ and c ∈ C , by Lemma 3.7(2), we have bµc ⊆ BΓC . Then, by Lemma 3.8, {a}Γ(bµc) ⊆
AΓ(BΓC) , thus we get x ∈ AΓ(BΓC) and so (AΓB)ΓC ⊆ AΓ(BΓC) .

Let now x ∈ AΓ(BΓC) . By Lemma 3.7(1), we have x ∈ aγu for some a ∈ A , γ ∈ Γ , u ∈ BΓC and
u ∈ bµc for some b ∈ B , µ ∈ Γ , c ∈ C . As in the previous case, we have

x ∈ aγu = {a}γ{u} ⊆ {a}γ(bµc) = (aγb)µ{c} ⊆ (aγb)Γ{c}.

Since a ∈ A , γ ∈ Γ , b ∈ B , by Lemma 3.7(2), we have aγb ⊆ AΓB . Then, by Lemma 3.8, (aγb)Γ{c} ⊆
(AΓB)ΓC , then x ∈ (AΓB)ΓC and so AΓ(BΓC) ⊆ (AΓB)ΓC . 2

From Proposition 3.17 we have the following corollary.

Corollary 3.18 If M is a Γ-hypersemigroup, then the set (P∗(M),Γ) is a semigroup.

Definition 3.19 A Γ-hypersemigroup M is called regular if for every a ∈ M there exist x ∈ M and γ, µ ∈ Γ

such that
a ∈ (aγx)µ{a}.

Proposition 3.20 A Γ-hypersemigroup M is regular if and only if for any nonempty subset A of M, we have

A ⊆ AΓMΓA.

Proof =⇒ . Let A be a nonempty set and a ∈ A . Since M is regular, there exist x ∈ M and γ, µ ∈ Γ such
that a ∈ (aγx)µ{a} . Since a ∈ A , γ ∈ Γ , x ∈ M , by Lemma 3.7(2), we have aγx ⊆ AΓM . Then, by Lemma
3.6, (aγx)µ{a} ⊆ (AΓM)µ{a} . By Definition 3.3, (AΓM)µ{a} ⊆ (AΓM)Γ{a} . By Lemma 3.8 and Proposition
3.17, we have (AΓM)Γ{a} ⊆ (AΓM)ΓA = AΓMΓA . Thus we get a ∈ AΓMΓA and so A ⊆ AΓMΓA .
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⇐= . Let a ∈ M . By hypothesis, we have {a} ⊆
(
{a}ΓM

)
Γ{a} . By Lemma 3.7(1), a ∈ uµa for some

u ∈ {a}ΓM , µ ∈ Γ . Since u ∈ {a}ΓM , again by Lemma 3.7(1), u ∈ aγx for some γ ∈ Γ , x ∈ M . By Lemma
3.5, uµa = {u}µ{a} and, by Lemma 3.6, {u}µ{a} ⊆ (aγx)µ{a} . Thus we get a ∈ (aγx)µ{a} , and M is
regular. 2

Proposition 3.20 gives us a second, equivalent concept of regularity in Γ -hypersemigroups.
Denote by R(A) (resp. L(A)) the right (resp. left) ideal of M generated by A , and we have the following

proposition.

Proposition 3.21 If M is a Γ-hypersemigroup then, for any nonempty subset A of M, we have
(1) R(A) = A ∪AΓM and
(2) L(A) = A ∪MΓA .

Proof (1) The set A ∪ AΓM is a right ideal of M containing A . In fact, it is a nonempty subset of S and
we have

(A ∪AΓM)ΓM = AΓM ∪ (AΓM)ΓM (by Prop. 3.13(1))

= AΓM ∪AΓ(MΓM) (by Prop. 3.17)

= AΓM (since MΓM ⊆ M)

⊆ A ∪AΓM.

If now T is a right ideal of M containing A , then we have A∪AΓM ⊆ T ∪ TΓM = T and property (1) holds.
The proof of property (2) is similar. 2

Theorem 3.22 Let M be a Γ-hypersemigroup. The following are equivalent:
(1) M is regular.
(2) A ∩B = AΓB for any right ideal A and any left ideal B of M.
(3) A ∩B ⊆ AΓB for any right ideal A and any left ideal B of M.

Proof (1) =⇒ (2) . Let M be regular, A be a right ideal and B a left ideal of M . By Proposition 3.12,
A ∩B ̸= ∅ . Since M is regular, by Proposition 3.20, Lemma 3.8 and Proposition 3.17, we have

A ∩B ⊆ (A ∩B)ΓMΓ(A ∩B) ⊆ AΓMΓB = AΓ(MΓB) ⊆ AΓB

⊆ AΓM ∩MΓB ⊆ A ∩B.

Thus we have A ∩B = AΓB .
The implication (2) =⇒ (3) is obvious.
(3) =⇒ (1) . Let A be a nonempty subset of M . By hypothesis, we have

A ⊆ R(A) ∩ L(A) = R(A)ΓL(A) = (A ∪AΓM)Γ(A ∪MΓA) (by Prop. 3.21)

= AΓA ∪AΓMΓA ∪AΓ(MΓM)ΓA (by Prop. 3.13 and Prop. 3.17).

Since MΓM ⊆ M , by Lemma 3.8, we have AΓ(MΓM)ΓA ⊆ AΓMΓA . Then we have A ⊆ AΓA ∪ AΓMΓA ,
and then

1846



KEHAYOPULU/Turk J Math

AΓA ⊆ (AΓA ∪AΓMΓA)ΓA (by Lemma 3.8)

= AΓAΓA ∪AΓ(MΓA)ΓA (by Prop. 3.13(1) and Prop. 3.17)

⊆ AΓMΓA (since A ⊆ M and MΓA ⊆ M).

Then we have A ⊆ AΓMΓA and, by Proposition 3.20, M is regular. 2

Remark 3.23 We have A ⊆ AΓMΓA for every A ∈ P∗(M) if and only if a ∈ {a}ΓMΓ{a} for every a ∈ M .
Indeed, if a ∈ aΓMΓa for every a ∈ M and b ∈ A , then b ∈ (bΓM)Γb , then b ∈ xγb for some x ∈ bΓM ,
γ ∈ Γ and x ∈ bµy for some µ ∈ Γ , y ∈ M , and so

b ∈ xγb = {x}γ{b} ⊆ (bµy)γ{b} ⊆ (bµy)Γ{b} ⊆ (AΓM)ΓA = AΓMΓA,

thus we have A ⊆ AΓMΓA . The rest is obvious.

Example 3.24 We consider the set M = {a, b, c} and let Γ = {γ, µ} the hyperoperations on M defined by
Tables 4 and 5.

Table 4. The γ -hyperoperation of the Example 3.24.

γ a b c
a {a,b} {a,b} {c}
b {a,b} {a,b} {c}
c {c} {c} {c}

Table 5. The µ -hyperoperation of the Example 3.24.

µ a b c
a {a,b} {a,b} {c}
b {a,b} {b} {c}
c {c} {c} {c}

This is a Γ-hypersemigroup as {x}γ(yµz) = (xγy)µ{z} for all x, y, z ∈ M and all γ, µ ∈ Γ . We
had to check 108 cases to verify it by hand (computer programs are necessary). It is an example of a regular
Γ-hypersemigroup as well. Indeed, for example,

a ∈ (aγa)µ{a} =
∪

u∈aγa

uµa =
∪

u∈{a,b}

uµa = aµa ∪ bµa = {a, b} (by Def. 3.2),

b ∈ (bγa)µ{b} as (bγa)µ{b} = {a, b}µ{b} = aµb ∪ bµb = {a, b} (by Def. 3.2),
c ∈ (cγc)µ{c} as (cγc)µ{c} = {c}µ{c} = cµc = {c} (by Lemma 3.5).

We remark that the sets {c} and M are the only right (resp. left) ideals of S ; this being so, they are the
only ideals of S . Theorem 3.22 can be applied. Indeed, {c}∩{c} = {c}Γ{c}(= {c}) and {c}∩M = {c}ΓM(= {c})
(the hyperoperations γ and µ are commutative).
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Theorem 3.22 as Corollary to Theorem 2.2
Let (M,Γ) be a Γ -hypersemigroup. By Corollary 3.18, (P∗(M),Γ) is a semigroup. The inclusion relation
“⊆” is clearly an order on P∗(M) , M being the greatest element of P∗(M) and, for any A,B ∈ P∗(M) ,
A∪B and A∩B being the supremum and the infimum of A and B , respectively (with respect to this order).
Moreover, by Proposition 3.13, for any nonempty subsets A,B,C of M , we have (A ∪ B)ΓC = AΓC ∪ BΓC

and AΓ(B ∪ C) = AΓB ∪AΓC . Thus (P∗(M),Γ,⊆) is an le -semigroup.
Let now M be a regular Γ -hypersemigroup, A a right ideal and B a left ideal in M . Then (P∗(M),Γ,⊆)

is a regular le -semigroup, A is a right ideal element and B is a left ideal element of (P∗(M),Γ,⊆) . By Theorem
2.2(1) ⇒ (2) , we have inf{A,B} = AΓB , that is A ∩B = AΓB .

Suppose M is a Γ -hypersemigroup such that A ∩B ⊆ AΓB for every right ideal A and every left ideal
B of M . Then A∩B ⊆ AΓB for every right ideal element A and every left ideal element B of (P∗(M),Γ,⊆) .
By Theorem 2.2(3) ⇒ (1) , (P∗(M),Γ,⊆) is a regular le -semigroup, that is A ⊆ AΓMΓA for any A ∈ P∗(M)

and so, by Proposition 3.20, M is regular.

Note From every result of section 2, a corresponding result on a Γ -hypersemigroup can be obtained. Thus we
have the following results and the necessary definitions.

Definition 3.25 A Γ-hypersemigroup M is called intra-regular if for every a ∈ M there exist x, y ∈ M and
γ, µ, ρ ∈ Γ such that

a ∈ (xγa)µ(aρy).

The Example 3.24 is an example of an intra-regular Γ -hypersemigroup as, for example,

a ∈ (aγa)µ(aγa) = {a, b}, b ∈ (aγb)µ(bγb) = {a, b}, c ∈ (aγc)µ(cγa) = {c}.

Theorem 3.26 (see Theorem 2.4) A Γ-hypersemigroup M is intra-regular if and only if, for every right ideal
A and every left ideal B of M, we have A ∩B ⊆ BΓA .

Definition 3.27 A Γ-hypersemigroup M is called right (resp. left) regular if for every a ∈ M there exist
x ∈ M and γ, µ ∈ Γ such that

a ∈ (aγa)µ{x} (resp. a ∈ {x}γ(aµa)).

The Example 3.24 is an example of right regular Γ -hypersemigroups as, for example,

a ∈ (aγa)µ{a}, b ∈ (bγb)µ{b}, c ∈ (cγc)µ{c}.

The Example 3.24 is at the same time an example of left regular Γ -hypersemigroups as, for example,

a ∈ {a}γ(aγa), b ∈ {a}µ(bγb), c ∈ {c}γ(cγc).

A Γ -hypersemigroup M is called right (resp. left) duo if every right (resp. left) ideal of M is at the same time
a left (resp. right) ideal (that is, an ideal) of M .

Theorem 3.28 (see Theorem 2.7 and Theorem 2.8) A Γ-hypersemigroup M is right (resp. left) regular and
right (resp. left) duo if and only if for every right (resp. left) ideals A,B of S we have A ∩ B = AΓB (resp.
A ∩B = BΓA) .

1848



KEHAYOPULU/Turk J Math

A nonempty subset T of a Γ -hypergroupoid M is called semiprime if for any nonempty subset A of M

such that AΓA ⊆ T we have A ⊆ T .

Theorem 3.29 (see Theorem 2.10) A Γ-hypersemigroup M is intra-regular if and only if the ideals of M are
semiprime.

Proposition 3.30 (see Proposition 2.11) If a Γ-hypersemigroup is right (or left regular), then it is intra-regular.

We have already seen that the Example 3.24 is an example of a right (resp. left) regular Γ -hypersemigroup.
This being so, by Proposition 3.30, it is an example of intra-regular Γ -hypersemigroup as well (its independent
proof has been given above).

Proposition 3.31 (see Proposition 2.12 and Proposition 2.13) A Γ-hypersemigroup M is right regular if and
only if, for every nonempty subset A of M, we have R(A) = R(AΓA) , equivalently R(A) ⊆ R(AΓA) .

It is left regular if and only if, for every nonempty subset A of M, we have L(A) = L(AΓA) , equivalently
L(A) ⊆ L(AΓA) .

Theorem 3.32 (see Theorem 2.14 and Theorem 2.15) A Γ-hypersemigroup M is right (resp. left) regular if
and only if the right (resp. left) ideals of M are semiprime.

A Γ -hypergroupoid M is called right (resp. left) simple if M is the only right (resp. left) ideal of M .

Proposition 3.33 (see Proposition 2.17) A Γ-hypersemigroup M is right (resp. left simple) if and only if, for
every nonempty subset A of S , we have AΓM = M (resp. MΓA = M ).

Theorem 3.34 (see Theorem 2.18) A Γ-hypersemigroup M is right (resp. left) simple if and only if does not
contain proper right (resp. left) ideals.

Proposition 3.35 (see Proposition 2.19) If a Γ-hypersemigroup is both right and left simple, then it is regular.

A nonempty subset B of a Γ -hypersemigroup M is called a bi-ideal of M if BΓBΓB ⊆ B .

Theorem 3.36 (see Theorem 2.20) A Γ-hypersemigroup is both right and left simple if and only if does not
contain proper bi-ideals.

We do not need to prove the results given above. According to section 2, we know that they hold. They
are obtained as corollaries of the corresponding results of section 2 in the way indicated to get Theorem 3.22 as
corollary to Theorem 2.2.

Let us only give the proof of Theorem 3.36 to compare its proof with that one on poe -semigroups given
in Theorem 2.20 and see how similar is.

Proof of Theorem 3.36 =⇒ . Let B be a bi-ideal of M . Then BΓMΓB ⊆ B . By Proposition 3.33, we
have BΓM = MΓB = M . Thus we have B ⊇ (BΓM)ΓB = MΓB = M and so B = M .
⇐= . Let A be a right (or left) ideal of M . Then A is a bi-ideal of M and so A = M .

Theorem 3.36 as Corollary to Theorem 2.20
=⇒ . Let M be a Γ -hypersemigroup both right and left simple. Then (P∗(M),Γ,⊆) is a poe -semigroup both
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right and left simple. By Theorem 2.20, P∗(M) does not contain proper bi-ideal elements. So M does not
contain proper bi-ideals.
⇐= . Let M be a Γ -hypersemigroup not containing proper bi-ideals. Then (P∗(M),Γ,⊆) is a poe -semigroup
not containing proper bi-ideal elements. By Theorem 2.20, P∗(M) is right and left simple. So M is right and
left simple as well. 2

4. Conclusion
From every result of an le -semigroup based on right (left) ideal elements, ideal elements, bi-ideal elements or
quasi-ideal elements [13], a corresponding result of a Γ - hypersemigroup based on right (left) ideals, ideals,
bi-ideals or quasi-ideals can be obtained. From many results on regular or intra-regular le -semigroups (and not
only), analogous results for Γ -hypersemigroups can be obtained. This is because, if M is a Γ -hypersemigroup,
then the set P∗(M) of nonempty subsets of M endowed with the operation “Γ” and the inclusion relation “⊆”
is an le -semigroup. Moreover

(1) A is a right (resp. left) ideal of M if and only if it is a right (resp. left) ideal element of (P∗(M),Γ,⊆) .

(2) A is a bi-ideal of M if and only if it is a bi-ideal element of (P∗(M),Γ,⊆) .

(3) The Γ -hypersemigroup M is regular if and only if the le -semigroup (P∗(M),Γ,⊆) is regular.

(4) The Γ -hypersemigroup M is intra-regular if and only if the le -semigroup (P∗(M),Γ,⊆) is intra-regular.

(5) The Γ -hypersemigroup M is right (resp. left) regular if and only if the le -semigroup (P∗(M),Γ,⊆) is
right (resp. left) regular.

(6) The Γ -hypersemigroup M is right (resp. left) simple if and only if the poe -semigroup (P∗(M),Γ,⊆) is
right (resp. left) simple.

We can say the same if we replace the word le -semigroup with ∨e -semigroup or poe -semigroup.
So, many results on Γ -hypersemigroups are direct consequences of more general theorems about lattice

ordered semigroups. It can be instructive to prove them directly, just to show how an independent proof works,
but this independent proof goes along the lines of the le , ∨e or poe -semigroups.

This is not exactly the case for ordered Γ -hypersemigroups, but even in that case, the main idea also
comes from the le , ∨e or poe -semigroups and the proofs go along the lines of the le , ∨e or poe -semigroups.
We will see it in a forthcoming paper in which we will examine the results given (without proof), in the last
part of the paper, for ordered Γ -hypersemigroups.

The results on ordered semigroups that hold for Γ -hypersemigroups (most of them hold), by easy
modification for ordered Γ -hypersemigroups also hold. 2

As there are people interested in examples of Γ -hypersemigroups, we might say the following:
Creation of examples for Γ -hypersemigroups is not an easy task. For a given example a computer program

to generate it and another one to check its validation is needed.
Even for an ordered semigroup of order 4 or 5, for example, it is impossible to write an example given

by a table of multiplication and an order by hand. For somebody who is no expert on the subject, it is difficult
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even to check the examples by hand if he does not know the Light’s associativity test and its extended form for
ordered semigroups.

With my thanks to the anonymous referees for their time to read the paper.
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