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Abstract: In the present study, theorems related to the uniqueness of the solution of inverse problems for Dirac
equations system are proved by applying spectral mapping method. With the help of this method, the inverse problem
is reduced to the so-called main equation, which corresponds to the problem of existence and uniqueness of the solution

of the system of linear equations in the Banach space.
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1. Introduction
Let E be the 2 x 2 indentity matrix and let

0 i 1 0 0 1
e (n) (o 5) e (V)

are the well-known Pauly matrices, which have the following properties: aﬁ = E, o} = o} (self-adjointness),
o0 = —0j0, k # j (anticommutativity), j,k = 1,2,3. Let p,q,r € L[0,7], i.e. p(z),q(x),r(x) is a real

valued, summable on [0, 7] functions. We consider the canonical Dirac system

ly = {Bd+Q(z)}Y_)\Y, Y = <y1> AeC
dzr Y

0 1

where B = —i0; = ( 1 0

) and the matrix is

usually called a potential. By L(p,q,a,8) = L(, «, 8) we will denote the boundary value problems

lY:)\KxE(O,w),Y:(y1>, AeC (1.1)
Y2
U(y) := y1(0)sinc + y2(0) cosa =0 (1.2)
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V(y) == yi(m)sin B + ya(m) cos B =0 (1.3)

By the same L(, «, 8) we denote the self-adjoint operator, generated by differential expression ! in Hilbert
space of two component vector-functions L? ([0,7],C?) with the domain

{ Y:(Z;):yl,ygEAC[OJT],ZYELQ[OJT], }
n

Dr = (0) sin & 4 y2(0) cos a = 0, y1 () sin B + ya () cos B = 0

Under AC [0, 7] we understand the set of absolutely continuous function, defined on [0, 7].

In this paper we study the inverse problem for the Dirac operator with continuous potential. The Dirac

equation, which is the relativistic generalization of the Schrédiinger equation, describes the relativistic motion of
1
elementary spin- 3 paubicles, such as electrons and quarks, in quantum mechanics. A good way to understand

the quantum system is to study the scattering and boundary value problems theory since the system cannot be
seen directly. In the scattering process, particles, which are originally for away from the range of the potential,
are sent in a direction to wards the scattering centre and scattered by the effect of the potential.

The inverse scattering problem can also be approached by the inverse boundary value problem. As is well
known (see [6, 11]), for the Dirac equation with compact supported coefficients, the inverse scattering problem
at fixed energy is equivalent to the inverse boundary value problem on a region containing the supports of the
coefficients. In the [7] study, uniqueness theorems were obtained for the solution of the scattering problem in
the semi-axis for the system of Dirac equations of 2n order.

The uniquenessof inverse problems for the Dirac operator is studied by several authors [4, 10, 15, 16] for
particular potentials, such as the electric potential and the electro-magnetic potential. In particularly, in the
paper [13] the uniqueness of both the inverse boundary value problem and inverse scattering problem for Dirac
equation with a magnetic potential and an electrical potential are proved. Also, a relation between the Dirichlet
to Dirichlet map for the inverse boundary value problem and the scattering amplitude for the inverse scattering
problem is given.

In recent years of the problems for the Dirac operators of attention because of the applications of these
problems in physics, mechanics and engineering. Hereby, this type of problems were widely investigted by many
authors, also the investigations were continued and developed in many directions. For example, some aspects of
the direct spectral problems were studied in [6, 8, 11, 12, 19] and the references therein, moreover, the inverse
spectral problems according spectral data are examined in the works [6, 8, 10-12, 14, 19] where further references
can be found. In the paper [3] real numbers A, Ay are obtained which are such that for A >A; or A <A there
are no nontrivial solutions of the Dirac equation which are in L2 (a, 0o) for some a>0. Precise values for A; and
A, are obtained in certain cases.In the [5, 18] studies for the Sturm-Liouville problem, the countour integral
method was applied in the solution of inverse problems and some uniqueness theorems were proved with the
help of this method. In study [1] regularized trace, which has an important plase in the solution of the inverse
problem according to two spektrums in the finite interval for Dirac systems,was calculated. Inverse problems
for the singular Dirac systems in the finite interval are examined in [2, 4, 17] studies and varios uniqueness
theorems are obtained for their solution.

In the present paper, as different from other studies solve the inverse problem of recovering Dirac operator

from the given spectral data by using ideas of the contour integral method.
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2. Preliminaries

%01(%)\)) (1/11(95,)\)) : e L
Denote b T,\) = , Yz, A\) = the solutions of the system (1.1), satisfying the initial
voten = (2600, weon = (100 ystem (1.1), satisfying

conditions
©1(0,A) = cosa, p2(0,\) = —sina

%(7@)\) - COSﬁ, 7/}2(7(,)‘) = 7Sinﬂ

Definition 2.1 If the boundary value problem L has a nontrivial solution Y (x,\) # 0 for certain A1, then A\

is called an eigenvalue and Y (x, A1) is called an eigenfunction of L.

Definition 2.2 Let the \,, n € N numbers be the eigenvalues of the problem L. In this case, the normalizing

numbers of the problem L are defined as follows:
a ;:/{<p§(x,An)+<pg(x,An)}dx.
0

Definition 2.3 The characteristic function of the problem (1.1)-(1.3) is defined as follows:

s=| 90N B

= (pl(x7 )\)’L/JQ(I, )‘) - @2(% A)wl(x7 )‘)'

The function A (\) does not depend on x. Therefore the following equations can be written for the A ()

function:
AA) = ¢1(0,M)¢2(0,A) = 92(0, A)¢1 (0, A)
= cos ar)a (0, A) + sin ary (0, )
= @1(m, A2 (m, A) = @a(m, A (7, A)

= —sin fp1(m, A) — cos Bz (, A).

In addition, the zeros of the A (\) characteristic function coincide with the eigenvalues of the problem
L.

Lemma 2.4 As |A| = oo uniformly in x (for 0 <z < m ) the estimates

{ o1(m,A) = cos{&(x,N) —a} + O\ (2.1)
pa(z,A) = sin{é(z,\) —a}+O0OA) ’

are valid.

Proof It was demonstrated in study [10] that the following equations are valid for functions ¢1(z, A) and
P2 (Z’, )‘)

p1(x,\) = cos{&(x,\) —a} + / {K11(z, s) cos (As — ) + Kia(z, s)sin (As — ) } ds (2.2)
0
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w2(z, A) =sin{&(z,\) —a} + / {K21(z,s)cos (As — a) — Kaa(x, ) sin (As — ) } ds (2.3)
0

x
1
where &(x,\) = Az — 5/ [p(T) —r(7)]dr. Tt is clear that the equations (2.1) will be obtained, if partial
0

integration is applied to the integrals once in the expressions of functions ¢ (z,A) and @a(x, A). O

Lemma 2.5 The eigenvalues of the boundary-value problem L are simple.

Proof Since ¢(x,\) satisfies the boundary condition (1.2), to determine the eigenvalues of the problem under
consideration, the functions ¢1(z, A), @2(z, A) should be substituted in the boundary condition (1.3), and its
roots should be found. Put

D (X)) = p1(m, N sin 8 + 2 (m, \) cos 5.

Then
dD(\)  O¢p1 | 2
o Wsmﬂ—i—ﬁcos .
Let Ao be a double eigenvalue and ¢°(z, \g) one of the corresponding vector-valued eigenfunctions. Then the
dD (A
conditions D (Ag) =0, d()\ ) = 0 should be fulfilled simultaneously, i.e.

©9(7, Ao) sin B + (7, Ag) cos B =0

0 , 0
SSA T do)sin B+ 2= (m, Ao) cos § = 0.

Since sin 5 and cos 8 cannot vanish simultaneously, it follows from the last two equalities that

¢ (m, Xo) s (m, o)
0 i\, _ .0 2 _
302(71—7 )\) aA ng (7'(', )\) 8)\ 0 (24)

Now, differentiating the system (1.1) with respect to A

a2 s, O
(52) + o) -2 P2+ ol 52 =

oy 0ya oy _
(3}‘>x+{r($) )\}a ‘HI(x)a = Yo
o 0y

AN O

adding them together and integrating with respect to z from 0 to m, we obtain

Multiplying the equations (1.1) and recent equations obtained above by — , y1 and yo, respectively,

s

. = /{yf(x,)\) +y§(a¢,)\)}dx.
0

0 0
{ne G2~ e
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Putting A = A\, taking into account that

acp(l)(xaAO) _ 8@8(55’/\0) 0
o\ 20 N oA 20 N
by (2.2), (2.3) and using the equality (2.4), we obtain the relation
0 2 0 2
{820} + {¢8(3,20)} "] do
0
O5(m, Ao) 94 (m, Ao)
= <P(1)(777>\)287)\ - 808(73)\)187)\ =0.
Hence, ©9(z, o) = ©3(z,A0) =0 or ¢°(z,\g) = 0, which is impossible. The lemma is proved. g

Lemma 2.6 The eigenvalues and normalizing constants of the problem L satisfy the asymptotic equalitys:

)\n:n—ﬁ_aern, dp €ly, 0<a<p<mw (2.5)
i
k n
U =T+ 6y G = 24 12y (2.6)
n n

Proof If the characteristic function of the Ly problem is shown with Ag (\) when Q (x) = 0, then it is clear
that Ag (A) provides the following equation:

Ap (N) = —sinScos (&(m, \) — a) — cos Bsin (&(m, \) — a)
= —sin B cos (A — @) — cos Ssin (Ar — «)

= —sin(Ar+ 8 — «)

On the other hand, if the equations (2.2) and (2.3) are used in the equation A (X) = —sinfBpi(m, ) —
cos Bpz(m, )

A (X)) = —sinfBcos ({(m, A) — @) — cos Bsin ({(m, ) — @)

— sinﬁ] {K11(m,s)cos (As — a) + Kqa(7, s) sin (As — a) } ds
0
— cos ﬁ] {K21 (7, 5) cos (As — o) — Kaa(m, s)sin (As — a) } ds
0
=Ag(\) — sinﬂ] {K11(m, s) cos (As — a) + Ki2(m, 5) sin (As — ) } ds
0
— cos B/Tr {K21(m,s)cos (As — a) — Kaa(m, s)sin (As — a) } ds
0
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is obtained. Define G5 = {)\ : |)\ — )\%{ >6,n =0, 1,2,...}7 6 >0 and
r, = {)\ SN = |)\9L| +6,0 >0,n=0,1,2,.. } In this case, there is Cs > 0, which provides the inequality of

C
[Ag (A)| > Csexp|ImA|w. Also in the sufficiently large values of A, |A(N) — Ay (V)| < gexp [Im A| 7 and

[Ag (A)] > Csexp [Im A| 7 > % exp |[Im A\| 7 > |A (A) — Ap (V)] inequalitys are provided. For sufficiently large n
in Ty, , the zeros of the functions Ag (A) and [A (A) — Ag (A)]+ A0 (A) = A ()\) are the same number. Therefore,

for the sufficiently large values of n according to the Rouche theorem, the A () function has only one zero in
each of the circles |)\ — )\2’ < 6. Since ¢ is a sufficiently small positive number, )\, = A2 + d,, is obtained for

d,, that satisfies lim, o d,, = 0. Since ), numbers are roots of the characteristic function A (\)

AN =AM +d,)

=y ()\% + dn) — sinﬁ/ {KH(T&',S) cos (()\% + dn) 5 — a) + Kia(m, s) sin (()\% + dn) 5 — a)}ds
0

—COSB/ {K21(7T,S)COS ((/\% —&—dn) 5 — a) — Koo(m, s) sin((A?I —&—dn) 5 — a)}ds =0
0

68—«

™

is obtained. On the other hand, since Ag (A)) =0, A} =n — and

80 () = B (4 ) = B (A0) + Ao (A0) i+ (A2) %
= Ao (A) dn + 0 (dn) = (Do (X) +0(1) ) da

is written. In addition, since Ag () is a ”sine” type function [9], there is a number €5 > 0 for each n € N such

that ’AO ()\2) > €5 is valid. The expression Ag (/\2 + dn) is replaced by A ()\,,) and if necessary arrangements

are made
5 - (K11 (m,7) + Koy (m,m)]sin (Ao — o) — [K1z (m,7) — Koo (m, )] cos (A0 — )
AL Ag (A0 — /s (K11 (m,8) — Ka1 (7, 8)) sin (A\2s — a) ds + /s (Ki2 (m,8) — Kag (m,8)) cos (A0s — a) ds
0 0
En
+/\70 € lg

Ep = —/ {(Klls (m,8) + K15 (, 5)) sin ()\gs — a) — (K125 (m,8) — Koo (m, 5)) cos (A%s — a)}ds € ls.
0

obtained

Now, in the expression «,, = / {o3(z, ) + 03(z,A\n) } do, (2.2), (2.3) and A, = A + d,, equations are
0

used and if necessary calculations are made o, = 7+ 8, =7 + — + l; obtained, where
n on
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R

—|—/ sin ({(z,\%) — a) [Ka1(z,7) cos (A7 — @) — Koo(z, ) sin (Ao — o) ] da

/cos E(z,\) — ) [Kqi (@, 7)sin (Ao — a) — Koo, 7) cos (Ao — )] da
0

0
™ ™

—|—5n1/cos (f(x, A0y — oz) dx + 5ng/sin (5(3:, A0) — a) dac} € lo,0n1,0n9 € lo.

0 0

s

Y = / [Ku1(z, ) sin (A7 — &) — Koo (w,m) cos (g — 0‘)]2 dz

+/ (Ko (z,m) cos (A7 — o) — Koo (z, ) sin ()7 — Oz)]2dx

0
+257,1/ [K11(z,m)sin (A7 — o) — Kgo(z, ) cos (A0 — o) | da
071'
+25n2/ [Kgl(I ) cos (/\9177 — a) — Koo (x, ) sin (/\277 - a)] de + 7 (5%1 + 5%2) €1y, 001,009 € lo.
0

Assume that ®(z, \) is a solution of (1.1) which satisfies the conditions U (®) =1 and V (®) =

Let Clz,\) = < g;gig ) S(z,A) = ( g;gi; > and W(x,\) = ( 12)1(%?)) > denote solutions

1 0 3
of equation (1.1) that satisfy the initial conditions C (0,\) = (0), S(0,A) = <1>, U(m,A) = <—(:Zibnﬁﬁ>
respectively.
We set M(A) := ®1(0,\). The functions ®(x,\) and M(A) are called the Weyl solution and Weyl
function of the boundary value problem L respectively.

It is obvious that

B, ) =~ 055 = Ol ) + Mol ), (2.7)
(D(x, N, p(z,N)) =1 (2.8)

We define the matrix P(z,A) = [Pi;(z,A)]; ,_, , by the formula

nen( 263 )~ (268 2D

=

Using (2.8) and (2.9), we get

Pll(l‘,/\) = (p1(.13,)\)‘1)2($,/\) —<I>1(a:,/\)<~,52(x,)\)

P12(x7)‘) = (I)l(xa)‘>9?l(xa/\) —@1($,/\)(I)1(.’L‘,)\) (2.10)
Pgl(aﬁ,)\) = <p2(gc,)\)<1>2(x,)\) — @2(3?,)\)(?2(1‘,)\) '
Pog(x,\) = Po(x, \)P1(x, A) — pa(x, \)P1(x, \)
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Pii(z,A) =1, Pra(x,A) =0, Por(x,\) =0, Paa(z,A) =1

C C
Pu(@N) =11 < 0 PN < 0 pels lol 2 (2.11)
C, C,
%mwwusﬁ,%mmmﬁﬁpe%,wzw
and
1z, A) = Pz, \)P1(w, A) + Pra(w, \)Pa(x, A)
(,02(.%, )\) = Pgl(l',)\)(él(fb, )\) +P22((E,)\)(é2(l',>\) (2 12)
@1(%,)\) :Pll(l’,)\)%)l(l‘,)\)+P12($,A)(?2(1',)\) ’
@/(I,)\) —Pgl(x,)\)fbl(x,)\) —|—P22(£E,/\)‘b2(213,>\).

3. The main equation of the inverse problem
In this section, we solve the inverse problem of recovering L from the given spectral data by using ideas of the
contour integral method.

We denote that if y(x,A\) and z(x,u) are solutions of the equations fy = Ay and ¢z = uz separately,
then

d
% <Y,z >= (:u - )\)ytza <Y,z >i= yl(xa A)ZQ(QS,ILL) - y2($a)\)21(x7ﬂ)- (31)

Note

x

— [ eNetnar (3:2)

0

< p(x,\), oz, p) >

D(z, A\ p) = Y

Let us select a model boundary value problem L such that 8 —a =B —a, d, = d,. Let {5\”, dn} -

be the spectral data of L.
Furthermore, let

gn = )\n _S\n

+ |an — @

It follows from (2.5) and (2.6) and analogous formulas for 8, and d,, that

1

Q= (Z [(n+ 1)5"}2) 2 <00, Y &< oo (3.3)

n=0
Denote that

Ano = )\na Anl = S\n; Qpo = Oy, Qpl = Qi @nl(x) = @(x; /\nz)
1
~m’ = s A\ni )y Pni j =—D s \niy j
® (‘T) (p(laj A ) ,](I) g (ZC A )‘k]) (34)

Prij(z) =

D(x, Anis Mij), 457 € {0,1}, n, k> 0.
QL j
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Then, according to (3.2),

< oni(x), prj(x) > 1 / ¢
Pni j = = (T ) i(¢)dt
kg (‘T) O‘kj(Akj . /\nz) akj <lpnz( ) @kj( )
0
~ < @nz(x)aﬁakj(x) > 1 /~t ~
Poiri(z) = = (1), Pri(t)dt.
»k](z) ak]()\k] _ )\nz) ak:j J @nz( ) @kj( )
It is clear that
/ 1 t D/ 1 ~t ~
m‘,kj(x) = 7ak.¢m($)@kj(x)7 nzkg(x) = Tk"%’m(fﬂ)@kj(fc)
J J

Lemma 3.1 Let f(p) be an analytic function for

A
o= 0% < a such that f(p°) =0 and |f(p)| < A. Then |f(p)| < = |o = p°| for [p—p°| <a.
Proof The proof of lemma is given in [4]
Lemma 3.2 The following estimates are valid for x € [0,7], n,k >0, i,j,v=0,1;

lp1ni(@)] < ¢, |pani(T)] <c
[P100(%) = @101 (@) < ny [0200(T) — a1 (z)| < &y

&
F%i 1 f;““““‘f
Pruisi (@) < o
ckg ckn
P — Py < T |Proks (@) = Paaks (@) £ ——7—=
| Pri,ko(2) #1(2)] P | Pro,kj(2) Lk ()] k[ +1
anfk
P _p _p P, < ok
| Pro ko () 1,k0() 0,k1(2) + Pa1k1 ()] In— k| +1

The similar estimates are also current for @n;(x), P ().

Proof It follows from (2.1), (2.5), and (2.6) that |pn:(z)| < c.

Applying Schwarz’s lemma in the p—plane to the function f(p) := ¢(x,\) — p(x, A\p1) with fixed n, x

and a, we obtain

lo1(z, ) — o1(z, A1) < clp— puil, |p—pml <a
lpa(x, A) — p2(z, A1) < clp = pnil, |p—pnil <a

As a result (3.7) is proved.
Let us show that

Ce|7'\w

.DSC,)\,)\' Sia

A=p? FRep>0, 7=Imp, k>0.
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For definiteness, let o := Rep > 0. Get a fixed §y > 0. For |p — pi;| > do, we have by helping of (3.2), (2.1)
and (2.5),
oo Nl Ml oia o+ Lo

IA = Akl ‘p _pkj‘

ol + il _ Vo2 +7° + |pi

Since <
|p—|—ij\ /02+72—|—p%j

[D(; A Aj)| =

< \@, we obtain

Iz
ce
D (2, A, Aj)| < .
! \P—Pkﬂ
— k[ +1 k1 1
lp— k| + S\pkj | + < ¢, and 50 < c
lp = prjl lp = prjl lp = pril ~ lp—kl+1

Thus, this yields (3.9) for |p — pi;| > do. For |p — pi;| < do,
‘D(.’E’ A, Akj)| - /<Pt(t> A)@(tv /\k])dt < Ce|T‘z7
0
i.e. (3.9) is also valid for |p — pg;| < do. Likewise it can be shown that

CBIT‘I

|—m =0°, |Im0| <cy, FRepReld >0

[D(z, A, 1)

Using Schwarz’s lemma, we get

|7z
|D(I7Aa)\kl) - D(IL’,)\,)\ko)| — | - ]{;|i]-c 17:FRep Z O’k 2 0 (310)
Particularly, this yields
k.
D An“A -D 7A’fb’i7A ~
| (ﬂf, kl) (Z‘ k0)| ‘ k| + 1
Symmetrically,
ct,
‘D(x7)\n17>\k‘j)_D(xyATLO)Ak])‘ = | k|L+1

If we apply Schwarz’s lemma to the function
Qr(x,N) :== D(x, A\, Ag1) — D(x, N\, Ago)

for fixed k and z, we obtain

|D(z, Anos Ako) — D(2, A1, Ao, ) — D(2, Ano, Ak1) + D(x, Ap1, Apr)| < i Cg?;fi_ T

These approximates together with (3.4), (3.6), (2.5) and (2.6) suggest (3.8). O
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Lemma 3.3 The following relations hold

oz, A) = p(x,\)
(<P A) Grol@) > < P@ ) prale) > (3.11)
Z_:( ar0 O — ) Pro(2) Ot — ) Pk ))
<@\, o, p) > < @@, \), o, 1) >
©w—A w—A
< @@, A), Pro(w) > < pro(z), p(x, ) >
+Z { aro(Ako io>\) kOM — Ako (3.12)
_< w(w,A)wpm( ) > < ok (x), p(x, 1) >} _0
ap1(Ak1 — A) = Ag1

Proof 1) Denote N = min),; and take a fixed § > 0. In the A—plane we regard closed contours vy =

YUy Uy U 'y, as shown in Figure.
Where

1 2
7E = {)\:iIm)\é,ReAz/\’,M < <N+2> }

: 3
7/:{)\2)\—)\/:56“17016 (g,;)}

, 1\?2
FN_er{/\;umAga,ReA>0},rN_{A;|A|_ (N+2) }

(N+2)

(o

—
N

L

W

Figure 1. The curves yn and 7% .

Denote %, = 'ﬁ(, Uy Uy U (I’N\F}\,) (with clockwise circuit), as shown in Figure.
Let P(z,A) = [Pji(2,A)]; ;o e the matrix determined by (2.9). It follows from (2.7) and (2.10) that for

each fixed x, the functions Pj,(x,\) are meromorphic in A with simple poles {\,} and {S\n} By Cauchy’s

integral formula,
1 [ Piy(2,§) — ik
2mi A—&

R

Pl(l',k)—élk: dgak:1727
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where X € int (7%) and ), is the Kronecker delta. Therefore,

Pip(x f 1 [ Pu(z,8) — i
(£L' k 751]@ 7/ 27'('2.//\——€d£’

N

where I'y is used with counterclockwise circuit. Substituting in to (2.12) we get

b AP, b AP,
p1(w,A) = ¢1(z, )\)4_%/@1(%, ) 11(%5))\4_?2(% ) 12(m’§)d§+8N(:&)\)
YN
where
L o, N) (P, 6) — 1) + @22, \) Pra(a,6)
I'n
By helping of. (2.11),
ngn en(z,A\)=0 (3.13)

uniformly with respect to x € [0, 7] and A on compact sets.

If we consider (2.10) into account we calculate

pre ) = i) + 5 [ {210 [0 OBa(w.€) - Ba(e. o)

IN
+2(0.0) [B10,951(2.€) = 912,912, O) } 757 + 2w ).
In view of (2.7), this supplies
pr(00) = r(e ) + g [ SEEREEE 24 ()1 (5, e + e ), 1)
TN

where M (X\) = M(X) — M()\) , since the terms with C(z,€) vanish by Cauchy’s theorem.

It follows from
A%(\,) Bn 1

ResM(\) = —= =—= = — (3.15)
A=An A(N) A(\) G,
that
< @(.’E,)\),Lﬁ(l‘,f) > - <¢(x7)‘)a§5kj(x) >
M = i(z).
Calculating the integral in (3.14) by the residue theorem and using (3.13) we get (3.11).

2) Since ! (1 S )— !
p=A\u—€& A=¢) (A=&(E-n)’

ral formula

we have by Cauchy’s integ-

Pl ) = Bl ) _ L/—ij(m’g d. k. j = 1,2, p € int (1)
M—A ( ) ) ) *

2mi ) (A=&)(§—n)

R
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Considering in the same way as above and using (2.11), we get

Pir(eN) = Pir(@,w) _ 1 [ Pl@8)
w—A _27Ti/()\—f)(g_'u)dg"_gNjk(x,/\,,u)

IN

where le ENy (2, A, ) =0 g,k =1,n. From (2.11) and (2.8), it follows that

Pii(z, N)pa(x, A) — Por(z, N1 (z,A) =@
Poa(x, N1 (w,A) = Pra(z, N)pa(z,A) =

for any y(z) € C1[0,1].
If we consider (3.16) and (3.18) into account, we calculate

Pji(w,A) = Pi(w, 1) { y() ]

L=\ y'(2)
o {258
—<“@¢@9>{2g§]}0 Si—m
e, A p), lim e (a2, ) = 0.
According to (2.9), P(z, A) [ ?2 g i)) ] = [ ‘212 gif i)) ] Thus,
oo (e | S0 ][ Glaid ]) =<t e >

So,

det (Pe) = Plei) | 00
=< (@, A),p(x, 1) > — < @(x,A), p(z, 1) > .
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As a result, (3.19) for y(z) = ¢(x, A) supplies

p(z,A), oz, p) > <@z, A), P, 1) >

w—A w—A
1 <@l@N), 02,8 >< p(x,8), oz, 1) >
27 A= (E—n)

YN

< @@ N), p(z,8) >< (w3, §), p(x, p) >
C-OE—w }C“

+ely (@, A, ), A}i_r}rloos’N(x, A, ) = 0.

By virtue of (2.7), (3.15) and residue theorem, we obtain (3.12).

O
Similarly, it can be obtained the following relation
By (z,\) = Dy (x,\)
+Z << A0 ) - S >¢”“(x)> | o
It follows from the definition of Pni,/cj (@), Ppik; (x) and (3.11) , (3.12) that
Pni(T) = pni(z) + i Pri ko () 9ro(2) — Pri g () op1(2)) (3.21)
k=0
Priij(x) — Ppigj(x i ( ik0 () Protj(2) — Prig (2) Pkl,lj(fv)) =0. (3.22)
Denote
oo
)= 3 (g Pro@elo) — 1 ). (3.23)

Lemma 3.4 The serie in (3.23) converges absolutely and uniformly on [0,7]. The function eo(x) is absolutely

continuous.

Proof We can write eg(x) to the form
60(1') = A1($) + AQ((L’) (324)

where

i ( - ) Pro(z )(pk()( )

[67700) k1 (3 25)
) .

(07331

M8n

Ay (z) = {(@ro(x) = @1 (@) ro () + Br1(2) (Pho(2) — Pl (2))} -

=~
Il

0
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It follows from (2.5), (2.6), (3.3) and (3.7) that the series in (3.25) converge absolutely and uniformly on [0, 7]

and

|Aj(@)] <) & <ch, j=1,2. (3.26)
k=0

Lemma 3.5 The following relation holds

Q(x) = Qz) + Y (x) (3.27)
_ [ Yo(z) Yi(z)
where Y(x) = < T?(m) Ty(z) > )
(1 1 .
= 2};0 {a z)p1ro(r) — 0%1@%1(55)@11«1(55)}
{ (P1x0(x)p1k0(2) — P2ro(T)P2r0())
*i (P1r1 () p1r1(x) — <,02k1(56)902k1(x))}
(67231

= —22 {@mo )p2ro() — ail@lkl(x)@zkl(f)} .

Proof If we differentiate (3.11) twice with respect to x and use (3.1) , (3.23), we obtain

¢/($7>‘) - 50('7“‘)95 (w7)‘) = (Pl(x’)‘)

— (< @@, N), Pro() > o <@\, fra(x) > (3.28)
+Z ( aro(Ako — A) k(@) ap (et — ) S"m(@"))

k=0

If we replace ¢'(z,), ¢'(x,N), ¢io(x) and ¢, (x) by using equation (1.1) and then replace p(x,\)
using equation (3.11) then
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Remark 3.1. For each fixed z € [0,7] the equation (3.21) can be considered as a system of linear
equations with respect to ¢n;(x) n >0, ¢ = 0,1. However, the series in (3.21) converges only "with brackets”.
Hence, it is not appropriate to use (3.21) as a main equation of the inverse problem. Below we will convert
(3.21) to a linear equation in a corresponding Banach space of sequences.

Let T be a set of indices u = (n,i), n > 0,7 =0,1. For each fixed z € [0, 7], we define the vector

by the formula

Vino(z)  Wono(x) }

R [Xn —Xn ] [ P1n0() <P2n0(90)}

1 P1in1 (l‘) Pan1 (.13)
_ [ Xn (91n0(%) — ©101(2))  Xn (P200(2) — P2n1(2)) ]
P1n1() Pan1 ()
& #0
X = { 6n =0

We also define the block matrix

H(w) = [Huo(2)], oy = { Huoo(x)  Hyokr (@)

b = 7. ) = k’ ]
Hnl’ko(a?) Hnl,kl(m) ]n,kzo u (TL Z) v ( J)

u,veV T
by the formula
[ Hooko(z)  Hpopi(z) Xn — Xn Pooro(z)  Pooi(x) &1
Hpiko(z)  Hpiga(2) - 0 1 Poiko(z)  Poigi(x) 0 -1

[ &kxn (Proko(®) — Pa1ko())  Xn (Proko() — Pro k1 (%) — Pa1ko(%) + Poa g1(z))
&P ko() Ppiro(x) = P11 ()

Analogously we define W(x), H(z) by replacing in the former descriptions ¢, (z) by @ni(z) and P ()

by Ppik;(x). It follows from (3.7) and (3.8) that

&k
W <ec, |Hpirj < — 2
s )] < 00 Vs )] € g (3.29)
Similarly,
X 5 €
[Tt @] < e B ()] < (3:30)
and also
‘I{Tmykj(a:) — Hm,kj(xo)‘ <clx — x| &, =, xo € [0, 7] (3.31)

where ¢ does not depend on x,xg,n,%,j5 and k.
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Let us consider the Banach space m of bounded sequences o = [av, ], with the norm [[a],, = sup |a,|.
u€T

It follows from (3.29) and (3.30) that for each fixed x € [0, 7], the operators E + H(z) and E — H(x) such

that E is the identity operator mapping from m to m, are linear bounded operators and

|H(x)], HH H < csupz| — k| 1 < 0. (3.32)

Theorem 3.6 In the Banach space m, the vector U(x) € m satisfies the equation
¥(z) = (E + H(m)) U(z) (3.33)

for each fized x € [0,7]. Furthermore, the operator E + ﬁ(x) has a bounded inverse operator, i.e. equation

(3.83) is uniquely solvable.

Proof We can write (3.21) in the form

Pno(@) — Pn1(z) :fon o(z) = n1(x)
3 { (Proo@) = Paro(@)) (pr0(@) = o1 (2))

+ (Pno,ko(x) — Po1ko(®) = Poo g1 () + pnl,kl(x)> <Pk1(96)} ,

o (@) = on1(@) + 3 {Prrsole) (@ro(@) — ou1(2)) + (Prrsols) — Pora () oua (@)}

k=0

Considering our notations, we get

T,i(z) +ZHm ki () 0k (2), (n,i), (k,j) €T (3.34)

which is equivalent to (3.33). The series in (3.34) converges absolutely and uniformly for € [0, 7] . Analogously,
(3.22) takes the form

or

Replacing for L and L, similarly, we get
U(z) = (E — H(z) ¥(2), (E— H(z)) (E + ﬁf(x)) - E.

—1
Therefore, the operator (E +H (w)) exists and it is a linear bounded operator. O
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Equation (3.33) is called the main equation of the inverse problem. Solving (3.33) , we find the vector

U(z) and as a result, the functions ¢,;(z). we can construct the function Q(x) due to ¢n;(x) = ¢ (x, \y;) are

the solutions of (1.1). So, we get the following algorithm for the solution of inverse problem.

[12]

[13]

[14]
[15]

[16]

[17]

Algorithm. Given the numbers {\,,an}, 5 -

1. Select L such that 8 —a = — @, d,, = d, and construct ¥(z), H(z).
2. Find ¥(z) by solving equation (3.33).

3. Calculate Q(x) by (3.27).
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