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Abstract: This paper deals with the study of the initial-boundary value problem of edge-hyperbolic system with damping
term on the manifold with edge singularity. More precisely, it is analyzed the invariance and vacuum isolating of the
solution sets to the edge-hyperbolic systems on edge Sobolev spaces. Then, by using a family of modified potential wells
and concavity methods, it is obtained existence and nonexistence results of global solutions with exponential decay and
is shown the blow-up in finite time of solutions on the manifold with edge singularities.
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1. Introduction
Boundary value problems for partial differential equations play a crucial role in many areas of mathematics
and the applied sciences. For example, a principal task of quantum chemistry is the development of many-
particle models in electronic structure theory which enable accurate predictions of molecular properties [13]. As
boundary-initial value problem, it is important to know the existence and behaviour of the solutions of these
models near coalescence points of particles. It is the purpose of our work to develop tools which help to deepen
our understanding of the existence and reguality properties of the solutions which can be eventually used to
improve such models and corresponding problems. The Coulomb singularities at coalescence points of particles
are treated as embedded conical, edge and corner singularities in the configuration space of electrons [11].
Interesting phenomena are often connected with geometric singularities, for instance, in mechanics or cracks in
a medium are described by hypersurfaces with a boundary. Configurations of that kind belong to the category
of spaces (manifolds) with geometric singularities, here with edges. Singularities occur in physics too. To be
more precise, they occur in the theories that physicists use. When one asks physics to calculate the self-energy
of an electron, or the structure of space time at the center of a black hole, one encounter with mathematical bad
behaviour, that is the singularities from the point view of mathematics. A spacetime singularity is a breakdown
in spacetime, either in its geometry or in some other basic physical structure. When it is the fundamental
geometry that breaks down, spacetime singularities are often viewed as an end, or edge points, of spacetime
itself. Black holes are regions of spacetime from which nothing, not even light, can escape. A typical black
hole is the result of the gravitational force becoming so strong that one would have to travel faster than light
to escape its pull. Such black holes generically contain a spacetime singularity at their center; thus we cannot
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fully understand a black hole without also understanding the nature of singularities [12]. In recent years, from
a mathematical point of view, the analysis on such (in general, stratified) spaces has become a mathematical
structure theory with many deep relations with geometry, topology, and mathematical physics [10]. In [21],
Melrose, Vasy and Wunsch investigated the geometric propagation and diffraction of singularities of solutions to
the wave equation on manifolds with edge singularities. Let X be an n−dimensional manifold with boundary,
where the boundary ∂X is endowed with a fibration Z → ∂X and ∂X → Y where Y, Z are without boundary.
By an edge metric g on X, we mean a metric g on the interior of X which is a smooth 2-cotensor up to
the boundary but which degenerates there in a way compatible with the fibration. A manifold with boundary
equipped with such an edge metric also is called an edge manifold or a manifold with edge structure. If Z is
point, then an edge metric on X is simply a metric in the usual sense, smooth up to the boundary, while if Y is a
point, X is conic manifold [5]. A simple example of a more general edge metric is obtained by performing a real
blowup on a submanifold B of a smooth, boundaryless manifold A. The blowup operation simply introduces
polar coordinates near B, i.e. it replaces B by its spherical normal bundle, thus yielding a manifold X with
boundary. The pullback of a smooth metric on A to X is then an edge metric [21]. Because of the two motives
stated above, in this paper, we use the edge Sobolev inequality, Poincaré inequality and modified methods in [6]
to prove on the global well-posedness of solutions to initial-boundary value problems for semilinear degenerate
hyperbolic equations with damping term on manifolds with edge singularities. More precisely, we study the
following initial-boundary value problem for semilinear edge hyperbolic equations utt −∆Eu+ V (z)u+ γut = f(z, u), z ∈ intE, t > 0,

u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ intE
u(z, t) = 0, z ∈ ∂E, t ≥ 0,

(1.1)

where, γ is a nonnegative parameter and u0 ∈ H1,n+1
2

2,0 (E), u1 ∈ L
n+1
2

2 (E), N = 1 + n + q ≥ 3 is a dimension
of E and coordinates z := (r, x, y) = (r, x1, ..., xn, y1, ..., yq) ∈ E. Here the domain E is [0, 1) × X × Y, X is
an (n− 1) -dimensional closed compact manifold,Y ⊂ Rq is a bounded domain, which is regarded as the local
model near the edge points on manifolds with edge singularities, and ∂E = {0}×X×Y. Moreover, the operator
∆E in 1.1 is defined by (r∂r)

2+∂2
x1

+ ...+∂2
xn

+(r∂y1
)2+ ...+(r∂yq

)2, which is an elliptic operator with totally
characteristic degeneracy on the boundary r = 0, we also call it Fuchsian type edge-Laplace operator, and the
corresponding gradient operator by ∇E := (r∂r, ∂x1 , ..., ∂xn , r∂y1 , ..., r∂yq ).

Our study in hyperbolic system is in fact provoked by the study of [19] and we shall apply a poten-
tial method which was established by Sattinger [24]. So based on Martin and Schulze edge operators algebra
[20], we study the existence and nonexistence global weak solutions for semilinear edge hyperbolic differential
equations with respect to variable time with a positive potential function and a nonnegative weighted func-
tion. In [2], authors studied the problem 1.1 without damping term and the particular case of nonlinear term
f(x, u) = g(x)|u|p−1u. Furthermore,in the case of manifolds with conical singularities B, the well-known oper-
ator ∆B + V (x) appears naturally in the nonlinear heat and wave equations, nonlinear and nonhomogeneous
Schrödinger equations. For example, investigations have been done about the existence results, multiple solu-
tions for nonhomogeneous degenerate Schrödinger equations in noncritical and critical cone Sobolev exponent
on manifolds with conical singularities [3, 8, 15]. For finding such positive potential function any one can con-
sider Poincaré’s constant on manifold B [2]. Our problem can be seen then as a class of degenerate parabolic
type equations in case that V (z) = 0 and f(z, u) = f(u) then the problem 1.1 is reduced to problem 1.1 in [6]
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and in the classical sense our problem include the classical problem

 utt −∆u+ γut = f(u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω
u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

(1.2)

where Ω is bounded domain of Rn with smooth boundary ∂Ω and ∆ is the standard Laplace operator and f

is a suitable function [16, 18]. It is well-known that problem 1.2 has been studied by many authors, for example
[18, 19]. Then, Runzhang [22] extended the results corresponding to the problem 1.2 in the [17] and [18] to the
critical case and the authors in [23] studied the case with damping term and nonlinear term kind of problem
1.2. In this article, we shall find the existence and nonexistence theorems for the problem 1.1 in edge Sobolev

space H1,n+1
2

2,0 (E) which will be given in the next section. The similar results of type problem 1.1 studied on the
manifold B with conical singularity in [1, 4]. We assume that V is a positive potential function which can be
unbounded on the edge manifold E and is controlled by the following edge type Hardy’s inequality [9]

∫
E
rqV |u|2dµ ≤ C∥∇E∥2

L
n+1
2 (E)

∀u ∈ H1,n+1
2

2,0 (E).

We suppose that f : E× R+ → R is a Caratheodory function with the following assumptions:
A1) f(. , u) ∈ C1(R) for all u ∈ R and also

u

(
uf2(., u)− f(., u)

)
≥ 0 ∀u ∈ R,

where f2 is the partial derivative with respect to second variable and the equality holds when u = 0.

A2) There exists a positive constant c0 such that

| f(., u) |≤ c0 | u |p
′

,

where 1 < p
′
< ∞ if n = 1, 2 and 2 < p

′
+ 1 < 2∗ if n ≥ 3.

A3) Let z ∈ E, 2 < p+ 1 ≤ θ ≤ 2∗ and for all u ∈ R

A3−1) (p+ 1)F (z, u) ≤ uf(z, u) and

A3−2) | uf(z, u) | ≤ θ | F (z, u) | where, F (., u) =
∫ u

0
f(., s)ds.

The through of this paper we consider the following constants:

C∗ = inf

{∥
√

V (z)u(z)∥
L

n+1
2

2 (E)

∥∇Eu∥
L

n+1
2

2 (E)

; u ∈ H1,n+1
2

2,0 (E)
}
,

C∗∗ = sup

{ ∥u(z)∥
L

n+1
q+1
q+1 (E)

∥∇Eu∥
L

n+1
2

2 (E)

; u ∈ H1,n+1
2

2,0 (E)
}
.
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2. Edge Sobolev spaces

Consider X as a closed compact C∞−manifold of dimension n of the unit sphere in Rn+1. We define an infinite

cone in Rn+1 as a quotient space X∆ = R̄+×X
{0}×X , with base X. The cylindrical coordinates (r, θ) ∈ X∆ − {0}

in Rn+1 − {0} are the standard coordinates. This gives us the description of X∆ − {0} in the form R+ ×X.

Then the stretched cone can be defined as R̄+ ×X = X∧. Now, consider B = X∆ with a conical point, then
by the similar way in [9, 10, 25], one can define the stretched manifold B with respect to B as a C∞−manifold
with smooth boundary ∂B ∼= X(0), where X(0) is the cross section of singular point zero such that there is a
diffeomorphism B − {0} ∼= B − ∂B, the restriction of which to U − {0} ∼= V − ∂B for an open neighborhood
U ⊂ B near the conic point zero and a collar neighborhood V ⊂ B with V ∼= [0, 1)×X(0). Therefore, we can
take B = [0, 1)×X ⊂ R̄+ ×X = X∧. In order to consider another type of a manifold with singularity of order
one so-called wedge manifold, we consider a bounded domain Y in Rq. Set W = X∆ × Y = B × Y. Then W

is a corresponding wedge in R1+n+q. Therefore, the stretched wedge manifold W to W is X∧ × Y which is a
manifold with smooth boundary {0}×X × Y. Set (r, x) ∈ X∧. In order to define a finite wedge, it sufficient to
consider the case r ∈ [0, 1). Thus, we define a finite wedge as

E =
[0, 1)×X

{0} ×X
× Y ⊂ X∆ × Y = W.

The stretched wedge manifold with respect to E is

E = [0, 1)×X × Y = B× Y ⊂ X∧ × Y = W∧,

with smooth boundary ∂E = {0} ×X × Y.

Definition 2.1 For (r, x, y) ∈ RN
+ with N = 1 + n + q, assume that u(r, x, y) ∈ D′(RN

+ ). We say that
u(r, x, y) ∈ Lp(RN

+ ; dµ) if

∥u∥Lp
=

(∫
RN

+

rN |u(r, x, y)|pdµ
) 1

p

< +∞,

where dµ = dr
r dx1....dxn

dy1

r ...
dyq

r and for 1 ≤ p < ∞.

Moreover, the weighted Lp spaces with wight γ ∈ R is denoted by Lγ
p(RN

+ ; dµ), which consists of function
u(r, , y) such that

∥u∥Lγ
p
=

(∫
RN

+

rN |r−γu(r, x, y)|pdµ
) 1

p

< +∞.

Now, we can define the weighted p−Sobolev spaces with natural scale for all 1 ≤ p < ∞ on RN=1+n+q
+ .

Definition 2.2 For m ∈ N, γ ∈ R and N = 1 + n+ q, the spaces

Hm,γ
p (RN

+ ) =

{
u ∈ D

′
(RN

+ ) | r
N
p −γ(r∂r)

k∂α
x (r∂y)

βu ∈ Lp(RN
+ ; dµ)

}
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for k ∈ N, multiindices α ∈ Nn and β ∈ Nq with k + |α|+ |β| ≤ m. In other words, if u(r, x, y) ∈ Hm,γ
p (RN

+ )

then (r∂r)
k∂α

x (r∂y)
βu ∈ Lγ

p(RN
+ ; dµ). Therefore, Hm,γ

p (RN
+ ) is a Banach space with the following norm

∥u∥Hm,γ
p (RN

+ ) =
∑

k+|α|+|β|≤m

(∫
RN

+

rN |r−γ(r∂r)
k∂α

x (r∂y)
βu|pdµ

) 1
p

.

Moreover, the subspace Hm,γ
p,0 (RN

+ ) of Hm,γ
p (RN

+ ) denotes the closure of C∞
0 (RN

+ ) in Hm,γ
p (RN

+ ). Now,
similarly to the definitions above, we can introduce the following weighted p−Sobolev spaces on X∧ × Y, where
X∧ = R+ ×X and X∧ × Y is an open stretched wedge.

Hm,γ
p (X∧ × Y ) :=

{
u ∈ D

′
(X∧ × Y ) | r

N
p −γ(r∂r)

k∂α
x (r∂y)

βu ∈ Lp(X
∧ × Y ; dµ)

}

for k ∈ N, multiindices α ∈ Nn and β ∈ Nq with k + |α|+ |β| ≤ m.

Then Hm,γ
p (X∧ × Y ) is a Banach space with the following norm

∥u∥Hm,γ
p (X∧×Y ) =

∑
k+|α|+|β|≤m

(∫
X∧×Y

rN |r−γ(r∂r)
k∂α

x (r∂y)
βu|pdµ

) 1
p

.

The subspace Hm,γ
p,0 (X∧ × Y ) of Hm,γ

p (X∧ × Y ) is defined as the closure of C∞
0 (X∧ × Y ).

Definition 2.3 Let E be the stretched wedge to the finite wedge E, then Hm,γ
p (E) for m ∈ N, γ ∈ R denotes

the subset of all u ∈ Wm,p
loc (intE) such that ωu ∈ Hm,γ

p (X∧ × Y ) for any cut-off function ω, supported by a
collar neighborhood of (0, 1)× ∂E. Moreover, the subspace Hm,γ

p,0 (E) of Hm,γ
p (E) is defined as follows:

Hm,γ
p,0 (E) := [ω]Hm,γ

p,0 (X∧ × Y ) + [1− ω]Wm,p
0 (intE)

where the classical Sobolev space Wm,p
0 (intE denotes the closure of C∞

0 (intE) in Wm,p(Ẽ) for Ẽ that is a
closed compact C∞ manifold with boundary.

If u ∈ L
n+1
p

p (E) and v ∈ L
n+1

p
′

p′ (E) with p, p
′ ∈ (1,∞) and 1

p + 1
p′ = 1, then one can obtain the following edge

type Hölder inequality ∫
E
rq|uv|dµ ≤

(∫
E
rq|u|pdµ

) 1
p
(∫

E
rq|v|p

′

dµ

) 1

p
′

.

In the case p = 2, we have the corresponding edge type Schwartz inequality∫
E
rq|uv|dµ ≤

(∫
E
rq|u|2dµ

) 1
2
(
rq|v|2dµ

) 1
2

.

In the sequel, for convenience we denote

(u, v)2 =

∫
E
rquvdµ, ∥u∥

L
n+1
p

p (E)
=

(∫
E
rq|u|pdµ

) 1
p

.

-
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3. Some auxiliary results
In this section we give some results about the potential wells for problem 1.1 and we obtain some properties of
energy functional that we will use to prove the main results in Section 4.

Similar to the classical case, one can introduce the suitable functionals on the edge Sobolev space

H1,n+1
2

2,0 (E) :

J(u) =
1

2

∫
E

rq|∇Eu|2dµ+
1

2

∫
E

rqV (z)|u|2dµ−
∫
E
rqF (z, u)dµ,

K(u) =

∫
E

rq|∇Eu|2dµ+

∫
E

rqV (z)|u|2dµ−
∫
E
rquf(z, u)dµ.

Then J(u) and K(u) are well-defined and belong to space C1(H1,n+1
2

2,0 (E),R). Now we define

N =

{
u ∈ H1,n+1

2
2,0 (E) ; K(u) = 0,

∫
E

rq|∇Eu|2dµ ̸= 0

}
,

d = inf

{
sup
λ≥0

J(λu) ; u ∈ H1,n+1
2

2,0 (E),
∫
E

rq|∇Eu|2dµ ̸= 0

}
.

Thus, similar to the results in [4, 19] we obtain that 0 < d = inf
u∈N

J(u). For 0 < δ we define

Kδ(u) = δ

∫
E

rq|∇Eu|2dµ+

∫
E

rqV (z)|u|2dµ−
∫
E

rquf(z, u)dµ,

Nδ =

{
u ∈ H1,n+1

2
2,0 (E) ; Kδ(u) = 0,

∫
E

rq|∇Eu|2dµ ̸= 0

}
,

d(δ) = inf
u∈Nδ

J(u).

By preliminary results in [19] and as similar to [4], we provide some lemmas and propositions about the
problem 1.1.

Lemma 3.1 Suppose that the assumptions (A1)−(A2) and (A3−1) hold and consider g(u) := f(z,u)
u for u ̸= 0.

Then
(i) limu→0 g(u) = 0;

(ii) g is increasing on (0,∞) and decreasing on (−∞, 0);

(iii) for any z ∈ E, uf(z, u) ≥ 0 for all u ∈ R, where the equality holds only for u = 0;

(iv) f(z, u) is increasing with respect to second variable on (−∞,∞);

(v) 0 ≤ F (z, u) ≤ c0
p′+1

| u |p
′
+1 .

Lemma 3.2 [24] Let f(z, u) satisfy (A1). Then F (z, u) ≥ c1 | u |p+1 for | u |≥ 1 and positive constant c1.
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Lemma 3.3 Let f(z, u) satisfy (A1), (A3−1) and define φ(λ) := 1
λ

∫
E r

quf(z, λu)dµ. Then

(i) lim
λ→0

φ(λ) = 0, lim
λ→∞

φ(λ) = ∞;

(ii) φ(λ) is increasing on (0,∞).

Proof (i) Since

| φ(λ) | = | 1
λ

∫
E
rquf(z, λu)dµ |≤ 1

λ

∫
E
rq | u || f(z, λu) | dµ

≤ 1

λ2

∫
E
c0r

q | λu |p
′
+1 dµ = c0λ

p
′
−1∥u∥p

′
+1

L

n

p
′
+1

p
′
+1

(E)
.

Hence, lim
λ→0

φ(λ) = 0.

By Lemma 3.2 and assumption (A3−1)

φ(λ) =
1

λ2

∫
E
λrquf(z, λu)dµ ≥ p+ 1

λ2

∫
E
rqF (z, λu)dµ

≥ (p+ 1)c1
λ2

∫
E
rq | λu |p+1 dµ = (p+ 1)c1λ

p−1

∫
E
rq | u |p+1 dµ

= (p+ 1)c1λ
p−1∥u∥p+1

L
n

p+1
p+1 (E)

.

Indeed, lim
λ→∞

φ(λ) = ∞.

(ii) φ(λ) is increasing on (0,∞), since by assumption (A1)

φ′(λ) =
1

λ2

∫
E
rq(λu2f2(z, λu)− λuf(z, λu))dµ

=
1

λ3

∫
E
rqλu(λuf2(z, λu)− f(z, λu))dµ > 0.

2

Lemma 3.4 Let f(z, u) satisfy (A1), u ∈ H1,n+1
2

2,0 (E) and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0. Then

(i) lim
λ→0

J(λu) = 0;

(ii) lim
λ→+∞

J(λu) = −∞;

(iii) the functional J(λu) admits its maximal for 0 < λ∗ = λ(u) < ∞;

(iv) K(λu) = λ ∂
∂λJ(λu);

(v) K(λu) > 0 for 0 < λ < λ∗, K(λu) < 0 for all λ∗ < λ < ∞ and K(λ∗u) = 0.

Proof Take u ∈ H1,n+1
2

2,0 (E) and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0. Then
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(i)

lim
λ→0

J(λu) =
1

2
∥∇Eλu∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z) | λu |2 dµ−

∫
E
rqF (z, λu)dµ

= lim
λ→0

λ2

2

[
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ

]
−
∫
E
rqF (z, λu)dµ = 0.

(ii)

lim
λ→+∞

J(λu) = lim
λ∞

λ2

2

[
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ

]
−
∫
E
rqF (z, λu)dµ

≥ lim
λ→∞

(
λ2

2
(1 + C2

∗)∥∇Eu∥2
L

n+1
2

2 (E)
− c0λ

p
′
+1Cp

′
+1

∗∗

p′ + 1
∥∇Eu∥p

′
+1

L
n+1
2

2 (E)

)
= −∞.

(iii) According to definition of functional J

J(λu) =
λ2

2

[
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ

]
−
∫
E
rqF (z, λu)dµ.

Thus
∂J(λu)

∂λ
= λ

[
∥∇E∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ−

∫
E
urqf(z, λu)dµ

]
.

From ∂J(λu)
∂λ = 0 and by definition of φ(λ) one can get

φ(λ) = ∥∇Eu∥2
L

n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ.

We take

λ∗ := φ−1

(
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ

)
,

and it follows λ∗ is a maximal for J(λu) since for λ = λ∗,
∂2J(λu)

∂λ2 = −φ′(λ) < 0.

(iv) It follows from definition of the functionals J and K.

(v) It follows from definition of the functional K and λ∗. 2

Proposition 3.5 Let f(x, u) satisfy assumption (A2) and 0 < ∥∇Eu∥
L

n+1
2

2 (E)
< l(δ) where l(δ) = (

δ + C2
∗

c0C
q+1
∗∗

)
1

q−1 .

Then Kδ(u) > 0. In particular, if
0 < ∥∇Eu∥

L
n+1
2

2 (E)
< l(1)

then K(u) > 0.
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Proof By definition of the functional Kδ

Kδ(u) = δ∥∇Eu∥2
L

n+1
2

2 (E)
+

∫
E
rqV (z) | u |2 dµ−

∫
E
rquf(z, u)dµ

≥ (δ + C2
∗)∥∇Eu∥2

L
n+1
2

2 (E)
−
∫
E
rquf(z, u)dµ

≥ (δ + C2
∗)∥∇Eu∥2

L
n+1
2

2 (E)
−
∫
E
c0r

q | u |p
′
+1 dµ

≥ (δ + C2
∗)∥∇Eu∥2

L
n+1
2

2 (E)
− c0C

p
′
+1

∗∗ ∥∇Eu∥p
′
+1

L
n+1
2

2 (E)

= ∥∇Eu∥2
L

n+1
2

2 (E)

(
δ + C2

∗ − c0C
p
′
+1

∗∗ ∥∇Eu∥p
′
−1

L
n+1
2

2 (E)

)
.

Therefore, Kδ(u) > 0 from assumption. 2

Proposition 3.6 Let f(z, u) satisfy assumption (A2) and assume that Kδ(u) < 0. Then ∥∇Eu∥
L

n+1
2

2 (E)
> l(δ).

In particular, if K(u) < 0, then ∥∇Eu∥
L

n+1
2

2 (E)
> l(1).

Proof Since Kδ(u) < 0 by assumption (A2) we get that

δ∥∇Eu∥2
L

n+1
2

2 (E)
<

∫
E
rquf(z, u)dµ−

∫
E
rqV (z) | u |2 dµ

≤
∫
E
rq | u || f(z, u) | dµ− C2

∗∥∇Eu∥2
L

n+1
2

2 (E)

≤ c0

∫
E
rq | u |p

′
+1 dµ− C2

∗∥∇Eu∥2
L

n+1
2

2 (E)

≤ c0C
p
′
+1

∗∗ ∥∇Eu∥p
′
+1

L
n+1
2

2 (E)
− C2

∗∥∇Eu∥2
L

n+1
2

2 (E)
.

Hence,

δ∥∇Eu∥2
L

n+1
2

2 (E)
+ C2

∗∥∇Eu∥2
L

n+1
2

2 (E)
< c0C

p
′
+1

∗∗ ∥∇Eu∥p
′
+1

L
n+1
2

2 (E)
.

Indeed,

∥∇Eu∥
L

n+1
2

2 (E)
<

(
δ + C2

∗

c0C
p′+1
∗∗

) 1

p
′−1

= l(δ).

2

Corollary 3.7 Let u ∈ H1,n+1
2

2,0 (E), Kδ(u) = 0 and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0. Then ∥∇Eu∥

L
n+1
2

2 (E)
≥ l(δ). In

particular, if K(u) = 0 and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0, then ∥∇Eu∥

L
n+1
2

2 (E)
≥ l(1).
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4. Invariance and vacuum isolating of the solutions
In this section, we express some properties of the solutions of the problem 1.1 such as an invariant set and
vacuum isolating of solutions for the problem 1.1 under suitable conditions.

Proposition 4.1 Let 0 < δ < p+1
2 and assumption (A3−1 − A3−2) holds, then d(δ) ≥ a(δ)l2(δ) where

a(δ) =

(
(p+1) − 2δ + C2

∗(p−1)
2(p+1)

)
. Moreover, we have

d(δ) = inf
u∈Nδ

J(u) = d δ2a(δ)[1 + c2∗]
−1 2(p+ 1)

p− 1
.

Proof Let u ∈ Nδ, so by proposition 3.6 we get that ∥∇Eu∥
L

n+1
2

2 (E)
> l(δ). Then by definition of J and Kδ

we obtain that

J(u) ≥ 1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|u(z)|2dµ− 1

p+ 1

∫
E

rquf(z, u)dµ

=
1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|u(z)|2dµ

− 1

p+ 1

(
δ∥∇Eu∥2

L
n+1
2

2 (E)
−Kδ(u) +

∫
E

rqV (z)|u(z)|2dµ
)
.

Since Kδ(u) = 0 ,

J(u) ≥ (
1

2
− δ

p+ 1
)∥∇Eu∥2

L
n+1
2

2 (E)
+

p− 1

2(p+ 1)
∥V (z)

1
2u∥2

L
n+1
2

2 (E)

≥ (
1

2
− δ

p+ 1
)∥∇Eu∥2

L
n+1
2

2 (E)
+

p− 1

2(p+ 1)
C2

∗∥∇Eu∥2
L

n+1
2

2 (E)

= (
1

2
− δ

p+ 1
+

(p− 1)C2
∗

2(p+ 1)
)∥∇Eu∥2

L
n+1
2

2 (E)
.

Since ∥∇Eu∥2
L

n+1
2

2 (E)
≥ l2(δ) then,

d(δ) ≥ a(δ)l2(δ).

Now, we prove the second part of the assertion. Let 0 < δ and ū ∈ Nδ is minimizer of d(δ) that is d(δ) = J(ū) .
we define λ = λ(δ) by

∥∇Eλū∥2
L

n+1
2

2 (E)
+

∫
E

rqV (z)|λū|2dµ =

∫
E

λrqūf(z, λū)dµ = φ(λ).

In fact, φ : (0,∞) → (0,∞) thus we can define λ = λ(α0) = φ−1(α0) where,

α0 := ∥∇Eū∥2
L

n+1
2

2 (E)
+

∫
E

rqV (z)|ū|2dµ.
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Then for any 0 < δ up on definition of φ(λ) there exists a unique λ which satisfies

λ = φ−1

(
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E

rqV (z)|u(z)|2dµ
)

= φ−1(φ(
1

δ
)) =

1

δ
.

Hence, for such λ, λū ∈ N , so by definition of d we get that

d ≤ J(λū) =
1

2
∥∇Eλū∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|λū|2dµ−
∫
E

rqF (z, λū)dµ

≤ λ2

2

[
∥∇Eū∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | ū |2 dµ

]
− 1

θ

∫
E
λrqūf(z, λū)dµ

=
λ2

2
∥∇Eū∥2

L
n+1
2

2 (E)
+

λ2

2

∫
E

rqV (z)|ū|2dµ

− 1

θ

[
∥∇Eλū∥2

L
n+1
2

2 (E)
+

∫
E

rqV (z)|λū|2dµ−K(λū)

]

= λ2

[
1

2
∥∇Eū∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|ū|2dµ− 1

θ
∥∇Eū∥2

L
n+1
2

2 (E)
− 1

θ

∫
E

rqV (z)|ū|2dµ
]

≤ λ2(
θ − 2

2θ
)∥∇Eū∥2

L
n+1
2

2 (E)
− λ2(

2− θ

2θ
)C2

∗∥∇Eū∥2
L

n+1
2

2 (E)

≤ λ2(
θ − 2

2θ
)(1 + C2

∗)∥∇Eū∥2
L

n+1
2

2 (E)
.

Therefore, by definition of λ = λ(δ) we have

d ≤ δ2(
θ − 2

2θ
)(1 + C2

∗)∥∇Eū∥2
L

n+1
2

2 (E)
.

Moreover, d(δ) ≥ a(δ)∥∇Eū∥2
L

n+1
2

2 (E)
. Indeed,

d ≤ J(λū) ≤ δ−2

[
θ − 2

2θ
(1 + C2

∗)

]
d(δ)

a(δ)
.

Hence,

d(δ) ≥ a(δ) δ2 [1 + C2
∗ ]

−1 (
2θ

θ − 2
)d.

Now, we let 0 < δ and ũ ∈ N is minimizer of d that is

d = J(ũ) =
1

2
∥∇Eũ∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|ũ|2dµ−
∫
E

rqF (z, ũ)dµ.

we define λ = λ(δ) by

δ∥∇Eλũ∥2
L

n+1
2

2 (E)
+

∫
E

rqV (z)|λũ|2dµ =

∫
E

λrqũf(z, λũ)dµ = φ(λ).
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Then, using the mapping φ : (0,∞) → (0,∞) and for any 0 < δ, there exists a unique λ which satisfies

λ = λ(δ) = φ−1

(
δ∥∇Eũ∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z) | ũ |2 dµ

)
= φ−1(φ(δ)) = δ.

Hence, for such λ, λũ ∈ Nδ by definition of d(δ) we get that

d ≥ 1

2
∥∇Eũ∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|ũ|2dµ

− 1

θ

(
∥∇Eũ∥2

L
n+1
2

2 (E)
+

∫
E

rqV (z)|ũ|2dµ−K(ũ)

)

= (
1

2
− 1

θ
)∥∇Eũ∥2

L
n+1
2

2 (E)
+ (

1

2
− 1

θ
)

∫
E

rqV (z)|ũ|2dµ

≥ θ − 2

2θ
[1 + C2

∗ ] ∥∇Eũ∥2
L

n+1
2

2 (E)
.

On the other hand,

d(δ) ≤ J(λũ) =
1

2
∥∇Eλũ∥2

L
n+1
2

2 (E)
+

1

2

∫
E

rqV (z)|λũ|2dµ−
∫
E

rqF (z, λũ)dµ

≤ λ2

2
∥∇Eũ∥2

L
n+1
2

2 (E)
+

λ2

2

∫
E

rqV (z)|ũ|2dµ

− 1

θ

(
δ∥∇Eλũ∥2

L
n+1
2

2 (E)
+

∫
E

rqV (z)|λũ|2dµ−Kδ(λũ)

)

= λ2

[
(
1

2
− δ

θ
)∥∇Eũ∥2

L
n+1
2

2 (E)
+ (

1

2
− 1

θ
)

∫
E

rqV (z)|ũ|2dµ
]

= λ2

[
(
1

2
− δ

θ
)∥∇Eũ∥2

L
n+1
2

2 (E)
− (2− θ)C2

∗
2θ

∥∇Eũ∥2
L

n+1
2

2 (E)

]

≤ λ2

[
1

2
− δ

θ
+

(θ − 2)C2
∗

2θ

]
∥∇Eũ∥2

L
n+1
2

2 (E)
.

Assumption of (A3−2) implies that

2(p+ 1)

p− 1
<

2θ

θ − 2

thus

d(δ) ≤ λ2a(δ)∥∇Eũ∥2
L

n+1
2

2 (E)
.
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Then, from definition of λ(δ) and above conclusions we get that

δ2(1 + C2
∗)

−1 2(p+ 1)

p− 1
a(δ)d < δ2(1 + C2

∗)
−1 2θ

θ − 2
a(δ)d

≤ d(δ) ≤ δ2(1 + C2
∗)

−1 2θ

θ − 2
a(δ)d.

Therefore,

d(δ) = inf J(u)u∈Nδ
= δ2 a(δ) d [1 + C2

∗ ]
−1 2θ

θ − 2
.

2

Remark 4.2 According to d(δ) in proposition 4.1 we obtain that
1) lim

δ→0
d(δ) = 0,

2) we set C1 := d[1 + C2
∗ ]

−1 2θ
θ−2 and C2 := 1

2 +
(p−1)C2

∗
2(p+1) then

d(δ) = d[1 + C2
∗ ]

−1 2θ

θ − 2
δ2
(
1

2
− δ

p+ 1
+

C2
∗(p− 1)

p+ 1

)
=

C1C2δ
2 − C1

p+ 1
δ3 = C ′δ2 − C1

p+ 1
δ3.

Then,

d′(δ) = 2C ′δ − 3
C1

p+ 1
δ2 = δ [2C ′ − 3C1δ

p+ 1
] ⇒

d′(δ) = 0 ⇒ δ = 2
3C2(p + 1). Hence, if 0 < δ < 2

3C2(p + 1) then d(δ) is strictly increasing function and if
δ > 2

3C2(p+ 1) then d(δ) is strictly decreasing function.

Now, we introduce the following potential wells

W =

{
u ∈ H1,n+1

2
2,0 (E) ; K(u) > 0, J(u) < d

}
∪ {0},

Wδ =

{
u ∈ H1,n+1

2
2,0 (E) ; Kδ(u) > 0, J(u) < d(δ)

}
∪ {0},

for 0 < δ, and corresponding potentials outside of the set that defined as above

E =

{
u ∈ u ∈ H1,n+1

2
2,0 (E) ; K(u) < 0, J(u) < d

}
,

Eδ =

{
u ∈ H1,n+1

2
2,0 (E) ; Kδ(u) < 0, J(u) < d(δ)

}
for any 0 < δ.
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Definition 4.3 u = u(z, t) ∈ L∞(0, T ;H1,n+1
2

2,0 (E)) with ut ∈ L∞(0, T ;L
n+1
2

2 (E)) is called a weak solution of
the problem 1.1 on intE× [0, T ) if

(ut, v)2 +

∫ t

0

(∇Eu,∇Ev)2dτ +

∫ t

0

(V (z)u, v)2dτ +

∫ t

0

(γut, v)2dτ =

∫ t

0

(f(z, u), v)2dτ + (u1, v)2

for all v ∈ H1,n+1
2

2,0 (E) and t ∈ (o, T ). u(z, 0) = u0 in H1,n+1
2

2,0 (E) and hold the following energy inequality

I(t) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
dτ ≤ I(0), ∀t ∈ [0, T ),

where 0 ≤ T ≤ ∞ and

I(t) =
1

2
∥ut∥2

L
n+1
2

2 (E)
+ J(u).

We note, since u ∈ L∞(0, T ;H1,n+1
2

2,0 (E)) and ut ∈ L∞(0, T ;L
n
2
2 (E)) from the first equation of the problem 1.1

as similar in [14], one can obtain that utt ∈ L∞(0, T ;H−1,n+1
2

2,0 (E)).

Now we discuss the invariance of some sets corresponding to the problem 1.1.

Proposition 4.4 Let 0 < J(u) < d for u ∈ H1,n+1
2

2,0 (E). Suppose that δ1 < 2
3C2(p+1) < δ2 be roots of equation

d(δ) = J(u). Then Kδ(u) has no change in its sign for δ ∈ (δ1, δ2).

Proof We assume that there exists a δ0 ∈ (δ1, δ2) for which Kδ0(u) = 0. Hence, by definition of d(δ) we have
J(u) ≥ d(δ). But, we have two cases the following for δ0{

δ1 < δ0 < 2
3C2(p+ 1) < δ2

δ1 < 2
3C2(p+ 1) < δ0 < δ2

Now, by Remark 4.2 We get that d(δ1) < d(δ0) or d(δ2) < d(δ0) then we obtain that d(δ1) = d(δ2) = J(u) <

d(δ0) that this is contradiction . 2

Theorem 4.5 Let u0 ∈ H1,n+1
2

2,0 (E), 0 < e < d. Suppose that δ1 < δ2 are roots of equations d(δ) = e then

i) all solutions of problem 1.1 with 0 < J(u0) ≤ e belong to set Wδ for δ1 < δ < δ2 provided K(u0) > 0

or ∥∇Eu0∥2
L

n+1
2

2 (E)
= 0.

ii) all solutions of problem 1.1 with 0 < J(u0) ≤ e belong to Eδ for δ ∈ (δ1, δ2) provided K(u0) < 0.

Proof i) Let u(t) be a solution of the problem 1.1 with initial value u0 for which satisfies in conditions
0 < J(u0) ≤ e < d, K(u0) > 0 or ∥∇Eu0∥2

L
n+1
2

2 (E)
= 0. Let T be existence time for solution u(t). If

∥∇Eu0∥2
L

n+1
2

2 (E)
= 0, then since u0 has compact support u0 = 0, so by definition of Wδ we obtain that

u0 ∈ Wδ. If K(u0) > 0 then by assumption we have

0 < J(u0) ≤ e = d(δ1) = d(δ2) < d(δ) ≤ d
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for δ1 < δ < δ2. Hence, Kδ(u0(t)) > 0 for δ1 < δ < δ2, by Proposition 4.4. Therefore, by definition of Wδ,

u0 ∈ Wδ for δ1 < δ < δ2. Now, we have to show that for δ1 < δ < δ2 and 0 < t < T, u(t) ∈ Wδ. Suppose
that, there exist t0 ∈ (0, T ) such that for δ1 < δ < δ2, u(t0) ∈ ∂Wδ. Then we can imply that , Kδ(u(t0)) = 0

and ∥∇Eu0∥2
L

n+1
2

2 (E)
̸= 0, or by definition of Wδ, J(u(t0)) = d(δ). Since u(t0) is a solution of problem 1.1, so

it satisfies in energy inequality i.e.

1

2
∥ut∥2

L
n+1
2

2 (E)
+ J(u(t)) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)

≤ I(0) = J(u0) ≤ e < d(δ),

for any δ ∈ (δ1, δ2) and t ∈ (0, T ). Therefore, the equality J(u(t0)) = d(δ) for any δ ∈ (δ1, δ2) and t ∈ (0, T ) is
not possible. If Kδ(u(t0)) = 0 and ∥∇Eu0∥2

L
n+1
2

2 (E)
̸= 0, then by definition of d(δ) we get that d(δ) ≤ J(u0(t)),

that is in contradiction with energy inequality. Therefore, u(t) ∈ Wδ for any δ ∈ (δ1, δ2) and t ∈ (0, T ).

ii) Similar to first case it can be prove that u0 ∈ Eδ for δ ∈ (δ1, δ2) provided Kδ(u0) < 0. Now,
we should prove u(t) ∈ Eδ for any δ ∈ (δ1, δ2) and t ∈ (0, T ). Suppose that there exist t0 ∈ (0, T ), such
that for t ∈ [0 , t0), u(t) ∈ Eδ and u(t0) ∈ ∂Eδ, that is, Kδ(u0) = 0 or J(u(t0)) = d(δ) for δ ∈ (δ1, δ2).

According to energy inequality the equality J(u(t0)) = d(δ) is not possible similar to first case. Hence, we
assume that Kδ(u(t0)) = 0, then Kδ(u(t)) < 0 for t ∈ (0, t0), since for t ∈ [0, t0), u(t) ∈ Eδ, then by
definition of Eδ, Kδ(u(t)) < 0. Now, using the Proposition 3.6 we obtain that ∥∇Eu(t)∥

L
n+1
2

2 (E)
> l(δ) and

∥∇Eu(t0)∥
L

n+1
2

2 (E)
> l(δ) ̸= 0. Hence by definition of d(δ), J(u(t0)) ≥ d(δ) which is in contradiction with

energy inequality. 2

Remark 4.6 Suppose that all assumptions in Theorem 4.5 hold. Then for any δ ∈ (δ1, δ2) both seta Wδ and
Eδ are invariant. Moreover, both sets

Wδ1δ2 =
⊔

δ1<δ<δ2

Wδ, Eδ1δ2 =
⊔

δ1<δ<δ

Eδ

are invariant respectively under flow of the problem 1.1. Hence, we can get for all weak solutions of the problem
1.1

u(t) ̸∈ Nδ1δ2 =
⊔

δ1<δ<δ2

Nδ.

To discuss about the invariant of the solutions with negative level energy, we introduce the following results.

Proposition 4.7 Let u0 ∈ H1,n+1
2

2,0 (E) and u1 ∈ L
n+1
2

2 (E). Suppose that I(0) = 0 and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0.

Then all weak solutions of the problem 1.1 satisfy

∥∇Eu∥
L

n+1
2

2 (E)
≥ M =

(
(p

′
+ 1)(1 + C2

∗)

2Cp′+1
∗∗ c0

) 1

p
′−1

.
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Proof Let us consider u ∈ H1,n+1
2

2,0 (E) as a weak solution of the problem 1.1. According to the Definition 4.3

I(t) + γ

∫ t

0

∥ut∥2
L

n+1
2

2 (E)
dτ ≤ I(0) = 0.

Therefore, by definition of constants C∗ and C∗∗

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

C2
∗
2
∥∇Eu∥2

L
n+1
2

2 (E)
− c0C

p
′
+1

∗∗

p′ + 1
∥∇Eu∥q+1

L
n+1
2

2 (E)

≤ 1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

C2
∗
2
∥∇Eu∥2

L
n+1
2

2 (E)
− c0

p′ + 1

∫
E
rq | u |q+1 dµ

≤ 1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

C2
∗
2
∥∇Eu∥2

L
n+1
2

2 (E)
−
∫
E
rqF (z, u)dµ

≤ 1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

C2
∗
2
∥∇Eu∥2

L
n+1
2

2 (E)
−
∫
E
rqF (z, u)dµ

≤ I(t) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
.

Hence,

∥∇Eu∥
L

n+1
2

2 (E)
≥
(
(p

′
+ 1)(1 + C2

∗)

2Cp′+1
∗∗ c0

) 1

p
′−1

= M.

2

Theorem 4.8 Let u0 ∈ H1,n+1
2

2,0 (E), u1 ∈ L
n+1
2

2 (E) and assumption (A3−1) holds. Suppose that either I(0) < 0

or I(0) = 0 and ∥∇Eu∥
L

n+1
2

2 (E)
̸= 0. Then all weak solutions of the problem 1.1 belong to Eδ for any

δ ∈ (0 , p+1
2 (1 + p−1

p+1C
2
∗).

Proof Let u(t) be an arbitrary weak solution of the problem 1.1 with expressed assumptions in face of the
Theorem and T be the existence time of u(t). From Definition 4.3, for every

δ ∈
(
0 ,

p+ 1

2
(1 +

p− 1

p+ 1
C2

∗)

)

and t ∈ [0, T ), we can obtain
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1

2
∥ut∥2

L
n+1
2

2 (E)
+ a(δ)∥∇Eu∥2

L
n+1
2

2 (E)
+

1

p+ 1
Kδ(u)

=
1

2
∥ut∥2

L
n+1
2

2 (E)
+

(
1

2
− δ

p+ 1
+

p− 1

2(p+ 1)
C2

∗

)
∥∇Eu∥2

L
n+1
2

2 (E)

+
1

p+ 1

(
δ∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z)|u|2dµ−

∫
E
rquf(z, u)dµ

)
=

1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

p− 1

2(p+ 1)
C2

∗∥∇Eu∥2
L

n+1
2

2 (E)

+
1

p+ 1

∫
E
rqV (z)|u|2dµ− 1

p+ 1

∫
E
rquf(z, u)dµ

≤ 1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

[
(
1

2
− 1

p+ 1
) +

1

p+ 1

] ∫
E
rqV (z)|u|2dµ

− 1

p+ 1

∫
E
rquf(x, u)dµ ≤ 1

2
∥ut∥2

L
n+1
2

2 (E)

+ J(u) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
≤ I(0). (4.1)

If I(0) < 0, then 4.1 implies that Kδ(u) < 0 and J(u) < 0 < d(δ) for every

δ ∈
(
0 ,

p+ 1

2
(1 +

p− 1

p+ 1
C2

∗)

)
and t ∈ [0, T ). If I(0) = 0 and ∥∇Eu∥

L
n+1
2

2 (E)
̸= 0, then Proposition 4.7 gives

∥∇Eu∥
L

n+1
2

2 (E)
≥ M

for t ∈ [0, T ). Again by the relation 4.1 we get Kδ(u) < 0 and J(u) < 0 < d(δ) for

δ ∈
(
0 ,

p+ 1

2
(1 +

p− 1

p+ 1
C2

∗)

)
and t ∈ [0, T ). Therefore, for two cases discussed above, for every δ ∈ (0 , p+1

2 (1+ p−1
p+1C

2
∗)) and t ∈ [0, T ), we

have u ∈ Eδ. 2

5. Existence and nonexistence results
In this section we prove the global existence and nonexistence of solutions and give a sharp condition for global
existence of solutions for problem 1.1 with I(0) < d.

Theorem 5.1 Let γ ≥ 0, u0 ∈ H1,n+1
2

2,0 (E) and u1 ∈ L
n+1
2

2 (E). Suppose that I(0) < d, K(u0) > 0 or
∥∇Eu0∥

L
n+1
2

2 (E)
= 0. Then under assumptions (A1 − A2 − A3), problem 1.1 admits a global weak solution

u(t) ∈ L∞(0,∞;H1,n+1
2

2,0 (E)) with ut ∈ L
n+1
2

2 (E) and u(t) ∈ W for t ∈ [0,∞).
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Proof By Proposition 3 in [7], we can choose {φj(x)} as orthonormal basis of space H1,n+1
2

2,0 (E). Then we
construct approximation solution um(z, t) similar to [19] as following:

um(z, t) =

m∑
j=1

hjm(t)φj(z),

for m = 1, 2, ... that satisfies in problem 1.1 i.e.

(uttm, φk)2 + (∇Eum,∇Eφk)2 + (V (z)um, φk)2 + γ (utm, φk)2

= (f(z, um), φk)2, (5.1)

um(z, 0) =

m∑
j=1

hjm(0)φj(z) → u0(z), (5.2)

in H1,n+1
2

2,0 (E) and

utm(z, 0) =

m∑
j=1

hjm(0)φj(z) → u1(z), (5.3)

in L
n+1
2

2 (E). Multiplying 5.1, 5.2 and 5.3 by h′
km(t) and forming the sum on k = 1, 2, ...,

m∑
k=1

(uttm, φk)2h
′
km(t) + (∇Eum,∇Eφk)2h

′
km(t) + (V (z)um, φk)2h

′
km(t)

+

m∑
k=1

γ (utm, φk)2h
′
km(t) =

m∑
k=1

(f(z, um), φk)2h
′
km(t),

for m = 1, 2, 3, ... . Therefore,

∫
E
rquttmutmdµ +

∫
E
rq∇Eum∇Eutmdµ+

∫
E
raV (z)umutmdµ

+ γ

∫
E
rqutmutmdµ =

∫
E
rqf(z, um)utmdµ. (5.4)

Using the Leibniz rule one can get

1

2

d

dt

∫
E
rq|utm|2dµ +

1

2

d

dt

∫
E
rq|∇Eum|2dµ+

1

2

d

dt

∫
E
rqV (z)|um|2dµ

+ γ

∫
E
rq|utm|2dµ =

d

dt

∫
E
rqF (z, um)dµ. (5.5)
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By integration of the relation 5.5 with respect to t

1

2
∥utm∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eum∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z)|um|2dµ+ γ

∫ t

0

∥uτm∥2
L

n+1
2

2 (E)
dτ

−
∫
E
rqF (z, um)dµ

= Im(t) + γ

∫ t

0

∥uτm∥2
L

n+1
2

2 (E)
dτ ≤ Im(0) < d, (5.6)

where the last equal is upon definition 4.3. Using 5.6 and definition of functional K,

J(um) =
1

2
∥∇Eum∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z)|um|2dµ−

∫
E
rqF (z, um)dµ

≥ 1

2
∥∇Eum∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z)|um|2dµ

− 1

p+ 1

(
∥∇Eum∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z)|um|2dµ−K(um)

)

=
p− 1

2(p+ 1)

[
∥∇Eum∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z)|um|2dµ

]
≥ p− 1

2(p+ 1)
(1 + C2

∗)∥∇Eum∥2
L

n+1
2

2 (E)
.

Then ∫ t

0

1

2
∥utm∥2

L
n+1
2

2 (E)
dτ +

p− 1

2(p+ 1)
(1 + C2

∗)∥∇Eum∥2
L

n+1
2

2 (E)

≤ Im(t) + γ

∫ t

0

∥uτm∥2
L

n+1
2

2 (E)
dτ ≤ Im(0) < d. (5.7)

for t ∈ [0,∞) and sufficiently large m. Therefore, for any t ∈ [0,∞),

d

dt
Im(t) + γ∥utm∥2

L
n+1
2

2 (E)
= 0 (5.8)

and Im(t) + γ
∫ t

0
∥uτm∥2

L
n+1
2

2 (E)
dτ = Im(0) < 0 where, Im(t) = 1

2∥utm∥2
L

n+1
2

2 (E)
+ J(um). Hence, for sufficiently

large m and 0 ≤ t < ∞ we obtain that um ∈ W by Proposition 4.5. From 5.8 and by the same argument in

[19] it implies that there exists a u and subsequence {ui} of {um} such that ui → u in L∞(0, T ;H1,n+1
2

2,0 (E))

weakly star and a.e. in E × [0,∞). Moreover, ui → u in L
n

p
′
+1

p′+1
(E) strongly and for each t > 0 and uti → ut

in L∞(0,∞;L
n+1
2

2 (E)) weakly star. Also it satisfies on all conditions of Definition 4.3. Now, we prove that

lim
i→∞

∫
E
rqF (z, ui)dµ =

∫
E
rqF (z, u)dµ.
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To this end, we have the following estimations∣∣∣∣∫
E
rqF (z, ui)dµ −

∫
E
rqF (z, u)dµ

∣∣∣∣
≤

∫
E
rq | F (z, ui)− F (z, u) | dµ

≤
∫
E
rq | f(z, u+ µi(ui − u)) | | ui − u | dµ

≤ ∥f(z, u+ µi(ui − u))∥r
L

n+1
s

s (E)
∥ui − u∥p

′
+1

L

n

p
′
+1

p
′
+1

(E)
(5.9)

where, 0 < µi < 1, s = p
′
+1

p′ . On the other hand,

∥f(z, u+ µi(ui − u))∥s
L

n+1
s

s (E)
=

∫
E
rq | f(z, u+ µi(ui − u)) |s dµ

≤ cs0

∫
E
rq | u+ µi(ui − u) |p

′
s dµ

= cs0∥u+ µi(ui − u)∥p
′
+1

L

n+1

p
′
+1

p
′
+1

(E)

< ∞. (5.10)

Then one get that

lim
i→∞

∫
E
rqF (z, ui)dµ =

∫
E
rqF (z, u)dµ.

Therefore, from 5.8

1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z) | u |2 dµ+ γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
dτ

≤ lim inf
i→∞

1

2
∥uti∥2

L
n+1
2

2 (E)
+ lim inf

i→∞

1

2
∥∇Eui∥2

L
n+1
2

2 (E)
+ lim inf

i→∞

1

2

∫
E
rqV (z) | ui |2 dµ

+ lim inf
i→∞

γ

∫ t

0

∥ut∥2
L

n+1
2

2 (E)
dτ

≤ lim inf
i→∞

(
1

2
∥uti∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eui∥2

L
n+1
2

2 (E)
+

1

2

∫
E
rqV (z) | ui |2 dµ

+ γ

∫ t

0

∥uτi∥2
L

n+1
2

2 (E)
dτ

)
= lim inf

i→∞

(
Ii(0) +

∫
E
rqF (z, ui)dµ

)

= lim
i→∞

(
Ii(0) +

∫
E
rqF (z, ui)dµ

)
= I(0) +

∫
E
rqF (z, u)dµ. (5.11)

This implies the energy inequality in Definition 4.3. Finally, by Theorem 4.5, u ∈ W for 0 ≤ t < ∞. 2
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Corollary 5.2 If we replace the assumption I(0) < d, K(u0) > 0 by 0 < I(0) < d, Kδ2(u0) > 0 where
(δ1, δ2) is the maximal interval including δ = 2

3C2(p + 1), where C2 introduced in Remark 4.2, such that

I(0) < d(δ) for δ ∈ (δ1, δ2). Then problem 1.1 admits a global weak solution u(t) ∈ L∞(0,∞;H1,n+1
2

2,0 (E)) with

ut ∈ L∞(0,∞;L
n+1
2

2 (E)) and u(t) ∈ Wδ for δ ∈ (δ1, δ2), t ∈ [0,∞).

Proof It is immediately implied form Theorems 4.5 and 5.1. 2

Corollary 5.3 If we replace the assumption Kδ2(u0) > 0 or ∥∇Eu0∥
L

n+1
2

2 (E)
= 0, by

∥∇Eu0∥
L

n+1
2

2 (E)
< l(δ2), then problem 1.1 admits a global weak solution u(t) ∈ L∞(0,∞;H1,n+1

2
2,0 (E)) with

ut(t) ∈ L∞(0,∞;L
n+1
2

2 (E)) satisfying

∥∇Eu∥2
L

n+1
2

2 (E)
≤ I(0)

a(δ1)
, ∥ut∥2

L
n+1
2

2 (E)
≤ 2I(0), 0 ≤ t ≤ ∞ (5.12)

Proof From assumption ∥∇Eu0∥
L

n+1
2

2 (E)
< l(δ2), we can get that Kδ2(u0) > 0 or ∥∇Eu0∥

L
n+1
2

2 (E)
= 0. Then

it follows from Corollary 5.2 that problem 1.1 admits a global weak solution such that for any δ1 < δ < δ2,

0 ≤ t < ∞, u(t) ∈ L∞(0,∞;H1,n+1
2

2,0 (E)) with ut ∈ L∞(0,∞;L
n+1
2

2 (E)) and u(t) ∈ Wδ. Moreover, similar of
the proof Theorem 4.8 for every δ1 < δ < δ2, 0 ≤ t < ∞,

1

2
∥ut∥2

L
n+1
2

2 (E)
+ a(δ)∥∇Eu∥2

L
n+1
2

2 (E)
+

1

p+ 1
Kδ(u) ≤ I(0).

If we tend δ to δ1 then we achieve 5.12. 2

Now we discuss the global nonexistence of solutions of the problem 1.1.

Theorem 5.4 Let 0 ≤ γ ≤ (p − 1)(1 + C2
∗)λ1, u0 ∈ H1,n+1

2
2,0 (E), u1 ∈ L

n+1
2

2 (E). Suppose that I(0) < d and
K(u0) < 0. Then the existence time of solution for problem 1.1 is finite, where λ1 is the first eigenvalue in
Proposition ?? i.e.

λ1 = inf

u∈H
1, n+1

2
2,0 (E),u ̸=0

∥∇Eu∥
L

n+1
2

2 (E)

∥u∥
L

n+1
2

2 (E)

.

Proof Let u(t) be any weak solution of problem 1.1 with I(0) < d and K(u0) < 0, T be the maximal
existence time of u(t). We will prove T < ∞ by contradiction. Let M(t) := ∥u∥2

L
n+1
2

2 (E)
, then

Ṁ(t) =
d

dt

∫
E

rq|u(z, t)|2dµ = 2(ut, u)2,

from definition of functional K,

M̈(t) = 2∥ut∥2
L

n+1
2

2 (E)
+ 2(utt, u)2 = 2∥ut∥2

L
n+1
2

2 (E)
− 2γ(ut, u)2 − 2K(u). (5.13)
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Using proof of Theorem 4.8 we can get,

1

2
∥ut∥2

L
n+1
2

2 (E)
+ a(1)∥∇Eu∥2

L
n+1
2

2 (E)
+

1

p+ 1
K(u)

=
1

2
∥ut∥2

L
n+1
2

2 (E)
+

(
1

2
− 1

p+ 1
+

p− 1

2(p+ 1)
C2

∗

)
∥∇Eu∥2

L
n+1
2

2 (E)

+
1

p+ 1

(
∥∇Eu∥2

L
n+1
2

2 (E)
+

∫
E
rqV (z)|u|2dµ−

∫
E
rquf(z, u)dµ

)
=

1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

p− 1

2(p+ 1)
C2

∗∥∇Eu∥2
L

n+1
2

2 (E)

+
1

p+ 1

∫
E
rqV (z)|u|2dµ− 1

p+ 1

∫
E
rquf(z, u)dµ

≤ 1

2
∥ut∥2

L
n+1
2

2 (E)
+

1

2
∥∇Eu∥2

L
n+1
2

2 (E)
+

[
(
1

2
− 1

p+ 1
) +

1

p+ 1

] ∫
E
rqV (z)|u|2dµ

−
∫
E
rqF (z, u)dµ ≤ 1

2
∥ut∥2

L
n+1
2

2 (E)
+ J(u) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
dτ

= I(t) + γ

∫ t

0

∥uτ∥2
L

n+1
2

2 (E)
≤ I(0). (5.14)

Thus inequality 5.14 implies that

M̈(t) ≥ 2∥ut∥2
L

n+1
2

2 (E)
− 2γ(ut, u)2

− 2(p+ 1)

[
I(0)− 1

2
∥ut∥2

L
n+1
2

2 (E)
− p− 1

2(p+ 1)
(1 + C2

∗)∥∇Eu∥2
L

n+1
2

2 (E)

]
= (p+ 3)∥ut∥2

L
n+1
2

2 (E)
+ (p− 1)(1 + C2

∗)∥∇Eu∥2
L

n+1
2

2 (E)

− 2γ(ut, u)2 − 2(p+ 1)I(0). (5.15)

In first, let us consider I(0) ≤ 0. Then,

M̈(t) ≥ (p+ 3)∥ut∥2
L

n+1
2

2 (E)
+ (p− 1)(1 + C2

∗)λ1∥u∥2
L

n+1
2

2 (E)
− 2γ(ut, u)2.

condition γ < (p− 1)(1 + C2
∗)λ1 implies that, there exists a constant ϵ ∈

(
0 , (p− 1)(1 + C2

∗)

)
such that

γ2 < (p− 1− ϵ)(1 + C2
∗)λ

2
1.

Therefore,

M̈(t) ≥ (4 + ϵ)∥ut∥2
L

n+1
2

2 (E)
+ (p− 1− ϵ)∥ut∥2

L
n+1
2

2 (E)
− 2γ(ut , u)2

+ (p− 1)(1 + C2
∗)λ

2
1∥u∥2

L
n+1
2

2 (E)
. (5.16)
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On the other hand,

2γ(ut , u)2 ≤ (p− 1− ϵ)∥ut∥2
L

n+1
2

2 (E)
+

γ2

p− 1− ϵ
∥u∥2

L
n+1
2

2 (E)

≤ (p− 1− ϵ)∥ut∥2
L

n+1
2

2 (E)
+ (p− 1)(1 + C2

∗)λ
2
1∥u∥2

L
n+1
2

2 (E)
. (5.17)

From 5.16 and 5.17, we can get that
M̈(t) ≥ (4 + ϵ)∥ut∥2

L
n+1
2

2 (E)
. (5.18)

By cone Hölder inequality we get

M(t)M̈(t)− 4 + ϵ

4
Ṁ(t) ≥ (4 + ϵ)

(
∥ut∥2

L
n+1
2

2 (E)
∥u∥2

L
n+1
2

2 (E)
− (ut , u)2

)
≥ 0,

(M−α)′′ =
−α

Mα+2(t)

(
M(t)M̈(t)− (α+ 1)Ṁ(t)2

)
≤ 0,

for α = ϵ
4 and 0 ≤ t < ∞. Hence, there exists a T1 > 0 such that

lim
t→T1

M−α(t) = 0

and limt→T1
M(t) = +∞, which is contradicts T = +∞.

In second case, we consider 0 < I(0) < d. In this case from Theorem 4.5 we have u ∈ Eδ for 0 ≤ t < ∞
and δ ∈ ( 23C2(p + 1) , δ2) (see Remark 4.2)where (δ1 , δ2) is the maximal interval including
δ = 2

3C2(p+1) such that d(δ) > I(0) for δ ∈ (δ1 , δ2). Therefore, Kδ(u) < 0 and ∥∇Eu∥
L

n+1
2

2 (E)
> l(δ) for

2
3C2(p+ 1) < δ < δ2, 0 ≤ t < ∞. Consequent, Kδ(u) ≤ 0 and ∥∇Eu∥ ≥ l(δ) for 0 ≤ t < ∞. From 5.13,

d

dt
(eγtṀ(t)) = eγt

(
γṀ(t) + M̈(t)

)
= 2eγt

(
∥ut∥2

L
n+1
2

2 (E)
∥ −K(u)

)

= 2eγt
(
∥ut∥2

L
n+1
2

2 (E)
∥+ (

3δ2
2C2(p+ 1)

− 1)∥∇Eu∥2
L

n+1
2

2 (E)
−K 3δ2

2C2(p+1)

(u)

)

≥ 2eγt(
3δ2

2C2(p+ 1)
− 1)r2(

3δ2
2C2(p+ 1)

) = C(δ2)e
γt.

Hence,

eγtṀ(t) ≥ C(δ2)

∫ t

0

eγτdτ + Ṁ(0) =
C(δ2)

γ
(eγt − 1) + Ṁ(0),

Ṁ(t) ≥ C(δ2)

γ
(1− e−γt) + e−γtṀ(0).

Hence there exists t0 > 0 for which

Ṁ(t) ≥ C(δ2)

2γ
∀t ≥ t0
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and

M(t) ≥ C(δ2)

2γ
(t− t0) +M(t0) ≥

C(δ2)

2γ
(t− t0), t ≥ t0. (5.19)

From assumption γ < (p− 1)(1 + C2
∗)λ1 , it follows there exists a constant

ϵ ∈
(
0 , (p− 1)(1 + C2

∗)

)
such that

γ2 < (p− 1− ϵ)

[
(p− 1)(1 + C2

∗)λ
2
1 − ϵ

]
.

From 5.15,

M̈(t) ≥ (p+ 3)∥ut∥2
L

n+1
2

2 (E)
− 2γ(ut , u)2 + (p− 1)(1 + C2

∗)λ
2
1∥u∥2

L
n+1
2

2 (E)
− 2(p+ 1)I(0)

= ∥(4 + ϵ)∥ut∥2
L

n+1
2

2 (E)
+ (p− 1− ϵ)∥ut∥2

L
n+1
2

2 (E)
− 2γ(ut , u)2

+ [(p− 1)(1 + C2
∗)λ

2
1 − ϵ]∥ut∥2

L
n+1
2

2 (E)
+ ϵM(t)− 2(p+ 1)I(0). (5.20)

Also we can obtain

2γ(ut , u)2 ≤ (p− 1− ϵ)∥ut∥2
L

n+1
2

2 (E)
+

γ2

p− 1− ϵ
∥u∥2

L
n+1
2

2 (E)

≤ (p− 1− ϵ)∥ut∥2
L

n+1
2

2 (E)
+ [(p− 1)(1 + C2

∗)λ
2
1 − ϵ]∥u∥2

L
n+1
2

2 (E)
. (5.21)

From 5.20 and 5.21 we get

M̈(t) ≥ (4 + ϵ)∥ut∥2
L

n+1
2

2 (E)
+ ϵM(t)− 2(p+ 1)I(0). (5.22)

From 5.19, it follows that there exists a t1 > 0 such that

ϵ(t) > 2(p+ 1)I(0) ∀t > t1,

and then
M̈(t) > (4 + ϵ)∥ut∥2

L
n+1
2

2 (E)
, ∀t > t1.

Now, similar to first case we can obtain a contradiction. Hence we always have T < ∞.

2

From Theorems 5.1 and 5.4 we can obtain the following theorem for global existence and nonexistence of
solutions for problem 1.1.

Theorem 5.5 Let 0 ≤ γ < (p − 1)(1 + C2
∗)λ1, u0 ∈ H1,n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that I(0) < 0.

Then, when K(u0) > 0, problem 1.1 admits a global weak solution and when K(u0) < 0, problem 1.1 does not
admits any global weak solution.
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