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Abstract: Let L(k)(s, χ) be the k -th derivative of the Dirichlet L-function associated with a primitive character χ mod

q and a be a complex number. The solutions of L(k)(s, χ) = a are called a -points. In this paper, we give an asymptotic
formula for the sums

∑
ρ
(k)
0,χ:0<γ

(k)
0,χ<T

L(j)(ρ
(k)
0,χ, χ) and

∑
ρ
(k)
a,χ:1<γ

(k)
a,χ<T

L(j)(ρ(k)a,χ, χ) as T → ∞

where j and k are nonnegative integers and ρ
(k)
a,χ denotes an a -point of the k -th derivative L(k)(s, χ) and γ

(k)
a,χ =

Im(ρ
(k)
a,χ) . This work continues the investigations of Kaptan, Karabulut, and Yildirim [7, 10] and Mazhouda and Onozuka

[12].

Key words: Dirichlet L -function, a -points, value-distribution

1. Introduction
Let L(s, χ) be the Dirichlet L -function associated with a primitive character χ mod q and a be a complex
number. The zeros of L(s, χ) − a , which will be denoted by ρa,χ = βa,χ + iγa,χ are called the a-points of
L(s, χ) . First, we note that there is an a -point near any trivial zero s = −2n if χ(−1) = 1 and s = −2n − 1

if χ(−1) = −1 for sufficiently large n . Apart from these a -points, there are only finitely many other a -points
in the half-plane Re(s) = σ ≤ 0 . The a -points with βa,χ ≤ 0 are said to be trivial. All other a -points lie in a
strip 0 < Re(s) < A , where A is a constant depending on a ; these numbers are called the nontrivial a -points.
The number of these a -points satisfies a Riemann-von Mangoldt type formula (we refer to [14, chapter 7.2] for
the proof of this formula which is stated for functions in a subclass of the Selberg class including the Dirichlet
L -functions L(s, χ)), namely

Na,χ(T ) =
∑

ρa,χ : 0 < γa,χ ≤ T
βa,χ > 0

1 =
T

2π
log

(
qT

2πcae

)
+O (log T ) , (1.1)
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where ca = m if a = 1 and ca = 1 , otherwise, with m = min{n ≥ 2, χ(n) ̸= 0} . Here and in the sequel the error
term depends on q ; however, the main term is essentially independent of a . Moreover, Na,χ(T ) ∼ Nχ(T ) as
T −→ ∞ , where Nχ(T ) = N0,χ(T ) denotes the number of nontrivial zeros ρχ = βχ + iγχ of L(s, χ) satisfying
0 < γχ < T .

In [1], Conrey and Ghosh suggested the problem of estimating the average
∑

0<γ(k)<T ζ(j)(ρ(k)) for

nonnegative integers j and k , where ρ(k) = β(k)+ iγ(k) denote a zero of the k -th derivative ζ(k)(s) . One of the
first results on this topic was given by Fujii [3]. He gave an asymptotic formula of the sum

∑
0<γ<T ζ ′(ρ)Xρ

for a rational number X > 0 . The k = 0 case was treated by Kaptan et al. [7]. Garunk štis and Steuding [4]
gave a generalization of Fujii’s asymptotic formula with X = 1 that if T −→ ∞ , we have

∑
ρa : 0 < γa ≤ T

βa > 0

ζ ′(ρa) =

(
1

2
− a

)
T

2π
log2

(
T

2π

)
+ (c0 − 1 + 2a)

T

2π
log

(
T

2π

)

+ (1− c0 − c20 + 3c1 − 2a)
T

2π
+O

(
Te−C

√
log T

)
, (1.2)

where C is some positive constant and cn are the Stieltjes constants given by the Laurent series expansion of
ζ(s) at s = 1 ,

ζ(s) =
1

s− 1
+

∞∑
n=0

cn(s− 1)n (1.3)

Recently, Mazhouda and Onozuka [12] proved that for j, k ∈ Z≥0 and large T ,

∑
1<γ

(k)
a <T

ζ(j)
(
ρ(k)a

)
= (−1)j (δj,0 + aδk,0 +B(j, k))

T

2π

(
log

T

2π

)j+1

+Oj,k

(
T (log T )j

)
, (1.4)

where the implicit constant in the error terms may depend on a . To do so, they used the following result of
Karabulut and Yildirim [10] for fixed j, k ∈ Z≥0 and large T , one has

∑
0<γ(k)<T

ζ(j)(ρ(k)) = (−1)j(δj,0 +B(j, k))
T

2π

(
log

T

2π

)j+1

+Oj,k(T logj T ), (1.5)

where δj,0 = 1 if j = 0 and 0 otherwise,

B(j, k) = −k + 1

j + 1
− j!

k∑
r=1

e−zr

zj+1
r

Pk(zr) + j!

k∑
r=1

1

zj+1
r

, (1.6)

the sum over r being void in the case k = 0 and zr (r = 1, ..., k) being the zeros of Pk(z) =
∑k

j=0

zj

j!
.

Let ρ
(k)
a,χ = β

(k)
a,χ + iγ

(k)
a,χ denote an a -point of L(k)(s, χ) . Similar to the a -points of L(s, χ) , there is an

a -point of L(k)(s, χ) near any trivial zero s = −2n −
(

1−χ(−1)
2

)
for sufficiently large n and apart from these
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a -points, there are only finitely many other a -points in the half-plane σ ≤ C for any C < 0 (see Lemma 2.1
below).

In this paper, first we give an asymptotic formula for the sum

∑
ρ
(k)
0,χ:0<γ

(k)
0,χ<T

L(j)(ρ
(k)
0,χ, χ) (1.7)

and as a consequence, we obtain an estimate for

∑
ρ
(k)
a,χ:1<γ

(k)
a,χ<T

L(j)(ρ(k)a,χ, χ) (1.8)

where a is a complex number. The first sum extend Karabulut and Yildirim’s result to the k -th derivative of
the Dirichlet L -functions and is evaluated in the following theorem.

Theorem 1.1 Let k, j ∈ N be fixed and χ be a primitive character modulo q . Then as T → ∞ , we have

∑
ρ
(k)
χ ; 0<γ

(k)
χ ≤T

L(j)
(
ρ(k)χ , χ

)
= (−1)j(δj,0 +B(j, k))

T

2π

(
log

qT

2π

)j+1

+Oj,k

(
T (log qT )

j
)
, (1.9)

where B(j, k) is defined by (1.6).

From Theorem 1.1, we get our main result

Theorem 1.2 Let k, j ∈ N be fixed, a be a complex number and χ be a primitive character modulo q . Then
as T → ∞ , we have

∑
ρ
(k)
a,χ; 1<γ

(k)
a,χ≤T

L(j)
(
ρ(k)a,χ, χ

)
= (−1)j(δj,0 + aδk,0 +B(j, k))

T

2π

(
log

qT

2π

)j+1

+Oj,k

(
T (log qT )

j
)
.(1.10)

Here and in the sequel, the implicit constant in the error terms may depend on a .

Remark. By Theorem 1.2, we deduce the average value of L(j)(ρ
(k)
a , χ) over the a -points ρ

(k)
a,χ of L(k)(s, χ)

with 1 < Im(ρ
(k)
a,χ) < T , i.e.

1

Nk,χ(a, T )

∑
1<γ

(k)
a,χ<T

L(j)(ρ(k)a,χ, χ),

where Nk,χ(a, T ) is the number of terms in the above sum. By the same argument as in [13], we have an
asymptotic formula for Nk,χ(a, T ) which is ∼ (T/2π) log qT

2π (see [15] for the asymptotic formula of Nk,χ(0, T )).

Hence, the average is (−1)j (δj,0 + aδk,0 +B(j, k))
(
log qT

2π

)j
. Thus, this tells us about the size of L(j)(s, χ) at

certain points (namely the a -points of L(k)(s, χ)).
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2. Preliminary lemmas and equations
In this section, we give some lemmas and formulas useful for the proof of our Theorems. We start with well-
known results on the Dirichlet L -function L(s, χ) (see Davenport book [2]) and its k -th derivative. If χ mod
q is a primitive character, then

L(s, χ) = Λ(s, χ)L(1− s, χ), (2.1)

where

Λ(s, χ) =
2τ(χ)

iκq

(
2π

q

)s−1

Γ(1− s) sin
(π
2
(s+ κ)

)
, (2.2)

with τ(χ) =
∑q

r=1 χ(r)e
2πir

q and κ = 1
2 (1− χ(−1)) . From (2.2) and by Stirling’s formula (see[9, page 13]), we

get

Λ(1− s, χ)

=
τ(χ)

iκ
√
q
exp

{
it log

(
q|t|
2πe

)
− sgn(t)(

iπ

2
)(
1

2
− κ)

}(
q|t|
2π

)σ− 1
2
(
1 +O

(
1

|t|

))
(2.3)

in any fixed halfstrip α ≤ σ ≤ β, |t| ≥ 1 . Moreover, for any fixed σ, j ≥ 0 and |t| ≥ 1 , we have

Λ′

Λ
(s, χ) = − log

q|t|
2π

+O

(
1

|t|

)
,

(
d

ds

)j
Λ′

Λ
(s, χ) ≪ |t|−j (2.4)

and

Λ(j)(1− s, χ) = Λ(1− s, χ)

(
− log

q|t|
2π

)j

+O
(
qσ−

1
2 |t|σ− 3

2 (log q|t|)j−1
)
. (2.5)

Using equations (2.3)–(2.5) with upon j-fold differentiation of the functional equation (2.1), we obtain

L(j)(1− s, χ) = (−1)jΛ(1− s, χ)

(
1 +O

(
1

t

)) j∑
m=0

(
j
m

)
ℓj−mL(m)(s, χ), (2.6)

where σ is fixed, |t| ≥ 1 and ℓ = log

(
q|t|
2π

)
. Furthermore, for any fixed σ, k ∈ Z≥0 and t ≥ 1 , we have

L(k+1)

L(k)
(1− s, χ) = −

(
1 +O

(
1

t

))ℓ+

∑k
v=0

(
k
v

)
ℓk−v L(v+1)

L (s, χ)

∑k
w=0

(
k
w

)
ℓk−w L(w)

L (s, χ)



= −
(
1 +O

(
1

t

))ℓ+

∑k
v=0

(
k
v

)
1
ℓv

L(v+1)

L (s, χ)

1 +
∑k

w=1

(
k
w

)
1
ℓw

L(w)

L (s, χ)


= −

(
1 +O

(
1

t

))(
ℓ+

G′
k

Gk
(s, ℓ, χ)

)
, (2.7)
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with the differentiation in G′ is respect to s . Since L(w)

L (s, χ) ≪w 1 when σ ≥ 1 + δ , for sufficiently large t ,
we get

k∑
w=1

(
k
w

)
1

ℓw
L(w)

L
(s, χ) ≪k

1

log qt
. (2.8)

By expanding the denominator of (2.7) as a power series, we obtain

(
1 +

k∑
w=1

(
k
w

)
1

ℓw
L(w)

L
(s, χ)

)−1

=

∞∑
u=0

(−1)u

(
k∑

w=1

(
k
w

)
1

ℓw
L(w)

L
(s, χ)

)u

=

∞∑
u≤ log A

log log A

(−1)u

(
k∑

w=1

(
k
w

)
1

ℓw
L(w)

L
(s, χ)

)u

+O

(
1

A

)
(2.9)

where σ ≥ 1+δ and t ≥ A for large A . By the functional equation (2.1) and the Phragmén–Lindel ö f principle,
we deduce that

L(s, χ) ≪ϵ


|qt| 12−σ+ϵ σ < 0,

|qt| 12 (1−σ)+ϵ 0 ≤ σ ≤ 1,

|qt|ϵ σ > 1,

(2.10)

as |t| → ∞ and where ϵ is an arbitrarily small positive number. Moreover, by Cauchy’s integral formula, we
get

L(k)(s, χ) =
k!

2πi

∫
C

L(w,χ)

(w − s)k+1
ds,

where C is any arbitrarily small circle centered at s . Using the last bound of L(s, χ) , it follows that

L(k)(s, χ) ≪ϵ


|qt| 12−σ+ϵ σ < 0,

|qt| 12 (1−σ)+ϵ 0 ≤ σ ≤ 1,

|qt|ϵ σ > 1.

(2.11)

Now, using the same argument as in [13, Lemma 2.6], we get easly

L(k+1)(s, χ)

L(k)(s, χ)− a
=

∑
|γ(k)

a,χ−t|<1

1

s− ρ
(k)
a,χ

+O (log qt) , (2.12)

for any constants α, β and s ∈ C with α ≤ σ ≤ β and large t .

Lemma 2.1 Let k be a positive integer, χ be a primitive character modulo q and a ∈ C . Then, there exist
real numbers E1 = E1(k, a, q) ≤ 0 and E2 = E2(k, a, q) ≥ 1 such that there is no a-point of L(k)(s, χ) for
{s ∈ C, σ ≤ E1, |t| ≥ 1} and {s ∈ C, σ ≥ E2} .
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Proof The case a = 0 was treated by Yildirim in [16]. Hence, we consider only the case a ̸= 0 . From equation
(2.1) and by differentiating k times, we obtain

L(k)(1− s, χ) = (−1)k
2τ(χ)

iκq

(
2π

q

)−s k∑
j=0

Γ(j)(s)Rj,k(s)

= (−1)k
2τ(χ)

iκq

(
2π

q

)−s
Γ(k)(s) cos

(π
2
(s− κ)

)
L(s, χ) +

k−1∑
j=0

Γ(j)(s)Rj,k(s)

 , (2.13)

where

Rj,k(s) = Pj,k(s) cos
(π
2
(s− κ)

)
+Qj,k(s) sin

(π
2
(s− κ)

)
, (2.14)

Pj,k(s) =

k∑
n=0

aj,k,nL
(n)(s, χ) (2.15)

and

Qj,k(s) =

k∑
n=0

bj,k,nL
(n)(s, χ), (2.16)

where aj,k,n and bj,k,n are constants that may depend on q . Using [16, Equation(13)], derivatives of the
Gamma function can be estimated as follows:

Γ(j)(s) = Γ(s) (log s)
j

(
1 +O

(
1

s log s

))
(2.17)

in the region {s ∈ C, σ ≥ 1+δ, |t| ≥ 1} . Using the last estimate and the fact that in the same region L(s, χ) ≍ 1

and L(j)(s, χ) =
∑

n≥2
χ(n)(− logn)j

ns ≪ 1 , we get∣∣∣Γ(k)(s) cos
(π
2
(s− κ)

)
L(s, χ)

∣∣∣ ≍
∣∣∣Γ(s) logk(s)eπ |t|

2

∣∣∣ (2.18)

and ∣∣∣∣∣∣
k−1∑
j=0

Γ(j)(s)Rj,k(s)

∣∣∣∣∣∣ ≪
∣∣∣Γ(s) logk−1(s)eπ

|t|
2

∣∣∣ . (2.19)

As a consequence, one has

L(k)(1− s, χ)

= (−1)k
2τ(χ)

iκq

(
2π

q

)−s

Γ(s) logk(s) cos
(π
2
(s− κ)

)
L(s, χ)

(
1 +O

(
1

| log s|

))
(2.20)

in the region {s ∈ C, σ ≥ 1 + δ, |t| ≥ 1} . It follows from (2.20) that Lk(1 − s, χ) → ∞ as σ → ∞ .
Thus, there exists E1 = E1(k, a, q) ≤ 0 such that |L(k)(s, χ)| > |a| for σ ≤ E1 and |t| ≥ 1 . Next, since
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L(k)(s, χ) =
∑

n≥2
χ(n)(− logn)k

ns → 0 as σ → ∞ there exists E2 = E2(k, a, q) ≥ 1 such that |L(k)(s, χ)| < |a| .
2

Remark. It can also be seen by Rouché’s theorem that there is Nk = Nk(a, q) < 0 such that L(k)(s, χ) = a

has only one zero in the region {s ∈ C, −1− 2n− κ < σ < 1− 2n− κ, −1 < t < 1} for −n < Nk . Moreover,
apart from these a -points, there are only finitely many other a -points in the half-plane σ ≤ C for any C < 0 .

From Lemma 2.1, equation (2.11) and by Jensen’s formula, we deduce easily the following lemma.

Lemma 2.2 For any complex number a and any sufficiently large T , we have

Nk,χ(a; 1, T + 1)−Nk,χ(a; 1, T ) ≪ log(qT ), (2.21)

where

Nk,χ(a; 1, T ) =
∑

ρ
(k)
a,χ:1<γ

(k)
a,χ<T

1. (2.22)

3. Proof of Theorem 1.1
To prove Theorem 1.1, we use the same argument as in [10]. For this purpose, we need to extend some lemmas
for k -th derivative of Dirichlet L -function Lk(s, χ) . The case k = 0 was already proved by Kaptan et al. [6],
so here we assume k ̸= 0 .

Lemma 3.1 Let (bn)n be a sequence of complex numbers such that bn ≪ nϵ for any ϵ > 0 . Let a > 1 and m

be an integer. Then, for 1 ≤ T1 ≤ T and |m| = O(T ) as T → ∞ , one has

1

2π

∫ T

T1

Λ(1− a− it, χ)

(
log

(
qt

2π

))m ∞∑
n=1

bn
na+it

dt

=
τ(χ)

q

∑
1≤n≤ qT

2π

bne
− 2πin

q (log n)
m
+O

(
(qT )a−

1
2 (log qT )

m
)
+O

(
q2a−1 (log q)

m)
.

Proof The case m nonnegative is treated by Kaptan in [8, Lemma 2.14] which is based on [5, Lemma 2] (see
also [10, Lemma 2.2]). For the case when m is negative, we use the same argument of Kaptan and [11, Lemma
3.5] to obtain the result. 2

An elementary computation yields the following lemma.

Lemma 3.2 For k, i1, i2, ..., ik,m ∈ N, v ∈ {0, 1, ..., k} , σ > 1 and χ be a Dirichlet character modulo q , let us
define

∞∑
n=1

cn(i1, i2, ..., ik; v;m;χ)

ns
:=

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw

.

We have

χ′(n)cn(i1, i2, ..., ik; v;m;χ) = cn(i1, i2, ..., ik; v;m;χ′χ),
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for every Dirichlet character χ′ modulo q , with

|cn(i1, i2, ..., ik; v;m;χ)| ≤ (log n)K+m+1,

where
K := i1 + 2i2 + ...+ kik + v.

Lemma 3.3 Let χ be a Dirichlet character modulo q . Let k, i1, i2, ..., ik,m ∈ N, v ∈ {0, 1, ..., k} . For fixed k ,
if i1 + i2 + ...+ ik ≤ log x

log log x , then as T → ∞ , we have∑
n≤x

cn(i1, i2, ..., ik; v;m;χ) = Ok

(
x(log x)K+m

)
,

if χ is nonprincipal and∑
n≤x

cn(i1, i2, ..., ik; v;m;χ) =
φ(q)

q
S(i1, i2, ..., ik; v;m)x(log x)K+m+1 +Ok

(
x(log x)K+m

)
if χ is the principal character, where

S(i1, i2, ..., ik; v;m) =
(−1)K+m+1(v + 1)!m!

∏k
w=1(w!)

iw

(K +m+ 1)!
.

Proof Let χ be a nonprincipal character modulo q . Lemma 3.2 with Perron’s formula [15, chapter 3.12],
yields

∑
n≤x

cn(i1, i2, ..., ik; v;m;χ) =

∫ 1+ 1
log x+iU

1+ 1
log x−iU

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s
ds

+ Ok

( x

U
(log x)K+m+2

)
,

where q ≤ U ≤ x . Now, let C be the rectangle with vertices 1 + 1
log x − iU , 1 + 1

log x + iU , σ0 + iU , and
σ0 − iU .
Case 1. Assume that L(s, χ) has no exceptional zero. We take σ0 = 1− c

5 log qU , where c is the constant such

that L(s, χ) ̸= 0 for σ > 1− c
log qU (see [2, page 93]). Thus, the integrand is analytic on and inside C and we

have the bound L(w)

L (s, χ) ≪ (log qU)w . Then, we have by Cauchy’s formula

M =
1

2πi

∫
C

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s
ds = 0.

Now, using that L(m)(s, χ) ≪ (qU)
1
2 (1−σ)+ϵ , we get∫ 1− 1

5 log qU +iU

1+ 1
log x+iU

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s
ds ≪ (log qU)K+1

∫ 1− 1
5 log qU

1+ 1
log x

(qU)
1
2 (1−σ)+ϵ xσ

|σ + iU |
dσ

≪ x(log qU)K+1(qU)
c

10 log qU

(
1

log x
+

c

5 log qU

)
≪ x

U1−ϵ
(log qU)K .
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Analogously, we have

∫ 1+ 1
log x−iU

1− 1
5 log qU −iU

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s
ds ≪ x

U1−ϵ
(log qU)K

and

∫ 1− 1
5 log qU −iU

1− c
5 log qU +iU

L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s
ds ≪ (log qU)K+1

∫ U

−U

(|qt|) 1
2 (1−σ0)+ϵ xσ0

|σ0 + it|
dt

≪ x(log qU)K+1(qU)
c

10 log qU xσ0

∫ U

−U

1

|σ0 + it|
dt

≪ xU ϵ(log qU)K+1 exp

(
−c log x

10 log qU

)
.

Let U = (log x)2 . Then, from all above estimates, we obtain

∑
n≤x

cn(i1, i2, ..., ik; v;m;χ) = Ok

(
x(log x)K+m

)

Case 2. Suppose that there is an exceptional zero β , with β ≥ 1− c
4 log qU . Therefore, we take σ0 = 1− c

3 log qU .
Thus, the integrand has a pole at β of order L+ 1 , where L = i1 + i2 + ...+ ik . Hence,

M =
1

L!

dL

dsL

{
(s− β)L+1L

(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
xs

s

}
s=β

=
1

L!

∑
j1+j2+j3=L

(
L

j1, j2, j3

)
dj1

dsj1

{
(s− β)L+1L

(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
}

s=β

× dj2

dsj2
{xs}s=β

dj3

dsj3

{
1

s

}
s=β

= (−1)L
xβ

βL+1

L∑
j1=0

(−1)j1

j1!
βj1

dj1

dsj1

{
(s− β)L+1L

(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
}

s=β

×
L−j1∑
j2=0

(−1)j2

j2!
βj2(log x)j2 .

By Cauchy’s formula on a disk of radius 1 centered at s = β , we deduce

∣∣∣∣∣ dj1dsj1

{
(s− β)L+1L

(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
}∣∣∣∣∣ ≤ j1! max

|s−β|=1

∣∣∣∣∣L(v+1)

L
(s, χ)L(m)(s, χ)

k∏
w=1

(
L(w)

L
(s, χ)

)iw
∣∣∣∣∣

≪k j1!.
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The last equation yields to

M ≪k
xβ

βL+1

L∑
j1=0

βj1

L−j1∑
j2=0

βj2

j2!
(log x)j2

≪k
xβ

β
(log x)L

≪k x(log x)L.

As above, we obtain ∑
n≤x

cn(i1, i2, ..., ik; v;m;χ) = Ok

(
x(log x)K+m

)
Case 3. Suppose the existence of an exceptional zero β , with β < 1− c

4 log qU . Therefore, proceeding similarly
as in case 1 , we get ∑

n≤x

cn(i1, i2, ..., ik; v;m;χ) = Ok

(
x(log x)K+m

)
.

The proof of Lemma 3.3 when χ is principal is closely similar to that in [10, Lemma 2.4]. 2

Lemma 3.4 Let χ be a Dirichlet character modulo q . Let k, i1, i2, ..., ik,m ∈ N and v ∈ {0, 1, ..., k} . For fixed
k , if i1 + i2 + ...+ ik ≤ log x

log log x , then as T → ∞ , we have

∑
n≤x

cn(i1, i2, ..., ik; v;m;χ)

(log n)K−r
= Ok,r,m

(
x(log x)r+m

)
if χ is nonprincipal and

∑
n≤x

cn(i1, i2, ..., ik; v;m;χ)

(log n)K−r
=

φ(q)

q
S(i1, i2, ..., ik; v;m)x(log x)r+m+1 +Ok,r,m

(
x(log x)r+m

)
if χ is a principal character.

Proof of Theorem 1.1. The basic idea of the proof is to interpret the sum of L(j)(ρ
(k)
χ , χ) as a sum of residues.

By Cauchy’s theorem, we have

∑
0 < γ

(k)
χ < T

−b < β
(k)
χ < a

L(j)(ρ(k)χ , χ) =
1

2πi

∫
R

L(j)(s, χ)
L(k+1)

L(k)
(s, χ)ds

where the integration is taken over a rectangular contour in counterclockwise direction denoted by R with

vertices −b + ic , a + ic , a + iT , −b + iT with some constants a , b , c > 0 such that 1

L(k)(a+ it, χ)
≪k 1 ,
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0 < b < 1
8 and L(k)(s, χ) has no zero on the lines t = T and t = c . From [16, Theorem 3], we deduce that

there are finitely many zeros of L(k)(s, χ) in the region σ < −b and t > c , then we have

∑
0<γ

(k)
χ <T

L(j)(ρ(k), χ) =
1

2πi

∫
R

L(j)(s, χ)
L(k+1)

L(k)
(s, χ)ds+O(1)

=
1

2πi

{∫ a+ic

−b+ic

+

∫ a+iT

a+ic

+

∫ −b+iT

a+iT

+

∫ −b+ic

−b+iT

}
L(j)(s, χ)

L(k+1)

L(k)
(s, χ)ds+O(1)

= I1 + I2 + I3 + I4 +O(1)

The first integral I1 is independent of T, so I1 = O(1) . Next, we consider I2 , using that 1

L(k)(a+ it, χ)
≪k 1

and L(j)(s, χ) ≪ 1 , we get I2 = O(T ) . Now, using equation (2.12) and take the horizontal sides of the

rectangular contour to be a distance ≫ 1

log qT
from any zero of L(k)(s, χ) , one has

I3 =
1

2πi

∫ b+iT

a+iT

∑
|γ(k)

χ −t|<1

L(j)(s, χ)

s− ρ
(k)
χ

ds+O

(∫ b+iT

a+iT

log(qt)L(j)(s, χ)ds

)

= O

(qT )
1
2+b+ϵ log qT

∑
|γ(k)

χ −T |<1

1

+O
(
(qT )

1
2+b+ϵ log qT

)
.

By Lemma 2.2, we obtain

I3 = O
(
(q)T

1
2+b+ϵ(log qT )2

)
.

This leads I3 ≪ T , since 0 < b < 1
8 . For the fourth integral I4 , by using equations (2.6), (2.7), and (2.9), we

obtain

I4 = − 1

2πi

∫ 1+b+iT

1+b+ic

L(j)(1− s, χ)
L(k+1)

L(k)
(1− s, χ)ds

=
(−1)j

2πi

j∑
m=0

(
j
m

)∫ 1+b+iT

1+b+ic

Λ(1− s, χ)ℓj−m+1L(m)(s, χ)ds

+
(−1)j

2πi

j∑
m=0

(
j
m

)∫ 1+b+iT

1+b+ic

Λ(1− s, χ)ℓj−mG′
k

Gk
(s, ℓ, χ)L(m)(s, χ)ds+O(T )

= S1 + S2 +O(T ).
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Lemma 3.1 gives

S1 = (−1)j
j∑

m=0

(
j
m

)
τ(χ)

q

∑
1≤n≤ qT

2π

(−1)mχ(n)e−
2πin

q (log n)
j+1

+O
(
T b+ 1

2 (log qT )
j+1
)

= (−1)j
τ(χ)

q

∑
1≤n≤ qT

2π

χ(n)e−
2πin

q (log n)
j+1

j∑
m=0

(
j
m

)
(−1)m +O

(
T b+ 1

2 (log qT )
j+1
)

=

 O
(
T b+ 1

2 (log qT )
j+1
)

if j ≥ 1,

τ(χ)
q

∑
1≤n≤ qT

2π
χ(n)e−

2πin
q log n+O

(
T b+ 1

2 log qT
)

if j = 0.

Recall that (see [2, page 146])

e−
2πin

q =
1

φ(q)

∑
χ′≡q

τ(χ′)χ′(−n),

when (n, q) = 1 . The last formula yields

τ(χ)

q

∑
1≤n≤ qT

2π

χ(n)e−
2πin

q log n =
τ(χ)

qφ(q)

∑
χ′≡q

τ(χ′)χ′(−1)
∑

1≤n≤ qT
2π

χ(n)χ′(n) log n

=
∑
χ′ ̸=χ

τ(χ)τ(χ′)χ′(−1)

qφ(q)

∑
1≤n≤ qT

2π

χ(n)χ′(n) log n

+
τ(χ)τ(χ)χ(−1)

qφ(q)

∑
1≤n≤ qT

2π

χ0(n) log n.

Using the following estimate

∑
1≤n≤x

χ0(n) log n =
φ(q)

q
x log(x) +O(

φ(q)

q
x) +O(qϵ log(x))

and Pólya-Vinogradov inequality ∑
n≤x

χ(n) ≪ 2
√
q log q

for every nonprincipal character modulo q , we obtain

S1 =

 O
(
T b+ 1

2 (log qT )
j+1
)

if j ≥ 1,

T
2π log( qT2π ) +O

(
T b+ 1

2 log qT
)

if j = 0.
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Now, we estimate S2 . We have

S2 =
(−1)j

2πi

j∑
m=0

(
j
m

)∫ 1+b+iT

1+b+ic

Λ(1− s, χ)ℓj−mG′
k

Gk
(s, ℓ, χ)L(m)(s, χ)ds+O(T )

= (−1)j
j∑

m=0

(
j
m

) ∑
u≤ log T

log log T

k∑
v=0

(−1)u
(

k
v

) ∑
i1+i2+...+ik=u

(
u

i1, i2, ..., ik

) k∏
w=1

(
k
w

)iw

× 1

2π

∫ T

c

Λ(−b− it, χ)ℓj−K−mL(m)(1 + b+ it, χ)
L(v+1)

L
(1 + b+ it, χ)

k∏
w=1

(
L(w)

L
(1 + b+ it, χ)

)iw

dt

+ Oj,k

(
T

1
2+b+ϵ

)
.

From Lemma 3.1, we get

S2 = (−1)j
j∑

m=0

(
j
m

) ∑
u≤ log T

log log T

k∑
v=0

(−1)u
(

k
v

) ∑
i1+i2+...+ik=u

(
u

i1, i2, ..., ik

) k∏
w=1

(
k
w

)iw

× τ(χ)

q

∑
1≤n≤ qT

2π

Cn(i1, i2, ..., ik; v;m;χ)e−
2πin

q (log n)
j−K−m

+Oj,k

(
T

1
2+b+ϵ

)
.

Since

e−
2πin

q =
1

φ(q)

∑
χ′≡q

τ(χ′)χ′(−n)

when (n, q) = 1 , we obtain

S2 = (−1)j
j∑

m=0

(
j
m

) ∑
u≤ log T

log log T

k∑
v=0

(−1)u
(

k
v

) ∑
i1+i2+...+ik=u

(
u

i1, i2, ..., ik

) k∏
w=1

(
k
w

)iw

×


∑
χ′ ̸=χ

τ(χ)τ(χ′)χ′(−1)

qφ(q)

∑
1≤n≤ qT

2π

χ′(n)cn(i1, i2, ..., ik; v;m;χ)

(logn)K+m−j
+

τ(χ)τ(χ)χ(−1)

qφ(q)

∑
1≤n≤ qT

2π

χ(n)cn(i1, i2, ..., ik; v;m;χ)

(logn)K+m−j


+ Oj,k

(
T

1
2
+b+ϵ

)
.

By Lemma 3.4, we deduce

S2 = (−1)j
T

2π

(
log

qT

2π

)j+1 j∑
m=0

(
j
m

) ∑
u≤ log T

log log T

k∑
v=0

(−1)u
(

k
v

)

×
∑

i1+i2+...+ik=u

(
u

i1, i2, ..., ik

) k∏
w=1

(
k
w

)iw (−1)K+m+1(v + 1)!m!
∏k

w=1(w!)
iw

(K +m+ 1)!
+Oj,k

(
T (log qT )j

)
This last sum S2 was evaluated by Karabulut and Yildirim in [10]

S2 = (−1)j
T

2π

(
log

qT

2π

)j+1

B(j, k) +Oj,k

(
T (log qT )j

)
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Combining S1 and S2 , we obtain

I4 = (−1)j(δj,0 +B(j, k))
T

2π

(
log

qT

2π

)j+1

+Oj,k

(
T (log qT )

j
)
.

Finally, theorem 1.1 follows from estimates of I1, I2, I3 , and I4 .

4. Proof of Theorem 1.2

Let a be a complex number. We write s = σ + it, ρ
(k)
a,χ = β

(k)
a,χ + iγ

(k)
a,χ with real numbers σ, t, β

(k)
a,χ and γ

(k)
a,χ.

The case a = 0 was already proven in Theorem 1.1, so here we assume a ̸= 0 . By the residue theorem, for a
sufficiently large constant B and constant b ∈ (1, 9/8) , we have

∑
1<γ(k)

a,χ<T

1−b<β(k)
a,χ<B

L(j)
(
ρ(k)a,χ, χ

)
=

1

2πi

∫
R

L(j)(s, χ)
L(k+1)(s, χ)

L(k)(s, χ)− a
ds, (4.1)

where the integration is taken over a rectangular contour in counterclockwise direction denoted by R with
vertices 1 − b + i, B + i, B + iT, 1 − b + iT . Since there are finitely many a -points in {s ∈ C; Re(s) ≤
1− b, Im(s) ≥ 1} , we have

∑
1<γ

(k)
a,χ<T

L(j)
(
ρ(k)a,χ, χ

)
=

1

2πi

∫
R

L(j)(s, χ)
L(k+1)(s, χ)

L(k)(s, χ)− a
ds+O(1).

Hence, ∑
1<γ

(k)
a,χ<T

L(j)
(
ρ(k)a,χ, χ

)
(4.2)

=
1

2πi

{∫ B+i

1−b+i

+

∫ B+iT

B+i

+

∫ 1−b+iT

B+iT

+

∫ 1−b+i

1−b+iT

}
L(j)(s, χ)

L(k+1)(s, χ)

L(k)(s, χ)− a
ds+O(1)

:=
1

2πi
(I1 + I2 + I3 + I4) +O(1).

The integral I1 is independent of T , so we have I1 = O(1) . Next, we consider I2 . Since L(k)(s, χ) → 0 as

σ → ∞ if k ≥ 1 , we choose in this case B such that |L(k)(B + it, χ)| < |a|
2 , then we have 1

L(k)(B+it,χ)−a
≪k 1 .

Using this and L(j)(s, χ) ≪ 1 , we get

I2 = O(T ).

For the case k = 0 , recall that, for σ → ∞ , we have L(s, χ) = 1 + o(1) and L′(s, χ) ≪ 2−σ uniformly in
t . Hence, there are no a -points for sufficiently large σ provided that a ̸= 1 . For the case a = 1, we define
m = min{n ≥ 2, χ(n) ̸= 0} . We observe, for σ → ∞ , L(s, χ)−1 = χ(m)

mσ+it (1+o(1)) . Hence, we choose B a fixed
constant sufficiently large such that there are no a -points of L(s, χ) in the half-plane σ > B − 1 . Therefore,
we deduce that

I2 = O(T ).
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From equation (2.12), we get

I3 =
∑

|γ(k)
a,χ−T |<1

∫ 1−b+iT

B+iT

L(j)(s, χ)

s− ρ
(k)
a,χ

ds+O

(∫ 1−b+iT

B+iT

(log qt)L(j)(s, χ)ds

)
.

Now, we change the path of integration. If γ
(k)
a,χ < T , we change the path to the upper semicircle with center

ρ
(k)
a,χ and radius 1. If γ

(k)
a,χ > T , we change the path to the lower semicircle with center ρ

(k)
a,χ and radius 1. Then,

we have
1

s− ρ
(k)
a,χ

≪ 1

on the new path. This estimate and the bound (21) yields

I3 = O

(qT )b−
1
2+ϵ

∑
|γ(k)

a,χ−T |<1

1

+O
(
(qT )b−

1
2+ϵ log qT

)
.

By Lemma 2.2, we obtain

I3 = O
(
(qT )b−

1
2+ϵ log qT

)
.

This yields I3 ≪ T , since 1 < b < 9/8 .

Finally, we estimate I4 . By equation (2.20) and Stirling’s formula, for fixed 1 < b < 9/8 and large |t| > 2 , we
have ∣∣∣L(k)(1− b+ it, χ)

∣∣∣ ≍ |qt|b−1/2 |log |t||k . (4.3)

Therefore, there exists a constant A such that∣∣∣∣ a

L(k)(1− b+ it, χ)

∣∣∣∣ < 1

holds for any |t| ≥ A . We divide the path of the integral into two parts

I4 =

(∫ 1−b+iA

1−b+iT

+

∫ 1−b+i

1−b+iA

)
L(j)(s, χ)

L(k+1)(s, χ)

L(k)(s, χ)− a
ds.

The second term is O(1) since it is independent of T . Since the integrand of the first term has a geometric
series, we have

I4 = −
∞∑

n=0

an
∫ 1−b+iT

1−b+iA

L(j)(s, χ)L(k+1)(s, χ)

(L(k)(s, χ))n+1
ds+O(1).

By (4.3), the integrand can be estimated as

L(j)(s, χ)L(k+1)(s, χ)

(L(k)(s, χ))n+1
≍ |qt|(b−1/2)(1−n)(log t)−kn+j+1. (4.4)
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Hence, each integral can be calculated as∫ 1−b+iT

1−b+iA

L(j)(s, χ)L(k+1)(s, χ)

(L(k)(s, χ))n+1
ds ≪ (qT )(b−1/2)(1−n)+1+ε

for any small ε > 0 . It follows from the last estimate that the sum for n ≥ 2 is bounded as
∞∑

n=2

an
∫ 1−b+iT

1−b+iA

L(j)(s, χ)L(k+1)(s, χ)

(L(k)(s, χ))n+1
ds ≪ T−(b−1/2)+1+ε ≪ T 1/2.

Therefore, we get

I4 = −
∫ 1−b+iT

1−b+iA

L(j)(s, χ)L(k+1)(s, χ)

L(k)(s, χ)
ds− a

∫ 1−b+iT

1−b+iA

L(j)(s, χ)L(k+1)(s, χ)

(L(k)(s, χ))2
ds+O

(
T 1/2

)
:= −K1 − aK2 +O

(
T 1/2

)
.

We already studied K1 in Theorem 1.1 and we get the estimate

K1 = −2πi

{
δj,0

T

2π
log

qT

2π
+ (−1)jB(j, k)

T

2π

(
log

T

2π

)j+1

+O
(
T (log qT )j

)}
.

It remains to evaluate K2 . By equation (4.4), for k ≥ 1 , one has

K2 ≪
∫ 1−b+iT

1−b+iA

|log t|j |ds| ≪ T (log T )j .

In the case k = 0 , we use equations (2.1) and (2.6) to obtain

L(j)(s, χ)L′(s, χ)

L2(s, χ)
= (−1)j+1ℓj+1

(
1 +O

(
1

|t|

))
(4.5)

for fixed σ and |t| ≫ 1 , where ℓ := log(q|t|/2π) . Then, we have

K2 =

∫ 1−b+iT

1−b+iA

(
(−ℓ)j+1 +O

(
(log q|t|)j

))
ds

= (−1)j+1iT

(
log

qT

2π

)j+1

+O
(
T (log qT )j

)
.

Combining estimates of K1 and K2 , we get

I4 = (−1)j2πi (δj,0 + aδk,0 +B(j, k))
T

2π

(
log

qT

2π

)j+1

+O
(
T (log qT )j

)
.

Finally, Theorem 1.2 follows from estimates of I1, I2, I3 and I4 .

5. Concluding remarks

The a -points of an L -function L(s) are the roots of the equation L(s) = a . We refer to Steuding’s book [14,
chapter 7] for some results about a -points of L -functions from the Selberg class. Therefore, it is an interesting
question to extend Theorem 1.1 and mainly Theorem 1.2 to the other class of Dirichlet L -functions (the Selberg
class with some further condition) and its higher derivative. This problem will be considered in a sequel to this
paper since it is done for the Riemann zeta function and its k -th derivative in [6] and [12].
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