http://journals.tubitak.gov.tr/math/

On some sums at the a-points of the k-th derivatives of the Dirichlet L-functions

Mohammed MEKKAOUI $^{1}{ }^{(\bullet)}$, Abdallah DERBAL ${ }^{1}{ }^{(1)}$, Kamel MAZHOUDA ${ }^{2, *}$ (D)
${ }^{1}$ Department of Mathematics, Laboratory of Nonlinear Partial Differential Equations and History of Mathematics, École Normale Supérieure, Algiers, Algeria
${ }^{2}$ Department of Mathematics, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia

| Received: 24.02 .2020 | Accepted/Published Online: 04.05 .2020 | Final Version: 21.09 .2020 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: Let $L^{(k)}(s, \chi)$ be the k-th derivative of the Dirichlet L-function associated with a primitive character χ mod q and a be a complex number. The solutions of $L^{(k)}(s, \chi)=a$ are called a-points. In this paper, we give an asymptotic formula for the sums

$$
\sum_{\substack{(k) \\ \rho_{0, \chi}^{(k)}: 0<\gamma_{0, \chi}^{(k)}<T}} L^{(j)}\left(\rho_{0, \chi}^{(k)}, \chi\right) \quad \text { and } \sum_{\substack{(k) \\ \rho_{a, \chi}^{(k)}: 1<\gamma_{a, \chi}^{(k)}<T}} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right) \quad \text { as } \quad T \rightarrow \infty
$$

where j and k are nonnegative integers and $\rho_{a, \chi}^{(k)}$ denotes an a-point of the k-th derivative $L^{(k)}(s, \chi)$ and $\gamma_{a, \chi}^{(k)}=$ $\operatorname{Im}\left(\rho_{a, \chi}^{(k)}\right)$. This work continues the investigations of Kaptan, Karabulut, and Yildirim [7, 10] and Mazhouda and Onozuka [12].

Key words: Dirichlet L-function, a-points, value-distribution

1. Introduction

Let $L(s, \chi)$ be the Dirichlet L-function associated with a primitive character $\chi \bmod q$ and a be a complex number. The zeros of $L(s, \chi)-a$, which will be denoted by $\rho_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ are called the a-points of $L(s, \chi)$. First, we note that there is an a-point near any trivial zero $s=-2 n$ if $\chi(-1)=1$ and $s=-2 n-1$ if $\chi(-1)=-1$ for sufficiently large n. Apart from these a-points, there are only finitely many other a-points in the half-plane $\operatorname{Re}(s)=\sigma \leq 0$. The a-points with $\beta_{a, \chi} \leq 0$ are said to be trivial. All other a-points lie in a strip $0<\operatorname{Re}(s)<A$, where A is a constant depending on a; these numbers are called the nontrivial a-points. The number of these a-points satisfies a Riemann-von Mangoldt type formula (we refer to [14, chapter 7.2] for the proof of this formula which is stated for functions in a subclass of the Selberg class including the Dirichlet L-functions $L(s, \chi)$), namely

$$
\begin{equation*}
N_{a, \chi}(T)=\sum_{\substack{\rho_{a, \chi}: 0<\gamma_{a, \chi} \leq T \\ \beta_{a, \chi}>0}} 1=\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi c_{a} e}\right)+O(\log T), \tag{1.1}
\end{equation*}
$$

[^0]where $c_{a}=m$ if $a=1$ and $c_{a}=1$, otherwise, with $m=\min \{n \geq 2, \chi(n) \neq 0\}$. Here and in the sequel the error term depends on q; however, the main term is essentially independent of a. Moreover, $N_{a, \chi}(T) \sim N_{\chi}(T)$ as $T \longrightarrow \infty$, where $N_{\chi}(T)=N_{0, \chi}(T)$ denotes the number of nontrivial zeros $\rho_{\chi}=\beta_{\chi}+i \gamma_{\chi}$ of $L(s, \chi)$ satisfying $0<\gamma_{\chi}<T$.

In [1], Conrey and Ghosh suggested the problem of estimating the average $\sum_{0<\gamma^{(k)<T}} \zeta^{(j)}\left(\rho^{(k)}\right)$ for nonnegative integers j and k, where $\rho^{(k)}=\beta^{(k)}+i \gamma^{(k)}$ denote a zero of the k-th derivative $\zeta^{(k)}(s)$. One of the first results on this topic was given by Fujii [3]. He gave an asymptotic formula of the sum $\sum_{0<\gamma<T} \zeta^{\prime}(\rho) X^{\rho}$ for a rational number $X>0$. The $k=0$ case was treated by Kaptan et al. [7]. Garunk \check{s} tis and Steuding [4] gave a generalization of Fujii's asymptotic formula with $X=1$ that if $T \longrightarrow \infty$, we have

$$
\begin{align*}
\sum_{\rho_{a}: 0<\gamma_{a} \leq T} \zeta^{\prime}\left(\rho_{a}\right) & =\left(\frac{1}{2}-a\right) \frac{T}{2 \pi} \log ^{2}\left(\frac{T}{2 \pi}\right)+\left(c_{0}-1+2 a\right) \frac{T}{2 \pi} \log \left(\frac{T}{2 \pi}\right) \\
& +\left(1-c_{0}-c_{0}^{2}+3 c_{1}-2 a\right) \frac{T}{2 \pi}+O\left(T e^{-C \sqrt{\log T}}\right) \tag{1.2}
\end{align*}
$$

where C is some positive constant and c_{n} are the Stieltjes constants given by the Laurent series expansion of $\zeta(s)$ at $s=1$,

$$
\begin{equation*}
\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^{\infty} c_{n}(s-1)^{n} \tag{1.3}
\end{equation*}
$$

Recently, Mazhouda and Onozuka [12] proved that for $j, k \in \mathbb{Z}_{\geq 0}$ and large T,

$$
\begin{equation*}
\sum_{1<\gamma_{a}^{(k)}<T} \zeta^{(j)}\left(\rho_{a}^{(k)}\right)=(-1)^{j}\left(\delta_{j, 0}+a \delta_{k, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)^{j+1}+O_{j, k}\left(T(\log T)^{j}\right) \tag{1.4}
\end{equation*}
$$

where the implicit constant in the error terms may depend on a. To do so, they used the following result of Karabulut and Yildirim [10] for fixed $j, k \in \mathbb{Z}_{\geq 0}$ and large T, one has

$$
\begin{equation*}
\sum_{0<\gamma^{(k)}<T} \zeta^{(j)}\left(\rho^{(k)}\right)=(-1)^{j}\left(\delta_{j, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)^{j+1}+O_{j, k}\left(T \log ^{j} T\right) \tag{1.5}
\end{equation*}
$$

where $\delta_{j, 0}=1$ if $j=0$ and 0 otherwise,

$$
\begin{equation*}
B(j, k)=-\frac{k+1}{j+1}-j!\sum_{r=1}^{k} \frac{e^{-z_{r}}}{z_{r}^{j+1}} P_{k}\left(z_{r}\right)+j!\sum_{r=1}^{k} \frac{1}{z_{r}^{j+1}} \tag{1.6}
\end{equation*}
$$

the sum over r being void in the case $k=0$ and $z_{r}(r=1, \ldots, k)$ being the zeros of $P_{k}(z)=\sum_{j=0}^{k} \frac{z^{j}}{j!}$.
Let $\rho_{a, \chi}^{(k)}=\beta_{a, \chi}^{(k)}+i \gamma_{a, \chi}^{(k)}$ denote an a-point of $L^{(k)}(s, \chi)$. Similar to the a-points of $L(s, \chi)$, there is an a-point of $L^{(k)}(s, \chi)$ near any trivial zero $s=-2 n-\left(\frac{1-\chi(-1)}{2}\right)$ for sufficiently large n and apart from these
a-points, there are only finitely many other a-points in the half-plane $\sigma \leq C$ for any $C<0$ (see Lemma 2.1 below).

In this paper, first we give an asymptotic formula for the sum

$$
\begin{equation*}
\sum_{\rho_{0, \chi}^{(k)}: 0<\gamma_{0, \chi}^{(k)}<T} L^{(j)}\left(\rho_{0, \chi}^{(k)}, \chi\right) \tag{1.7}
\end{equation*}
$$

and as a consequence, we obtain an estimate for

$$
\begin{equation*}
\sum_{\rho_{a, \chi}^{(k)}: 1<\gamma_{a, \chi}^{(k)}<T} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right) \tag{1.8}
\end{equation*}
$$

where a is a complex number. The first sum extend Karabulut and Yildirim's result to the k-th derivative of the Dirichlet L-functions and is evaluated in the following theorem.

Theorem 1.1 Let $k, j \in \mathbb{N}$ be fixed and χ be a primitive character modulo q. Then as $T \rightarrow \infty$, we have

$$
\begin{equation*}
\sum_{\rho_{\chi}^{(k)} ; 0<\gamma_{\chi}^{(k)} \leq T} L^{(j)}\left(\rho_{\chi}^{(k)}, \chi\right)=(-1)^{j}\left(\delta_{j, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1}+O_{j, k}\left(T(\log q T)^{j}\right) \tag{1.9}
\end{equation*}
$$

where $B(j, k)$ is defined by (1.6).
From Theorem 1.1, we get our main result

Theorem 1.2 Let $k, j \in \mathbb{N}$ be fixed, a be a complex number and χ be a primitive character modulo q. Then as $T \rightarrow \infty$, we have

$$
\begin{equation*}
\sum_{\substack{(k) \\ \rho_{a, \chi}^{(k)} ; 1<\gamma_{a, \chi}^{(k)} \leq T}} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right)=(-1)^{j}\left(\delta_{j, 0}+a \delta_{k, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1}+O_{j, k}\left(T(\log q T)^{j}\right)(1 . \tag{1.10}
\end{equation*}
$$

Here and in the sequel, the implicit constant in the error terms may depend on a.
Remark. By Theorem 1.2, we deduce the average value of $L^{(j)}\left(\rho_{a}^{(k)}, \chi\right)$ over the a-points $\rho_{a, \chi}^{(k)}$ of $L^{(k)}(s, \chi)$ with $1<\operatorname{Im}\left(\rho_{a, \chi}^{(k)}\right)<T$, i.e.

$$
\frac{1}{N_{k, \chi}(a, T)} \sum_{1<\gamma_{a, \chi}^{(k)}<T} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right)
$$

where $N_{k, \chi}(a, T)$ is the number of terms in the above sum. By the same argument as in [13], we have an asymptotic formula for $N_{k, \chi}(a, T)$ which is $\sim(T / 2 \pi) \log \frac{q T}{2 \pi}$ (see [15] for the asymptotic formula of $N_{k, \chi}(0, T)$). Hence, the average is $(-1)^{j}\left(\delta_{j, 0}+a \delta_{k, 0}+B(j, k)\right)\left(\log \frac{q T}{2 \pi}\right)^{j}$. Thus, this tells us about the size of $L^{(j)}(s, \chi)$ at certain points (namely the a-points of $L^{(k)}(s, \chi)$).

2. Preliminary lemmas and equations

In this section, we give some lemmas and formulas useful for the proof of our Theorems. We start with wellknown results on the Dirichlet L-function $L(s, \chi)$ (see Davenport book [2]) and its k-th derivative. If χ mod q is a primitive character, then

$$
\begin{equation*}
L(s, \chi)=\Lambda(s, \chi) L(1-s, \bar{\chi}) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(s, \chi)=\frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{s-1} \Gamma(1-s) \sin \left(\frac{\pi}{2}(s+\kappa)\right) \tag{2.2}
\end{equation*}
$$

with $\tau(\chi)=\sum_{r=1}^{q} \chi(r) e^{\frac{2 \pi i r}{q}}$ and $\kappa=\frac{1}{2}(1-\chi(-1))$. From (2.2) and by Stirling's formula (see[9, page 13]), we get

$$
\begin{align*}
& \Lambda(1-s, \chi) \\
= & \frac{\tau(\chi)}{i^{\kappa} \sqrt{q}} \exp \left\{i t \log \left(\frac{q|t|}{2 \pi e}\right)-\operatorname{sgn}(t)\left(\frac{i \pi}{2}\right)\left(\frac{1}{2}-\kappa\right)\right\}\left(\frac{q|t|}{2 \pi}\right)^{\sigma-\frac{1}{2}}\left(1+O\left(\frac{1}{|t|}\right)\right) \tag{2.3}
\end{align*}
$$

in any fixed halfstrip $\alpha \leq \sigma \leq \beta,|t| \geq 1$. Moreover, for any fixed $\sigma, j \geq 0$ and $|t| \geq 1$, we have

$$
\begin{equation*}
\frac{\Lambda^{\prime}}{\Lambda}(s, \chi)=-\log \frac{q|t|}{2 \pi}+O\left(\frac{1}{|t|}\right),\left(\frac{d}{d s}\right)^{j} \frac{\Lambda^{\prime}}{\Lambda}(s, \chi) \ll|t|^{-j} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda^{(j)}(1-s, \chi)=\Lambda(1-s, \chi)\left(-\log \frac{q|t|}{2 \pi}\right)^{j}+O\left(q^{\sigma-\frac{1}{2}}|t|^{\sigma-\frac{3}{2}}(\log q|t|)^{j-1}\right) \tag{2.5}
\end{equation*}
$$

Using equations (2.3)-(2.5) with upon j-fold differentiation of the functional equation (2.1), we obtain

$$
\begin{equation*}
L^{(j)}(1-s, \chi)=(-1)^{j} \Lambda(1-s, \chi)\left(1+O\left(\frac{1}{t}\right)\right) \sum_{m=0}^{j}\binom{j}{m} \ell^{j-m} L^{(m)}(s, \bar{\chi}) \tag{2.6}
\end{equation*}
$$

where σ is fixed, $|t| \geq 1$ and $\ell=\log \left(\frac{q|t|}{2 \pi}\right)$. Furthermore, for any fixed $\sigma, k \in \mathbb{Z}_{\geq 0}$ and $t \geq 1$, we have

$$
\begin{align*}
\frac{L^{(k+1)}}{L^{(k)}}(1-s, \chi) & =-\left(1+O\left(\frac{1}{t}\right)\right)\left(\ell+\frac{\sum_{v=0}^{k}\binom{k}{v} \ell^{k-v} \frac{L^{(v+1)}}{L}(s, \bar{\chi})}{\sum_{w=0}^{k}\binom{k}{w} \ell^{k-w} \frac{L^{(w)}}{L}(s, \bar{\chi})}\right) \\
& =-\left(1+O\left(\frac{1}{t}\right)\right)\left(\ell+\frac{\sum_{v=0}^{k}\binom{k}{v} \frac{1}{\ell^{v}} \frac{L^{(v+1)}}{L}(s, \bar{\chi})}{1+\sum_{w=1}^{k}\binom{k}{w} \frac{1}{\ell^{w}} \frac{L^{(w)}}{L}(s, \bar{\chi})}\right) \\
& =-\left(1+O\left(\frac{1}{t}\right)\right)\left(\ell+\frac{G_{k}^{\prime}}{G_{k}}(s, \ell, \bar{\chi})\right), \tag{2.7}
\end{align*}
$$

with the differentiation in G^{\prime} is respect to s. Since $\frac{L^{(w)}}{L}(s, \bar{\chi})<_{w} 1$ when $\sigma \geq 1+\delta$, for sufficiently large t, we get

$$
\begin{equation*}
\sum_{w=1}^{k}\binom{k}{w} \frac{1}{\ell^{w}} \frac{L^{(w)}}{L}(s, \bar{\chi})<_{k} \frac{1}{\log q t} \tag{2.8}
\end{equation*}
$$

By expanding the denominator of (2.7) as a power series, we obtain

$$
\begin{align*}
\left(1+\sum_{w=1}^{k}\binom{k}{w} \frac{1}{\ell^{w}} \frac{L^{(w)}}{L}(s, \bar{\chi})\right)^{-1} & =\sum_{u=0}^{\infty}(-1)^{u}\left(\sum_{w=1}^{k}\binom{k}{w} \frac{1}{\ell^{w}} \frac{L^{(w)}}{L}(s, \bar{\chi})\right)^{u} \\
& =\sum_{u \leq \frac{\log A}{\log \log A}}^{\infty}(-1)^{u}\left(\sum_{w=1}^{k}\binom{k}{w} \frac{1}{\ell^{w}} \frac{L^{(w)}}{L}(s, \bar{\chi})\right)^{u}+O\left(\frac{1}{A}\right) \tag{2.9}
\end{align*}
$$

where $\sigma \geq 1+\delta$ and $t \geq A$ for large A. By the functional equation (2.1) and the Phragmén-Lindelöf principle, we deduce that

$$
L(s, \chi) \ll_{\epsilon} \begin{cases}|q t|^{\frac{1}{2}-\sigma+\epsilon} & \sigma<0 \tag{2.10}\\ |q t|^{\frac{1}{2}(1-\sigma)+\epsilon} & 0 \leq \sigma \leq 1 \\ |q t|^{\epsilon} & \sigma>1\end{cases}
$$

as $|t| \rightarrow \infty$ and where ϵ is an arbitrarily small positive number. Moreover, by Cauchy's integral formula, we get

$$
L^{(k)}(s, \chi)=\frac{k!}{2 \pi i} \int_{\mathbf{C}} \frac{L(w, \chi)}{(w-s)^{k+1}} d s
$$

where \mathbf{C} is any arbitrarily small circle centered at s. Using the last bound of $L(s, \chi)$, it follows that

$$
L^{(k)}(s, \chi)<_{\epsilon} \begin{cases}|q t|^{\frac{1}{2}-\sigma+\epsilon} & \sigma<0 \tag{2.11}\\ |q t|^{\frac{1}{2}(1-\sigma)+\epsilon} & 0 \leq \sigma \leq 1 \\ |q t|^{\epsilon} & \sigma>1\end{cases}
$$

Now, using the same argument as in [13, Lemma 2.6], we get easly

$$
\begin{equation*}
\frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)-a}=\sum_{\left|\gamma_{a, \chi}^{(k)}-t\right|<1} \frac{1}{s-\rho_{a, \chi}^{(k)}}+O(\log q t) \tag{2.12}
\end{equation*}
$$

for any constants α, β and $s \in \mathbb{C}$ with $\alpha \leq \sigma \leq \beta$ and large t.

Lemma 2.1 Let k be a positive integer, χ be a primitive character modulo q and $a \in \mathbb{C}$. Then, there exist real numbers $E_{1}=E_{1}(k, a, q) \leq 0$ and $E_{2}=E_{2}(k, a, q) \geq 1$ such that there is no a-point of $L^{(k)}(s, \chi)$ for $\left\{s \in \mathbb{C}, \sigma \leq E_{1},|t| \geq 1\right\}$ and $\left\{s \in \mathbb{C}, \sigma \geq E_{2}\right\}$.

Proof The case $a=0$ was treated by Yildirim in [16]. Hence, we consider only the case $a \neq 0$. From equation (2.1) and by differentiating k times, we obtain

$$
\begin{align*}
L^{(k)}(1-s, \chi) & =(-1)^{k} \frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{-s} \sum_{j=0}^{k} \Gamma^{(j)}(s) R_{j, k}(s) \\
& =(-1)^{k} \frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{-s}\left\{\Gamma^{(k)}(s) \cos \left(\frac{\pi}{2}(s-\kappa)\right) L(s, \bar{\chi})+\sum_{j=0}^{k-1} \Gamma^{(j)}(s) R_{j, k}(s)\right\} \tag{2.13}
\end{align*}
$$

where

$$
\begin{align*}
R_{j, k}(s) & =P_{j, k}(s) \cos \left(\frac{\pi}{2}(s-\kappa)\right)+Q_{j, k}(s) \sin \left(\frac{\pi}{2}(s-\kappa)\right) \tag{2.14}\\
P_{j, k}(s) & =\sum_{n=0}^{k} a_{j, k, n} L^{(n)}(s, \bar{\chi}) \tag{2.15}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{j, k}(s)=\sum_{n=0}^{k} b_{j, k, n} L^{(n)}(s, \bar{\chi}) \tag{2.16}
\end{equation*}
$$

where $a_{j, k, n}$ and $b_{j, k, n}$ are constants that may depend on q. Using [16, Equation(13)], derivatives of the Gamma function can be estimated as follows:

$$
\begin{equation*}
\Gamma^{(j)}(s)=\Gamma(s)(\log s)^{j}\left(1+O\left(\frac{1}{s \log s}\right)\right) \tag{2.17}
\end{equation*}
$$

in the region $\{s \in \mathbb{C}, \sigma \geq 1+\delta,|t| \geq 1\}$. Using the last estimate and the fact that in the same region $L(s, \chi) \asymp 1$ and $L^{(j)}(s, \chi)=\sum_{n \geq 2} \frac{\chi(n)(-\log n)^{j}}{n^{s}} \ll 1$, we get

$$
\begin{equation*}
\left|\Gamma^{(k)}(s) \cos \left(\frac{\pi}{2}(s-\kappa)\right) L(s, \bar{\chi})\right| \asymp\left|\Gamma(s) \log ^{k}(s) e^{\pi \frac{|t|}{2}}\right| \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{j=0}^{k-1} \Gamma^{(j)}(s) R_{j, k}(s)\right| \ll\left|\Gamma(s) \log ^{k-1}(s) e^{\pi \frac{|t|}{2}}\right| \tag{2.19}
\end{equation*}
$$

As a consequence, one has

$$
\begin{align*}
& L^{(k)}(1-s, \chi) \\
= & (-1)^{k} \frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{-s} \Gamma(s) \log ^{k}(s) \cos \left(\frac{\pi}{2}(s-\kappa)\right) L(s, \bar{\chi})\left(1+O\left(\frac{1}{|\log s|}\right)\right) \tag{2.20}
\end{align*}
$$

in the region $\{s \in \mathbb{C}, \sigma \geq 1+\delta,|t| \geq 1\}$. It follows from (2.20) that $L^{k}(1-s, \chi) \rightarrow \infty$ as $\sigma \rightarrow \infty$. Thus, there exists $E_{1}=E_{1}(k, a, q) \leq 0$ such that $\left|L^{(k)}(s, \chi)\right|>|a|$ for $\sigma \leq E_{1}$ and $|t| \geq 1$. Next, since
$L^{(k)}(s, \chi)=\sum_{n \geq 2} \frac{\chi(n)(-\log n)^{k}}{n^{s}} \rightarrow 0$ as $\sigma \rightarrow \infty$ there exists $E_{2}=E_{2}(k, a, q) \geq 1$ such that $\left|L^{(k)}(s, \chi)\right|<|a|$.

Remark. It can also be seen by Rouché's theorem that there is $N_{k}=N_{k}(a, q)<0$ such that $L^{(k)}(s, \chi)=a$ has only one zero in the region $\{s \in \mathbb{C},-1-2 n-\kappa<\sigma<1-2 n-\kappa,-1<t<1\}$ for $-n<N_{k}$. Moreover, apart from these a-points, there are only finitely many other a-points in the half-plane $\sigma \leq C$ for any $C<0$.

From Lemma 2.1, equation (2.11) and by Jensen's formula, we deduce easily the following lemma.
Lemma 2.2 For any complex number a and any sufficiently large T, we have

$$
\begin{equation*}
N_{k, \chi}(a ; 1, T+1)-N_{k, \chi}(a ; 1, T) \ll \log (q T) \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{k, \chi}(a ; 1, T)=\sum_{\substack{(k) \\ \rho_{a, \chi}^{(k)}: 1<\gamma_{a, \chi}^{(k)}<T}} 1 \tag{2.22}
\end{equation*}
$$

3. Proof of Theorem 1.1

To prove Theorem 1.1, we use the same argument as in [10]. For this purpose, we need to extend some lemmas for k-th derivative of Dirichlet L-function $L^{k}(s, \chi)$. The case $k=0$ was already proved by Kaptan et al. [6], so here we assume $k \neq 0$.

Lemma 3.1 Let $\left(b_{n}\right)_{n}$ be a sequence of complex numbers such that $b_{n} \ll n^{\epsilon}$ for any $\epsilon>0$. Let $a>1$ and m be an integer. Then, for $1 \leq T_{1} \leq T$ and $|m|=O(T)$ as $T \rightarrow \infty$, one has

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{T_{1}}^{T} \Lambda(1-a-i t, \chi)\left(\log \left(\frac{q t}{2 \pi}\right)\right)^{m} \sum_{n=1}^{\infty} \frac{b_{n}}{n^{a+i t}} d t \\
& =\frac{\tau(\chi)}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} b_{n} e^{-\frac{2 \pi i n}{q}}(\log n)^{m}+O\left((q T)^{a-\frac{1}{2}}(\log q T)^{m}\right)+O\left(q^{2 a-1}(\log q)^{m}\right)
\end{aligned}
$$

Proof The case m nonnegative is treated by Kaptan in [8, Lemma 2.14] which is based on [5, Lemma 2] (see also [10, Lemma 2.2]). For the case when m is negative, we use the same argument of Kaptan and [11, Lemma 3.5] to obtain the result.

An elementary computation yields the following lemma.

Lemma 3.2 For $k, i_{1}, i_{2}, \ldots, i_{k}, m \in \mathbb{N}, v \in\{0,1, \ldots, k\}, \sigma>1$ and χ be a Dirichlet character modulo q, let us define

$$
\sum_{n=1}^{\infty} \frac{c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)}{n^{s}}:=\frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}}
$$

We have

$$
\chi^{\prime}(n) c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi^{\prime} \chi\right)
$$

MEKKAOUI et al./Turk J Math

for every Dirichlet character χ^{\prime} modulo q, with

$$
\left|c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)\right| \leq(\log n)^{K+m+1}
$$

where

$$
K:=i_{1}+2 i_{2}+\ldots+k i_{k}+v
$$

Lemma 3.3 Let χ be a Dirichlet character modulo q. Let $k, i_{1}, i_{2}, \ldots, i_{k}, m \in \mathbb{N}, v \in\{0,1, \ldots, k\}$. For fixed k, if $i_{1}+i_{2}+\ldots+i_{k} \leq \frac{\log x}{\log \log x}$, then as $T \rightarrow \infty$, we have

$$
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=O_{k}\left(x(\log x)^{K+m}\right)
$$

if χ is nonprincipal and

$$
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=\frac{\varphi(q)}{q} S\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m\right) x(\log x)^{K+m+1}+O_{k}\left(x(\log x)^{K+m}\right)
$$

if χ is the principal character, where

$$
S\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m\right)=\frac{(-1)^{K+m+1}(v+1)!m!\prod_{w=1}^{k}(w!)^{i_{w}}}{(K+m+1)!}
$$

Proof Let χ be a nonprincipal character modulo q. Lemma 3.2 with Perron's formula [15, chapter 3.12], yields

$$
\begin{aligned}
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right) & =\int_{1+\frac{1}{\log x}-i U}^{1+\frac{1}{\log x}+i U} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s} d s \\
& +O_{k}\left(\frac{x}{U}(\log x)^{K+m+2}\right)
\end{aligned}
$$

where $q \leq U \leq x$. Now, let C be the rectangle with vertices $1+\frac{1}{\log x}-i U, 1+\frac{1}{\log x}+i U, \sigma_{0}+i U$, and $\sigma_{0}-i U$.
Case 1. Assume that $L(s, \chi)$ has no exceptional zero. We take $\sigma_{0}=1-\frac{c}{5 \log q U}$, where c is the constant such that $L(s, \chi) \neq 0$ for $\sigma>1-\frac{c}{\log q U}$ (see [2, page 93]). Thus, the integrand is analytic on and inside C and we have the bound $\frac{L^{(w)}}{L}(s, \chi) \ll(\log q U)^{w}$. Then, we have by Cauchy's formula

$$
M=\frac{1}{2 \pi i} \int_{C} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s} d s=0
$$

Now, using that $L^{(m)}(s, \chi) \ll(q U)^{\frac{1}{2}(1-\sigma)+\epsilon}$, we get

$$
\begin{aligned}
\int_{1+\frac{1}{\log x}+i U}^{1-\frac{1}{5 \log q U}+i U} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s} d s & \ll(\log q U)^{K+1} \int_{1+\frac{1}{\log x}}^{1-\frac{1}{5 \log q U}}(q U)^{\frac{1}{2}(1-\sigma)+\epsilon} \frac{x^{\sigma}}{|\sigma+i U|} d \sigma \\
& \ll x(\log q U)^{K+1}(q U)^{\frac{c}{10 \log q U}\left(\frac{1}{\log x}+\frac{c}{5 \log q U}\right)} \\
& \ll \frac{x}{U^{1-\epsilon}}(\log q U)^{K} .
\end{aligned}
$$

Analogously, we have

$$
\int_{1-\frac{1}{5 \log q U}-i U}^{1+\frac{1}{\log x}-i U} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s} d s \ll \frac{x}{U^{1-\epsilon}}(\log q U)^{K}
$$

and

$$
\begin{aligned}
\int_{1-\frac{c}{5 \log q U}+i U}^{1-\frac{1}{5 \log q U}-i U} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s} d s & \ll(\log q U)^{K+1} \int_{-U}^{U}(|q t|)^{\frac{1}{2}\left(1-\sigma_{0}\right)+\epsilon} \frac{x^{\sigma_{0}}}{\left|\sigma_{0}+i t\right|} d t \\
& \ll x(\log q U)^{K+1}(q U)^{\frac{c}{10 \log q U}} x^{\sigma_{0}} \int_{-U}^{U} \frac{1}{\left|\sigma_{0}+i t\right|} d t \\
& \ll x U^{\epsilon}(\log q U)^{K+1} \exp \left(\frac{-c \log x}{10 \log q U}\right)
\end{aligned}
$$

Let $U=(\log x)^{2}$. Then, from all above estimates, we obtain

$$
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=O_{k}\left(x(\log x)^{K+m}\right)
$$

Case 2. Suppose that there is an exceptional zero β, with $\beta \geq 1-\frac{c}{4 \log q U}$. Therefore, we take $\sigma_{0}=1-\frac{c}{3 \log q U}$. Thus, the integrand has a pole at β of order $L+1$, where $L=i_{1}+i_{2}+\ldots+i_{k}$. Hence,

$$
\begin{aligned}
M & =\frac{1}{L!} \frac{d^{L}}{d s^{L}}\left\{(s-\beta)^{L+1} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}} \frac{x^{s}}{s}\right\}_{s=\beta} \\
& =\frac{1}{L!} \sum_{j_{1}+j_{2}+j_{3}=L}\binom{L}{j_{1}, j_{2}, j_{3}} \frac{d^{j_{1}}}{d s^{j_{1}}}\left\{(s-\beta)^{L+1} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}}\right\}_{s=\beta} \\
& \times \frac{d^{j_{2}}}{d s^{j_{2}}}\left\{x^{s}\right\}_{s=\beta} \frac{d^{j_{3}}}{d s^{j_{3}}}\left\{\frac{1}{s}\right\}_{s=\beta} \\
& =(-1) L \frac{x^{\beta}}{\beta^{L+1}} \sum_{j_{1}=0}^{L} \frac{(-1)^{j_{1}}}{j_{1}!} \beta^{j_{1}} \frac{d^{j_{1}}}{d s^{j_{1}}}\left\{(s-\beta)^{L+1} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}}\right\}_{s=\beta} \\
& \times \sum_{j_{2}=0}^{L-j_{1}} \frac{(-1)^{j_{2}}}{j_{2}!} \beta^{j_{2}}(\log x)^{j_{2}} .
\end{aligned}
$$

By Cauchy's formula on a disk of radius 1 centered at $s=\beta$, we deduce

$$
\begin{aligned}
\left|\frac{d^{j_{1}}}{d s^{j_{1}}}\left\{(s-\beta)^{L+1} \frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}}\right\}\right| & \leq j_{1}!\max _{|s-\beta|=1}\left|\frac{L^{(v+1)}}{L}(s, \chi) L^{(m)}(s, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(s, \chi)\right)^{i_{w}}\right| \\
& \ll k \quad j_{1}!
\end{aligned}
$$

The last equation yields to

$$
\begin{aligned}
M & \ll k \quad \frac{x^{\beta}}{\beta^{L+1}} \sum_{j_{1}=0}^{L} \beta^{j_{1}} \sum_{j_{2}=0}^{L-j_{1}} \frac{\beta^{j_{2}}}{j_{2}!}(\log x)^{j_{2}} \\
& <_{k} \quad \frac{x^{\beta}}{\beta}(\log x)^{L} \\
& \ll k \quad x(\log x)^{L} .
\end{aligned}
$$

As above, we obtain

$$
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=O_{k}\left(x(\log x)^{K+m}\right)
$$

Case 3. Suppose the existence of an exceptional zero β, with $\beta<1-\frac{c}{4 \log q U}$. Therefore, proceeding similarly as in case 1 , we get

$$
\sum_{n \leq x} c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)=O_{k}\left(x(\log x)^{K+m}\right)
$$

The proof of Lemma 3.3 when χ is principal is closely similar to that in [10, Lemma 2.4].

Lemma 3.4 Let χ be a Dirichlet character modulo q. Let $k, i_{1}, i_{2}, \ldots, i_{k}, m \in \mathbb{N}$ and $v \in\{0,1, \ldots, k\}$. For fixed k, if $i_{1}+i_{2}+\ldots+i_{k} \leq \frac{\log x}{\log \log x}$, then as $T \rightarrow \infty$, we have

$$
\sum_{n \leq x} \frac{c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)}{(\log n)^{K-r}}=O_{k, r, m}\left(x(\log x)^{r+m}\right)
$$

if χ is nonprincipal and

$$
\sum_{n \leq x} \frac{c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)}{(\log n)^{K-r}}=\frac{\varphi(q)}{q} S\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m\right) x(\log x)^{r+m+1}+O_{k, r, m}\left(x(\log x)^{r+m}\right)
$$

if χ is a principal character.
Proof of Theorem 1.1. The basic idea of the proof is to interpret the sum of $L^{(j)}\left(\rho_{\chi}^{(k)}, \chi\right)$ as a sum of residues. By Cauchy's theorem, we have

$$
\begin{aligned}
& \sum_{\substack{(k)} T} L^{(j)}\left(\rho_{\chi}^{(k)}, \chi\right)=\frac{1}{2 \pi i} \int_{R} L^{(j)}(s, \chi) \frac{L^{(k+1)}}{L^{(k)}}(s, \chi) d s \\
& -b<\beta_{\chi}^{(k)}<a
\end{aligned}
$$

where the integration is taken over a rectangular contour in counterclockwise direction denoted by R with vertices $-b+i c, a+i c, a+i T,-b+i T$ with some constants $a, b, c>0$ such that $\frac{1}{L^{(k)}(a+i t, \chi)} \ll_{k} 1$,
$0<b<\frac{1}{8}$ and $L^{(k)}(s, \chi)$ has no zero on the lines $t=T$ and $t=c$. From [16, Theorem 3], we deduce that there are finitely many zeros of $L^{(k)}(s, \chi)$ in the region $\sigma<-b$ and $t>c$, then we have

$$
\begin{aligned}
\sum_{0<\gamma_{\chi}^{(k)}<T} L^{(j)}\left(\rho^{(k)}, \chi\right) & =\frac{1}{2 \pi i} \int_{R} L^{(j)}(s, \chi) \frac{L^{(k+1)}}{L^{(k)}}(s, \chi) d s+O(1) \\
& =\frac{1}{2 \pi i}\left\{\int_{-b+i c}^{a+i c}+\int_{a+i c}^{a+i T}+\int_{a+i T}^{-b+i T}+\int_{-b+i T}^{-b+i c}\right\} L^{(j)}(s, \chi) \frac{L^{(k+1)}}{L^{(k)}}(s, \chi) d s+O(1) \\
& =I_{1}+I_{2}+I_{3}+I_{4}+O(1)
\end{aligned}
$$

The first integral I_{1} is independent of T, so $I_{1}=O(1)$. Next, we consider I_{2}, using that $\frac{1}{L^{(k)}(a+i t, \chi)}<_{k} 1$ and $L^{(j)}(s, \chi) \ll 1$, we get $I_{2}=O(T)$. Now, using equation (2.12) and take the horizontal sides of the rectangular contour to be a distance $\gg \frac{1}{\log q T}$ from any zero of $L^{(k)}(s, \chi)$, one has

$$
\begin{aligned}
I_{3} & =\frac{1}{2 \pi i} \int_{a+i T}^{b+i T} \sum_{\left|\gamma_{\chi}^{(k)}-t\right|<1} \frac{L^{(j)}(s, \chi)}{s-\rho_{\chi}^{(k)}} d s+O\left(\int_{a+i T}^{b+i T} \log (q t) L^{(j)}(s, \chi) d s\right) \\
& =O\left((q T)^{\frac{1}{2}+b+\epsilon} \log q T \sum_{\left|\gamma_{\chi}^{(k)}-T\right|<1} 1\right)+O\left((q T)^{\frac{1}{2}+b+\epsilon} \log q T\right)
\end{aligned}
$$

By Lemma 2.2, we obtain

$$
I_{3}=O\left((q) T^{\frac{1}{2}+b+\epsilon}(\log q T)^{2}\right)
$$

This leads $I_{3} \ll T$, since $0<b<\frac{1}{8}$. For the fourth integral I_{4}, by using equations (2.6), (2.7), and (2.9), we obtain

$$
\begin{aligned}
\overline{I_{4}}= & -\frac{1}{2 \pi i} \int_{1+b+i c}^{1+b+i T} L^{(j)}(1-s, \bar{\chi}) \frac{L^{(k+1)}}{L^{(k)}}(1-s, \bar{\chi}) d s \\
= & \frac{(-1)^{j}}{2 \pi i} \sum_{m=0}^{j}\binom{j}{m} \int_{1+b+i c}^{1+b+i T} \Lambda(1-s, \bar{\chi}) \ell^{j-m+1} L^{(m)}(s, \chi) d s \\
& +\frac{(-1)^{j}}{2 \pi i} \sum_{m=0}^{j}\binom{j}{m} \int_{1+b+i c}^{1+b+i T} \Lambda(1-s, \bar{\chi}) \ell^{j-m} \frac{G_{k}^{\prime}}{G_{k}}(s, \ell, \chi) L^{(m)}(s, \chi) d s+O(T) \\
= & S_{1}+S_{2}+O(T)
\end{aligned}
$$

Lemma 3.1 gives

$$
\begin{aligned}
S_{1} & =(-1)^{j} \sum_{m=0}^{j}\binom{j}{m} \frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}}(-1)^{m} \chi(n) e^{-\frac{2 \pi i n}{q}}(\log n)^{j+1}+O\left(T^{b+\frac{1}{2}}(\log q T)^{j+1}\right) \\
& =(-1)^{j} \frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) e^{-\frac{2 \pi i n}{q}}(\log n)^{j+1} \sum_{m=0}^{j}\binom{j}{m}(-1)^{m}+O\left(T^{b+\frac{1}{2}}(\log q T)^{j+1}\right) \\
& = \begin{cases}O\left(T^{b+\frac{1}{2}}(\log q T)^{j+1}\right) & \text { if } j \geq 1, \\
\frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) e^{-\frac{2 \pi i n}{q}} \log n+O\left(T^{b+\frac{1}{2}} \log q T\right) & \text { if } j=0 .\end{cases}
\end{aligned}
$$

Recall that (see [2, page 146])

$$
e^{-\frac{2 \pi i n}{q}}=\frac{1}{\varphi(q)} \sum_{\chi^{\prime} \equiv q} \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-n)
$$

when $(n, q)=1$. The last formula yields

$$
\begin{aligned}
\frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) e^{-\frac{2 \pi i n}{q}} \log n & =\frac{\tau(\bar{\chi})}{q \varphi(q)} \sum_{\chi^{\prime} \equiv q} \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-1) \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) \chi^{\prime}(n) \log n \\
& =\sum_{\chi^{\prime} \neq \bar{\chi}} \frac{\tau(\bar{\chi}) \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-1)}{q \varphi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) \chi^{\prime}(n) \log n \\
& +\frac{\tau(\bar{\chi}) \tau(\chi) \overline{\chi(-1)}}{q \varphi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi_{0}(n) \log n
\end{aligned}
$$

Using the following estimate

$$
\sum_{1 \leq n \leq x} \chi_{0}(n) \log n=\frac{\varphi(q)}{q} x \log (x)+O\left(\frac{\varphi(q)}{q} x\right)+O\left(q^{\epsilon} \log (x)\right)
$$

and Pólya-Vinogradov inequality

$$
\sum_{n \leq x} \chi(n) \ll 2 \sqrt{q} \log q
$$

for every nonprincipal character modulo q, we obtain

$$
S_{1}= \begin{cases}O\left(T^{b+\frac{1}{2}}(\log q T)^{j+1}\right) & \text { if } \quad j \geq 1 \\ \frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi}\right)+O\left(T^{b+\frac{1}{2}} \log q T\right) & \text { if } j=0\end{cases}
$$

Now, we estimate S_{2}. We have

$$
\begin{aligned}
S_{2} & =\frac{(-1)^{j}}{2 \pi i} \sum_{m=0}^{j}\binom{j}{m} \int_{1+b+i c}^{1+b+i T} \Lambda(1-s, \bar{\chi}) \ell^{j-m} \frac{G_{k}^{\prime}}{G_{k}}(s, \ell, \chi) L^{(m)}(s, \chi) d s+O(T) \\
& =(-1)^{j} \sum_{m=0}^{j}\binom{j}{m} \sum_{u \leq \frac{\log T}{\log \log T}} \sum_{v=0}^{k}(-1)^{u}\binom{k}{v} \sum_{i_{1}+i_{2}+\ldots+i_{k}=u}\binom{u}{i_{1}, i_{2}, \ldots, i_{k}} \prod_{w=1}^{k}\binom{k}{w}^{i_{w}} \\
& \times \frac{1}{2 \pi} \int_{c}^{T} \Lambda(-b-i t, \bar{\chi}) \ell^{j-K-m} L^{(m)}(1+b+i t, \chi) \frac{L^{(v+1)}}{L}(1+b+i t, \chi) \prod_{w=1}^{k}\left(\frac{L^{(w)}}{L}(1+b+i t, \chi)\right)^{i_{w}} d t \\
& +O_{j, k}\left(T^{\frac{1}{2}+b+\epsilon}\right) .
\end{aligned}
$$

From Lemma 3.1, we get

$$
\begin{aligned}
S_{2} & =(-1)^{j} \sum_{m=0}^{j}\binom{j}{m} \sum_{u \leq \frac{\log T}{\log \log T}} \sum_{v=0}^{k}(-1)^{u}\binom{k}{v} \sum_{i_{1}+i_{2}+\ldots+i_{k}=u}\binom{u}{i_{1}, i_{2}, \ldots, i_{k}} \prod_{w=1}^{k}\binom{k}{w}^{i_{w}} \\
& \times \frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} C_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right) e^{-\frac{2 \pi i n}{q}}(\log n)^{j-K-m}+O_{j, k}\left(T^{\frac{1}{2}+b+\epsilon}\right)
\end{aligned}
$$

Since

$$
e^{-\frac{2 \pi i n}{q}}=\frac{1}{\varphi(q)} \sum_{\chi^{\prime} \equiv q} \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-n)
$$

when $(n, q)=1$, we obtain

$$
\begin{aligned}
& S_{2}=(-1)^{j} \sum_{m=0}^{j}\binom{j}{m} \sum_{u \leq \frac{\log T}{\log \log T}} \sum_{v=0}^{k}(-1)^{u}\binom{k}{v} \sum_{i_{1}+i_{2}+\ldots+i_{k}=u}\binom{u}{i_{1}, i_{2}, \ldots, i_{k}} \prod_{w=1}^{k}\binom{k}{w}^{i_{w}} \\
\times & \left\{\sum_{\chi^{\prime} \neq \bar{\chi}} \frac{\tau(\bar{\chi}) \tau\left(\chi^{\prime}\right) \chi^{\prime}(-1)}{q \varphi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \frac{\chi^{\prime}(n) c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)}{(\log n)^{K+m-j}}+\frac{\tau(\bar{\chi}) \tau(\chi) \bar{\chi}(-1)}{q \varphi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \frac{\bar{\chi}(n) c_{n}\left(i_{1}, i_{2}, \ldots, i_{k} ; v ; m ; \chi\right)}{(\log n)^{K+m-j}}\right\} \\
+ & O_{j, k}\left(T^{\frac{1}{2}+b+\epsilon}\right) .
\end{aligned}
$$

By Lemma 3.4, we deduce

$$
\begin{aligned}
S_{2} & =(-1)^{j} \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1} \sum_{m=0}^{j}\binom{j}{m} \sum_{u \leq \frac{\log T}{\log \log T}} \sum_{v=0}^{k}(-1)^{u}\binom{k}{v} \\
& \times \sum_{i_{1}+i_{2}+\ldots+i_{k}=u}\binom{u}{i_{1}, i_{2}, \ldots, i_{k}} \prod_{w=1}^{k}\binom{k}{w}^{i_{w}} \frac{(-1)^{K+m+1}(v+1)!m!\prod_{w=1}^{k}(w!)^{i_{w}}}{(K+m+1)!}+O_{j, k}\left(T(\log q T)^{j}\right)
\end{aligned}
$$

This last sum S_{2} was evaluated by Karabulut and Yildirim in [10]

$$
S_{2}=(-1)^{j} \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1} B(j, k)+O_{j, k}\left(T(\log q T)^{j}\right)
$$

Combining S_{1} and S_{2}, we obtain

$$
I_{4}=(-1)^{j}\left(\delta_{j, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1}+O_{j, k}\left(T(\log q T)^{j}\right)
$$

Finally, theorem 1.1 follows from estimates of I_{1}, I_{2}, I_{3}, and I_{4}.

4. Proof of Theorem 1.2

Let a be a complex number. We write $s=\sigma+i t, \quad \rho_{a, \chi}^{(k)}=\beta_{a, \chi}^{(k)}+i \gamma_{a, \chi}^{(k)}$ with real numbers $\sigma, t, \beta_{a, \chi}^{(k)}$ and $\gamma_{a, \chi}^{(k)}$. The case $a=0$ was already proven in Theorem 1.1, so here we assume $a \neq 0$. By the residue theorem, for a sufficiently large constant B and constant $b \in(1,9 / 8)$, we have

$$
\begin{equation*}
\sum_{\substack{1<\gamma_{a, \chi}^{(k)}<T \\ 1-b<\beta_{a, \chi}^{(k)}<B}} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right)=\frac{1}{2 \pi i} \int_{\mathbf{R}} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)-a} d s \tag{4.1}
\end{equation*}
$$

where the integration is taken over a rectangular contour in counterclockwise direction denoted by \mathbf{R} with vertices $1-b+i, B+i, B+i T, 1-b+i T$. Since there are finitely many a-points in $\{s \in \mathbb{C} ; \operatorname{Re}(s) \leq$ $1-b, \operatorname{Im}(s) \geq 1\}$, we have

$$
\sum_{1<\gamma_{a, \chi}^{(k)}<T} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right)=\frac{1}{2 \pi i} \int_{\mathbf{R}} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)-a} d s+O(1)
$$

Hence,

$$
\begin{align*}
& \sum_{1<\gamma_{a, \chi}^{(k)}<T} L^{(j)}\left(\rho_{a, \chi}^{(k)}, \chi\right) \tag{4.2}\\
& =\frac{1}{2 \pi i}\left\{\int_{1-b+i}^{B+i}+\int_{B+i}^{B+i T}+\int_{B+i T}^{1-b+i T}+\int_{1-b+i T}^{1-b+i}\right\} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)-a} d s+O(1) \\
& :=\frac{1}{2 \pi i}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)+O(1)
\end{align*}
$$

The integral I_{1} is independent of T, so we have $I_{1}=O(1)$. Next, we consider I_{2}. Since $L^{(k)}(s, \chi) \rightarrow 0$ as $\sigma \rightarrow \infty$ if $k \geq 1$, we choose in this case B such that $\left|L^{(k)}(B+i t, \chi)\right|<\frac{|a|}{2}$, then we have $\frac{1}{L^{(k)}(B+i t, \chi)-a} \ll k 1$. Using this and $L^{(j)}(s, \chi) \ll 1$, we get

$$
I_{2}=O(T)
$$

For the case $k=0$, recall that, for $\sigma \rightarrow \infty$, we have $L(s, \chi)=1+o(1)$ and $L^{\prime}(s, \chi) \ll 2^{-\sigma}$ uniformly in t. Hence, there are no a-points for sufficiently large σ provided that $a \neq 1$. For the case $\mathrm{a}=1$, we define $m=\min \{n \geq 2, \chi(n) \neq 0\}$. We observe, for $\sigma \rightarrow \infty, L(s, \chi)-1=\frac{\chi(m)}{m^{\sigma+i t}}(1+o(1))$. Hence, we choose B a fixed constant sufficiently large such that there are no a-points of $L(s, \chi)$ in the half-plane $\sigma>B-1$. Therefore, we deduce that

$$
I_{2}=O(T)
$$

From equation (2.12), we get

$$
I_{3}=\sum_{\left|\gamma_{a, \chi}^{(k)}-T\right|<1} \int_{B+i T}^{1-b+i T} \frac{L^{(j)}(s, \chi)}{s-\rho_{a, \chi}^{(k)}} d s+O\left(\int_{B+i T}^{1-b+i T}(\log q t) L^{(j)}(s, \chi) d s\right)
$$

Now, we change the path of integration. If $\gamma_{a, \chi}^{(k)}<T$, we change the path to the upper semicircle with center $\rho_{a, \chi}^{(k)}$ and radius 1. If $\gamma_{a, \chi}^{(k)}>T$, we change the path to the lower semicircle with center $\rho_{a, \chi}^{(k)}$ and radius 1 . Then, we have

$$
\frac{1}{s-\rho_{a, \chi}^{(k)}} \ll 1
$$

on the new path. This estimate and the bound (21) yields

$$
I_{3}=O\left((q T)^{b-\frac{1}{2}+\epsilon} \sum_{\left|\gamma_{a, \chi}^{(k)}-T\right|<1} 1\right)+O\left((q T)^{b-\frac{1}{2}+\epsilon} \log q T\right)
$$

By Lemma 2.2, we obtain

$$
I_{3}=O\left((q T)^{b-\frac{1}{2}+\epsilon} \log q T\right)
$$

This yields $I_{3} \ll T$, since $1<b<9 / 8$.
Finally, we estimate I_{4}. By equation (2.20) and Stirling's formula, for fixed $1<b<9 / 8$ and large $|t|>2$, we have

$$
\begin{equation*}
\left|L^{(k)}(1-b+i t, \chi)\right| \asymp|q t|^{b-1 / 2}|\log | t| |^{k} . \tag{4.3}
\end{equation*}
$$

Therefore, there exists a constant A such that

$$
\left|\frac{a}{L^{(k)}(1-b+i t, \chi)}\right|<1
$$

holds for any $|t| \geq A$. We divide the path of the integral into two parts

$$
I_{4}=\left(\int_{1-b+i T}^{1-b+i A}+\int_{1-b+i A}^{1-b+i}\right) L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)-a} d s
$$

The second term is $O(1)$ since it is independent of T. Since the integrand of the first term has a geometric series, we have

$$
I_{4}=-\sum_{n=0}^{\infty} a^{n} \int_{1-b+i A}^{1-b+i T} \frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{\left(L^{(k)}(s, \chi)\right)^{n+1}} d s+O(1)
$$

By (4.3), the integrand can be estimated as

$$
\begin{equation*}
\frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{\left(L^{(k)}(s, \chi)\right)^{n+1}} \asymp|q t|^{(b-1 / 2)(1-n)}(\log t)^{-k n+j+1} \tag{4.4}
\end{equation*}
$$

Hence, each integral can be calculated as

$$
\int_{1-b+i A}^{1-b+i T} \frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{\left(L^{(k)}(s, \chi)\right)^{n+1}} d s \ll(q T)^{(b-1 / 2)(1-n)+1+\varepsilon}
$$

for any small $\varepsilon>0$. It follows from the last estimate that the sum for $n \geq 2$ is bounded as

$$
\sum_{n=2}^{\infty} a^{n} \int_{1-b+i A}^{1-b+i T} \frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{\left(L^{(k)}(s, \chi)\right)^{n+1}} d s \ll T^{-(b-1 / 2)+1+\varepsilon} \ll T^{1 / 2}
$$

Therefore, we get

$$
\begin{aligned}
I_{4} & =-\int_{1-b+i A}^{1-b+i T} \frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)} d s-a \int_{1-b+i A}^{1-b+i T} \frac{L^{(j)}(s, \chi) L^{(k+1)}(s, \chi)}{\left(L^{(k)}(s, \chi)\right)^{2}} d s+O\left(T^{1 / 2}\right) \\
& :=-K_{1}-a K_{2}+O\left(T^{1 / 2}\right)
\end{aligned}
$$

We already studied K_{1} in Theorem 1.1 and we get the estimate

$$
K_{1}=-2 \pi i\left\{\delta_{j, 0} \frac{T}{2 \pi} \log \frac{q T}{2 \pi}+(-1)^{j} B(j, k) \frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)^{j+1}+O\left(T(\log q T)^{j}\right)\right\}
$$

It remains to evaluate K_{2}. By equation (4.4), for $k \geq 1$, one has

$$
K_{2} \ll \int_{1-b+i A}^{1-b+i T}|\log t|^{j}|d s| \ll T(\log T)^{j}
$$

In the case $k=0$, we use equations (2.1) and (2.6) to obtain

$$
\begin{equation*}
\frac{L^{(j)}(s, \chi) L^{\prime}(s, \chi)}{L^{2}(s, \chi)}=(-1)^{j+1} \ell^{j+1}\left(1+O\left(\frac{1}{|t|}\right)\right) \tag{4.5}
\end{equation*}
$$

for fixed σ and $|t| \gg 1$, where $\ell:=\log (q|t| / 2 \pi)$. Then, we have

$$
\begin{aligned}
K_{2} & =\int_{1-b+i A}^{1-b+i T}\left((-\ell)^{j+1}+O\left((\log q|t|)^{j}\right)\right) d s \\
& =(-1)^{j+1} i T\left(\log \frac{q T}{2 \pi}\right)^{j+1}+O\left(T(\log q T)^{j}\right) .
\end{aligned}
$$

Combining estimates of K_{1} and K_{2}, we get

$$
I_{4}=(-1)^{j} 2 \pi i\left(\delta_{j, 0}+a \delta_{k, 0}+B(j, k)\right) \frac{T}{2 \pi}\left(\log \frac{q T}{2 \pi}\right)^{j+1}+O\left(T(\log q T)^{j}\right)
$$

Finally, Theorem 1.2 follows from estimates of I_{1}, I_{2}, I_{3} and I_{4}.

5. Concluding remarks

The a-points of an L-function $L(s)$ are the roots of the equation $L(s)=a$. We refer to Steuding's book [14, chapter 7] for some results about a-points of L-functions from the Selberg class. Therefore, it is an interesting question to extend Theorem 1.1 and mainly Theorem 1.2 to the other class of Dirichlet L-functions (the Selberg class with some further condition) and its higher derivative. This problem will be considered in a sequel to this paper since it is done for the Riemann zeta function and its k-th derivative in [6] and [12].

Acknowledgment

The authors would like to express their sincere gratitude to the referee for her/his many valuable suggestions which increased the clarity of the presentation.

References

[1] Conrey JB, Ghosh A Zeros of derivatives of the Riemann zeta-function near the critical line. Analytic Number Theory (Allerton Park, IL 1989), Progr. Math. Birkhauser Boston, Boston, MA 1990; 85: 95-110.
[2] Davenport H. Multiplicative Number Theory. 2nd ed. revised by H. L. Montgomery. Springer, 1980.
[3] Fujii A. On the distribution of values of derivative of the Riemann zeta function at its zeros.I. Proceedings of the Steklov Institute of Mathematics 2012; 276: 51-76.
[4] Garunk \check{s} tis R, Steuding J. On the roots of the equation $\zeta(s)=a$. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2014; 84: 1-15.
[5] Gonek SM. Mean values of the Riemann zeta-function and its derivatives. Inventiones Mathematicae 1984; 75: 123-141.
[6] Jakhlouti MT, Mazhouda K. Distribution of the values of the derivative of the Dirichlet L-functions at its a-points. Bulletin of the Korean Mathematical Society 2017; 54 (4): 1141-1158.
[7] Kaptan DA, Karabulut Y, Yildirim C. Some mean value theorems for the Riemann zeta-function and Dirichlet L-functions. Commentarii Mathematici Universitatis Sancti Pauli 2011; 60 (1-2): 83-87.
[8] Kaptan DA. Some mean values related to Dirichlet L-functions. MSc, Boĝazici University, İstanbul, Turkey, 2009; http://seyhan.library.boun.edu.tr/record=b1558882 S5.
[9] Karabulut Y. Some mean value problems concerning the Riemann zeta function. MSc, Boĝazici University, İstanbul, Turkey, 2009; http://seyhan.library.boun.edu.tr/record=b1558899 S5.
[10] Karabulut Y, Yildirim C. On some averages at the zeros of the derivatives of the Riemann zeta-function. Journal of Number Theory 2011; 131: 1939-1961.
[11] Levinson N. More than one third of the zeros of Riemann's zeta function are on $\sigma=\frac{1}{2}$. Advances in Mathematics 1974; 13: 386-436.
[12] Mazhouda K, Onozuka T. On some sums at the a-points of derivatives of the Riemann zeta-function. To appear in Analysis, Geometry and Number Theory, 2020.
[13] Onozuka T. On the a-points of the derivatives of the Riemann zeta function. European Journal of Mathematics 2017; 3 (1): 53-76.
[14] Steuding J. Value-distribution of L-functions. Lecture Notes in Mathematics 1877, Springer 2007.
[15] Titchmarsh EC. The Theory of the Riemann Zeta-function. 2nd ed, revised by D. R. Heath-Brown. Oxford, UK: Oxford University Press, 1986.
[16] Yildirim C. Zeros of derivatives of Dirichlet L-functions. Turkish Journal of Math 1996; 20: 521-534.

[^0]: *Correspondence: kamel.mazhouda@fsm.rnu.tn 2010 AMS Mathematics Subject Classification: 11M06,11M26, 11M36

