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Abstract: This article is a contribution to the improvement of classification theory in Leibniz algebras. We extend
the method of congruence classes of matrices of bilinear forms that was used to classify complex nilpotent Leibniz
algebras with one dimensional derived algebra. In this work we focus on applying this method to the classification of

6— dimensional complex nilpotent Leibniz algebras with two dimensional derived algebra.
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1. Introduction

Leibniz algebras are introduced by Loday [9] as a nonantisymmetric generalization of Lie algebras. A. Bloh
had studied these algebraic structures in 1965 and emphasizing their connections with derivations called them
D-algebras [4]. A vector space A over C equipped with a bilinear product [,] : A x A — A such that
the left multiplication is a derivation is said to be a Leibniz algebra. Define the ideals of A, A' = A and
Al = [A, A7~ for j € Z>y. A Leibniz algebra A is nilpotent of class ¢ if A“T? = 0 but A° # 0 for some
positive integer ¢. The most important ideal of A is Leib(A) = span{[a,a] | a € A}. Recall that if a Leibniz
algebra A with Leib(A) =0, is a Lie algebra. Hence, if Leib(A) # 0, we will call A a non-Lie Leibniz algebra
throughout the paper. We define the center of A by Z(A) = {z € A| [z,a] =0 = [a,2] forall a € A}. A
Leibniz algebra A is said to be split if it can be written as a direct sum of two nontrivial ideals. Otherwise it
is called nonsplit. Throughout this paper, we assume the vector spaces we study is over the field of complex

numbers C.
It is always an interesting problem to give the classification of any kind of algebras. The classification of

nilpotent Lie algebras is a difficult problem and it is still unsolved. Since antisymmetry property is not satisfied
in Leibniz algebras the problem of classification of non-Lie nilpotent Leibniz algebras is much harder. The
classification of nilpotent Leibniz algebras over C of dimension less than or equal to four has been completed
(see [1, 2, 5-7, 9, 10]). The classification of 5—dimensional non-Lie nilpotent Leibniz algebras is given in [§]
with bilinear forms technique. In this paper, we apply this congruence classes of bilinear forms technique to
give the classification of a subclass of 6—dimensional non-Lie nilpotent Leibniz algebras. This approach can
be used to classify any n—dimensional nilpotent Leibniz algebras with (n — 2)— dimensional derived algebra.
Using the Mathematica program implementing Algorithm 2.6 given in [5], we verify that the classes we obtained

are indeed pairwise nonisomorphic.
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Consider A be a n—dimensional complex non-Lie nilpotent Leibniz algebra with dim(A2?) =n — 2 and
dim(Leib(A)) = 1. Tt is sufficient to classify nonsplit Leibniz algebras. We give the following Lemmas which

are very useful. The first of them is an immediate consequence of Proposition 4.2 in [6].
Lemma 1.1 Let A be a nilpotent Leibniz algebra of class ¢. Then we have A° C Z(A).

Lemma 1.2 If A is a nonsplit Leibniz algebra then Z(A) C A?.

Proof Let A be a nonsplit Leibniz algebra. Assume Z(A) € A%. Take a complementary subspace W to A2
in A such that A= A2® W . Let V be a complementary to Z(A)NW in A such that A=V @& (Z(A)NW).
Choose I1 = Z(A)NW and I, =V.

Note that Z(A) N W C Z(A) hence it is an ideal. Also V is an ideal since V contains A%. Therefore,
A =1y ® I, where I; and I are nontrivial ideals of A. Then A is split, which is a contradiction. O

Lemma 1.3 Let A be a nilpotent Leibniz algebra and dim(Leib(A)) = 1. Then Leib(A) C Z(A).

Proof Assume [A, Leib(A)] # 0. Then using Leib(.A) is an ideal we get Leib(A) = [A, Leib(A)]. So
Leib(A) = [A, Leib(A)] C [A, A%] = A3 = Leib(A) C A3.

Leib(A) = [A, Leib(A)] C [A, A%] = A* = Leib(A) C A*. By doing this repetitively we see that Leib(A) C A"
for any natural number n. This implies A is not nilpotent which is a contradiction. Hence our assumption is
wrong. Then [A, Leib(A)] = 0 which implies that Leib(A) C Z(A) o

We omit the proofs of the following Lemmas since they are already given in [8].

Lemma 1.4 Let A be a n— dimensional nilpotent Leibniz algebra with dim(Z(A)) = n—k. If dim(Leib(A)) =1

then dim(A?%) < E=£2

Lemma 1.5 Let A be a n— dimensional nilpotent Leibniz algebra with dim(A?) = n — k,dim(Leib(A)) = 1
and dim(A%) =t. Then

. k24 k42
(i) n<t+4 ==
(i) n <t+ 225 if Leib(A) C A

Lemma 1.6 Let A be a n— dimensional nilpotent Leibniz algebra with dim(A%) =n —k and A* # 0. Then
dim(Z(A)) <n—k—1.

Proof Note that by Lemma 1.2 and since A% # 0 we have Z(A) C A%. So it is enough to show that
dim(Z(A)) #n —k — 1. Assume dim(Z(A)) =n — k — 1. Take a complementary subspace W to Z(A) in A?
such that A% = Z(A) @ W. Using the fact that A% C A% and A* # 0 we can see that W C A3. Hence

A=A A% =[A,Z(A) e W] = A

which is a contradiction. So dim(Z(A)) # n —k — 1, and therefore dim(Z(A)) <n —k — 1.
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O
Choose Leib(A) = span{u,}. We can extend it to a basis {us,u4,...,upn_1,u,} for A% and let a
subspace U be complementary to A% in A so that A= A2®U. So [u,v] = azuz + qutiy + Qpy_1Un_1 + Qi
for some «; € C, 3<i<n, for any u,v € U. Bilinear form f(, ):U xU — C can be defined by f(u,v) = o,
for all u,v € U.
Choosing a basis {uj,us} for U we see that the matrix N of the bilinear form f(, ): U x U — C is
one the following (see Theorem 3.1 in [11]):

(5 o) @y o) (o) @) o(ly)

where ¢ # 1,—1. We can assume that N cannot be the matrix (i) because the resulting algebra is a
Lie algebra. It is enough to consider the matrices (ii) and (iii) because others are isomorphic to one of these as

showed in Lemma 2.1 in [8] .

2. Classification of 6-dimensional nilpotent Leibniz algebras with dim(A4%) =4 and dim(Leib(A)) = 1

Let A be a complex nonsplit non-Lie nilpotent Leibniz algebra with dim(A) = 6,dim(A?) = 4 and dim(Leib(A))
1. Then by Lemma 1.3 we get Leib(A) C Z(A). Using Lemma 1.5 we have 2 < dim(A?) < 3. First suppose
dim(A®%) = 2. Then fom Lemma 1.5 we obtain Leib(A) ¢ A3. Note that dim(A*) =0 or dim(A*) = 1.

Theorem 2.1 Let dim(A) =6, dim(A?) =4, dim(A3) =2, dim(A*) =0, and dim(Leib(A)) = 1. Then, up

to isomorphism, the nonzero multiplications in A is given by one of the following:
A1 [61,61] = b6, [01, 02] = 03 = —[d2, 1], [01, 03] = 04 = —[d3,01],[02, 03] = J5 = —[d3, ba] -
Az [61,61] = d6, [01, 02] = 03 = —[d2, 01], [02, 02] = J6, [01, 03] = 04 = —[03,01], [02, 03] = 05 = —[03, 2] .

Proof Let dim(A*) = 0. Then by Lemma 1.1 and Lemma 1.2 we get A® C Z(A) C A2. If dim(Z(A)) = 2 then
A3 = Z(A) and by Lemma 1.3 Leib(A) C A3, a contradiction. Hence dim(Z(A)) = 3. Using Leib(A) ¢ A3,
let Leib(A) = span{eg} and A® = span{es,es}. Then Z(A) = span{es,es,es} and {e3, eq,e5,65} is an
extended basis of A%. Take U = span{ej,ez}.

Case 1: If the matrix N = (ii), then the nontrivial multiplications in .4 given as follows:
le1,e1] = e, [e1, e2] = ares + ases + azes = —[ea, 1], [e1, €3] = Bres + Paes = —les, e1], [e2, €3] = y1€4 + Y265 =
—[es, 2], where a1 # 0, 8172 — f2y1 # 0.
Then the base change §; = e1, 02 = e2,d5 = a1es+tagestases, 04 = a1 (Brea+2es5), 05 = a1(y1ea+72e5), 96 = €6
shows A is isomorphic to Aj .

Case 2: If the matrix N = (i), then the nontrivial multiplications in A given as follows:
le1,e1] = eg, [e1,e2] = ares + azeq + azes = —[ea, e1], [e2, e2] = €g,[e1,e3] = Pres + Paes = —[e3, e1],[e2, €3] =
Y1€4 + Y2€5 = —[es, ea], where ay # 0, B1y2 — Bay1 # 0.
Then the base change §; = e1, 02 = e2,d5 = a1es+tagestases, 04 = a1 (Brea+2es5), 05 = a1(y1ea+v2e5), 56 = €6

shows A is isomorphic to As. O

Theorem 2.2 Let dim(A) = 6, dim(A?) =4, dim(A3) =2, dim(A*) =1, and dim(Leib(A)) = 1. Then, up

to isomorphism, the nonzero multiplications in A is given by one of the following:
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Az [01,01] = J6, [01,02] = 03 = —[02,61], [01,03] = 64 = —[d3,01], [01,04] = 05 = —[d4,01].

Ay [01,01] = 06,[01,02] = 03 = —[02,01],[01,03] = 04 = —[03,01],[02,03] = 05 = —[d3,02],[01,04] = 65 =
—[04,01].

As [01,01] = 06, [01, 02) = 03 = —[02,61], [02, 03] = 64 = —[J3, 03], [02, 4] = 05 = —[04, 2.

Ag [01,01] = 06,[01,02] = 03 = —[02,01],[01,03] = 05 = —[03,01],[02,03] = d4 = —[d3,02],[02,04] = 65 =
—[04,62] .

Az [01,61] = J6, [01,02] = 03 = —[02, 1], [02, 02] = &6, [01, 03] = 04 = —[d3,01], [01,04] = 05 = —[04, 61].

AS [61751] - 56, [51752] = 53 - _[52761]7 [52762] - 567 [51753] = 54 - _[53761]7 [52753] = 55 = _[63752}7 [61754] =
65 = 7[54751]'

Ag [01,01] = 0, [01,02] = 03 = —[02,01], [02, 02] = 06, [01, 03] = 04 = —[03,01], [02, 03] = 104 = —[03, 2], [01,04] =
05 = —[04,01], [02,04]) = 105 = —[04, J2] .

Aio [01,01] = d6,[01,02] = 03 = —[d2,01],[02,02] = 0¢,[01,03] = 61 = —[03,01],[02,03] = @04 + 05 =
—[03, 02], [01, 04] = 05 = —[b4,01], [02, 4] = @05 = —[d4, d2] .

Proof Let dim(A*) = 1. Then by Lemma 1.1 and Lemma 1.2 we have A* C Z(A) C A%. Using this with
Lemma 1.6 we get 1 < dim(Z(A)) < 3. If dim(Z(A)) = 1 then Leib(A) = Z(A) = A* C A3, leads to a
contradiction. Hence dim(Z(A)) = 2. Note that Leib(A) # A* because otherwise Leib(A) = A* C A3, a
contradiction. From Leibniz identities [A, [A, A%]] = [[A4, A], A%] + [A, [A, A3]] and [A3, [A, A]] = [[43, A], A] +
[A, [A3, A]] we get [A?%, A3] =0 = [A3, A%]. Let Leib(A) = span{es}, A* = span{es} and A3 = span{ey,es5}.
Then Z(A) = span{es,es}. Extend this to a basis {es, e4,es5,¢e6} of A?. Take U = span{e;,es}.

Case 1: Let N be the matrix (ii) then the nontrivial multiplications in A given as follows:
le1, 1] = eg, [e1, €2] = a1e3 + aneq + azes = —[ez, e1], [e1,e3] = Brea + Paes = —[es, e1], [es, €3] = Bseq + Paes =
—[es, e2], [e1, e4] = yie5 = —[ea, e1], [e2, €] = y2e5 = —[eq, €2].

From Leibniz identities we obtain the following equation:

B371 = B172 (2'1)

Case 1.1: Let 79 = 0. Then 7 # 0 since dim(Z(A)) = 2. So B3 = 0 which implies §; # 0. If

B4 = 0 then the base change 01 = e1,d2 = e2,035 = ares + azeq + azes, 04 = @114 + (182 + aay1)es, 05 =

a1f171€5,06 = eg shows A is isomorphic to Agz. If B4 # 0 then the base change d; = e1,d02 = 6”1 €2,03 =
5571 (ares + ageq + ages), 04 = algi“ ey + 5”1 (0182 + azv1)es, 05 = algiﬁ es5,06 = eg shows A is isomorphic

to .A4.

Case 1.2: Let 75 # 0. Then with the base change d; = yoe1—7y1€2,d2 = €2,d3 = e3,04 = e4,05 = 5,0 =
Y3eq we can make y; = 0. Then by (2.1) we have ; = 0. So 33 =+# 0 since dim(A?) = 4. If B2 = 0 then the
base change 0; = e1,02 = e2,03 = aiez + ageq + azes, 04 = a1fizes + (1 f4 + azvy2)es, d5 = a1 f372€5,06 = €6

shows A is isomorphic to As. If B3 # 0 then the base change §; = Bgzz e1,0p = €3,03 = B%ZZ (a1e3 + ageq +

2 2_2
aszes), 04 = algzw + 53"’2 (0184 + azy2)es, 05 = 123% es, 06 = B%é“ eg shows A is isomorphic to Ag.
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Case 2: Let N be the matrix (iii) then the nontrivial multiplications in A given as follows:
le1,e1] = e, [e1,e2] = ares + aoeq + azes = —[ea, e1], [e2, €2] = €, [e1, €3] = Bies + Paes = —es, e1],[e2, €3] =
Bses + Baes = —les, ea], [e1, e4] = y1e5 = —[ea, e1], [e2, e4] = Y2e5 = —[e4, €3],
Again from Leibniz identities we obtain the equation (2.1).

Case 2.1: Let 42 = 0. Then ~; # 0 since dim(Z(A)) = 2. So f3 = 0 which implies 51 # 0. Then the

nontrivial multiplications in A given by

le1,e1] = e, [e1, e2] = ares + azeq + azes = —[ea, e1], [e2, €2] = €, [e1, €3] = Breq + Paes = —[e3, e1],

[62,63] = Baes = —[63762}7 [61,64} = "1€5 = —[64761]7 [63764] = 7Y3€5 = —[64763]' (2.2)

If B4 = 0 then the base change 01 = e1,d2 = eg,d5 = ae3 + azeq + azes, 0y = a1 Pres + (182 + asvy1)es, 05 =

a1 171€5,06 = e shows A is isomorphic to Ay. If 84 # 0 then the base change d; = ﬁ?—ilel, 0o = B?—:leg, 03 =

B3 _ aiBd B3 _ a1y _ B i s ;
W(aleg + ageq + ages), 04 = 52,5 4 + W(alﬁg + asyi)es, 05 = W65766 = 5257 shows A is isomorphic
to Ag.

Case 2.2: Let 9 # 0. If 44 = 0 then by (2.1) we have 8; = 0. Then the base change ¢; =

€2,00 = e1,03 = e3,04 = e4,05 = e5,06 = eg shows A is isomorphic to an algebra with the nonzero

multiplications given by (2.2). Hence A is isomorphic to A; or Ag. Now let 73 # 0. If 42 + 93 # 0

then the base change 61 = ej,ds = L) 4+ ——L—ey,03 = e3,04 = €4,05 = e5,06 = e shows

Vg VAR

A is isomorphic to an algebra with the nonzero multiplications given by (2.2). Hence A is isomorphic to
A7 or As. Now consider the case 7 + 2 = 0. Then by (2.1) we get 87 + 52 = 0. The base change

Y1 = €1,Y2 = e2,Y3 = arez + ey + azes, ys = arfBieq + (a1f82 + apyi)es, ys = a1 Bivies, ys = e shows A is

isomorphic to the following algebra:
W1 v1] = Y6, (1, 2] = y3 = —[y2, v1), (Y2, v2] = ve, Y1, y3] = ya = —[ys. v1), [y, y3] = iya + Oys = —[y3, y2],

W1, v4] = y5s = —[ya, y1) (Y2, €a) = iys = —[ya, y2]

If & = 0 then the base change 01 = 41,2 = y2,03 = y3,04 = Ya,05 = y5,96 = ys shows A is isomorphic to
Ag. If 6 # 0 then the base change 6; = Oy1,d2 = Oya, 63 = 0%y3, 64 = 03y4, 05 = 0%ys, 06 = 0%ys shows A is
isomorphic to Ajg. O
Now suppose dim(A%) = 3. Then fom Lemma 1.5 we have Leib(A) C A3. Note that dim(A*) =
0,dim(A%) =1 or dim(A*) = 2.
Let dim(A*) = 0. Then by Lemma 1.1 and Lemma 1.2 we have A* C Z(A) C A?. Hence dim(Z(A)) = 3.
Using Leib(A) C A3, let Leib(A) = span{es} and A3 = span{es,e5,e6} = Z(A). Extend this to bases
{es,eq,e5, €6}, {e1,e2,e3,€4,e5,e6} of A2 and A, respectively. Leibniz identity [A,[A, A%]] = [[A, A], A?] +
[A, [A, A?]] implies that [A2, A%] = 0. Then the nontrivial multiplications in A given as follows:

le1,e1] = Oies, [e1, €2] = ares + azeyq + azes = —[ea, e1], [e2, 2] = baeq, [e1,e3] = Bres + Paes + Paes, [e3, e1] =
—preq — Paes + Paes, [e2, €3] = y1€4 + Y2e5 + V366, [€3, €2] = —71€4 — Y2€5 + VaC6.
But then the Leibniz identities yield the equations 8, = —B3 and 74 = —33 which implies dim(A%) = 2,

contradiction. There is no Leibniz algebra in this case.
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Let dim(A*) = 1. Then by Lemma 1.1 and Lemma 1.2 we have A* C Z(A) C A2. We get dim(Z(A)) < 3
from Lemma 1.6. Then dim(Z(A)) =1 or dim(Z(A)) = 2.
First suppose dim(Z(A)) = 2. Take a complementary subspace W to A3 in A?. Here Z(A) C A3 because
otherwise A? = A3 @& W such that W C Z(A). But then A3 = [4, A%] = [4A, A% ® W] = A%, which is a
contradiction. We need to consider two cases: A* = Leib(A) and A* # Leib(A).

Theorem 2.3 Let dim(A) = 6, dim(A?) =4, dim(A4%) = 3, dim(A*) = 1, dim(Z(A)) = 2, A* = Leib(A)

and dim(Leib(A)) = 1. Then, up to isomorphism, the nonzero multiplications in A is given by one of the

following:

Ai1 [61,01] = d6,[01,02] = 03 = —[02,01],[01,03] = d4 = —[d3,81],[02,03] = 05 = —[d3,02],[01,04] = &6 =
—[04,61] .

A12 [51751] = 567[51762] = 63 = _[52761]7[51753] = 55 = _[63751]7[62753] = 54 = _[53752]7[62764] = 56 -
—[04,92].

Az [01,01] = d6, [01, 02) = 03 = —[02,01], [02, 02] = J6, [01,03] = 04 = —[d3, 1], [02, 03] = 05 = —[03,02], [01,04] =
d¢ = —[d4,01].

Aig [01,01] = d6,[01,02] = 03 = —[d2,01],[02,02] = 0¢,[01,03] = 61 = —[03,01],[02,03] = @04 + 05 =
—[03, 02], [01,04] = 06 = —[04,01],[02, 64] = 106 = —[04, b2] .

Proof Let A* = Leib(A). From Leibniz identities [A, [A, A%]] = [[4, A], A3] + [A, [A, A%]] and [A3,[A4, A]] =
[A3, A], A|+[A, [A3, A]] we get [A%, A%] = 0 = [A®, A2]. Using Leib(A) C Z(A), let Leib(A) = A* = span{eg}
and Z(A) = span{es,eq}. Extend this to bases {e4,es,es}, {€s,e4,e5,e6} of A3 and A2, respectively. Take
U = span{ey,es}.
Case 1: If the matrix N = (ii), then the nontrivial multiplications in .4 given as follows:

ler, e1] = eq,[e1,e2] = ez + aves + azes = —lez, en], [e1, e3] = Bres + Baes + Bses, [es, e1] = —Pres — Baes +
Baee, [e2, e3] = Bsea + Boes + Pres, [ea, ea] = —PBsea — Boes + Pseo, [ea; ea] = Poes, [e1,ea] = 1€, [ea, 1] =
Y2€6, [€2, 4] = Y3€s, [€4, €2] = YVa€6

From Leibniz identities we get the following equations:

a1(Bs + Ba) + az(n1 +72) =
ai(Br + Bs) + aa(yz +4) =
Bsv1 — a1B9 — B173 =0
Bi(y1+72) =0 (2.3)
B1ya + Bsy1 + a1y =0

B1v3 + Bsy2 — a1fBg =0

Bs(y3+v4) =0

0
0

Case 1.1: Let 35 = 0. Then B; # 0 since dim(A%) = 3. So by (2.3) we obtain v = —7y1,58; =
—P3,89 =0 =3 =4 and g = —B7. Then the nontrivial multiplications in A given as the following:
[e1,e1] = es,[e1,62] = arez + azes + azes = —[ez,e1],[e1,e3] = Brea + Paes + Bzes = —les,en],[e2,e3] =

Bees + Pree = —[es, ez, [e1,es] = vieg = —[eq,e1] Then the base change §; = e1,d0 = e2,03 =

_ 1
a1 171
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ﬁ(altg T Qzeq + 04365),54 - ’71164 + ﬁ?'z)’l € + (/f’sn + a??ﬁ )66’55 - ﬁf’)’f(ﬂfﬁs * 6766)756 = €6 shows

A is isomorphic to A1y .

Case 1.2: Let (85 # 0. Then with the base change 61 = f5e1 — f1e2,02 = €3,03 = e3,04 = e4,05 =

es,06 = B2eq we can make 31 = 0. So by (2.3) we obtain v4 = —v3,81 = — 3,80 =0 =1 =72 and s = —f37.
Then the nontrivial multiplications in A given as the following:
[e1,e1] = eg, [e1,€2] = ares + ageq + azes = —[ea, e1], [e1, €3] = Baes + Bses = —[es, e1], [ea, e3] = Bseq + Boes +
Bres = —[es, ea], [e2, e4] = v3€6 = —[eq, e2] Then the base change 6; = a18571€1,02 = ea,03 = 18571 (ares +
aseqs+azes), 0 = aifEvies+ i BsBevies + (o Bs Bryi + aran 577 )es, 05 = i BE73(B2e5+ Baee), 0 = a3 B2vies
shows A is isomorphic to Ajs.

Case 2: If the matrix N = (¢i¢), then the nontrivial multiplications in .4 given as follows:
le1,e1] = eq,[e1,e2] = arez + ages + azes = —[ez,e1],[e2,e2] = eq,[e1,e3] = Pres + Baes + Bzes, [e3,e1] =
—Bres — Paes + Paes, [e2, €3] = Bsea + PBoes + Pres, [es, ea] = —Bsea — PBoes + Pses, [e3, 3] = Boes, [e1,e4] =
Y166, [€4, €1] = Y2e6, [€2, €4] = Y3€6, [€4, €2] = Ya€6
Again from Leibniz identities we obtain the equations (2.3).

Case 2.1: Let 35 = 0. Then B; # 0 since dim(A%) = 3. So by (2.3) we obtain v = —7y1,8; =
—P3,89 =0 =3 =74 and g = —f7. Then the nontrivial multiplications in A given by

le1,e1] = e, [e1,e2] = ares + azeq + azes = —[ea, e1], [e2, €2] = €, [e1, €3] = Breq + Paes + Bzeg = —[e3, eq],

lea, e3] = Bees + Bres = —[es, ea], [e1, ed] = y1e6 = —[eq, €1].  (2.4)

Then the base change d; = (04161171)1/261’62 = (a161171)1/2€2,53 = m(a163+a264+a365),64 = W(&&H-

Baes + Bseg) + (algf;yll)smv‘sf» = (alﬂ‘l";l)gﬁ (Bees + Breg), 06 = m% shows A is isomorphic to A;3.

Case 2.2: Let 85 # 0. If 51 = 0 then by 2.3 we have 74 = —73,084 = —f3,80 = 0 = 71 = 72 and
Bs = —B7. Then the base change §; = e3,d2 = 1,03 = €3,04 = e4,05 = €5, = eg shows A is isomorphic to

an algebra with the nonzero multiplications given by (2.4). Hence A is isomorphic to Aj3. Now let 51 # 0. If
Bf + B2 # 0 then the base change §; = B1e1 + fs€2,02 = fse1 — Brez, 3 = €3,04 = €4, 05 = e5,06 = (57 + [2)es
shows A is isomorphic to an algebra with the nonzero multiplications given by (2.4). Hence A is isomorphic

to Ajz3. Now consider the case 32 + 32 = 0. Then by (2.3) we get v + 92 = 0. Then the base change

o1 = (oa/;rh )1/261’52 - (Ot1l;171 )1/262’53 - m(o‘lei” T Qgeq ¥ 04365),54 - W(Bleél + faes + 6366) *

(algﬁf)m , 05 = (alﬁ?;l)gﬂ ((Bs —iP2)es + (B7 — if3)eq), 06 = mee shows A is isomorphic to Aq4. O

Theorem 2.4 Let dim(A) = 6, dim(A?) = 4, dim(A4A®%) = 3, dim(A*) = 1, dim(Z(A)) = 2, A* # Leib(A)
and dim(Leib(A)) = 1. Then, up to isomorphism, the nonzero multiplications in A is given by one of the

following:

Ais [61,01] = d6,[01,02] = 03 = —[02,01],[01,03] = da = —[d3,81],[02,03] = 06 = —[d3,02],[01,04] = &5 =
—[04,61] .

Ais [01,01] = 06, [01,02] = 93 = —[d2,01],[01, 03] = 64 = —[d3,01], [02, 03] = 05 + 0 = —[J3,92], [01,04] = 05
—[04,01].
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Air [61,61] = b6, [01,02] = 63 = —[02,61],[01,03] = 06 = —[03,01],[02,03] = 61 = —[d5,02],[62,04] = b5 =
—[04,62] .

Ag [01,01] = J6, [01,02] = 63 = —[d2,01], [01,03] = 65 + d6 = —[03,01], [02,03] = 04 = —[I3, 2], [02,04] = J5 =
—[04,62] .

Aig(a) [61,61] = 06,[01,02] = 63 = —[02,01],[02,02] = b6, [01,03] = 04 = —[03,01],[02,93] = ads + J6
—[03, 02], [01, 04] = 05 = —[d4, 61].

Ago [61,01] = b6, [01,02) = d3 = —[d2,01],[02,02] = b,[01,03] = 64 = —[d3,81],[02,03] = @014 + J6
—[03, 02], [01, 04] = 05 = —[d4, 61, [02, 04] = 105 = —[04, J2].

Ag1 [61,01] = 6, [01,02] = 03 = —[d2, 1], [02,02] = J6,[01,03] = 04 = —[d3,01], [02,03] = @04 + 05 + 06 =
—[03, 02], [01, 04] = 05 = —[d4, 61, [02, 4] = 15 = —[04, 2].

Proof Let A* # Leib(A). From Leibniz identities [A, [A, A%]] = [[4, A], A3] + [A, [A, A%]] and [A3,[A4, A]] =
[A3, A], Al + [A,[A3, A]] we get [A%, A3 = 0 = [A3 A%]. Let Leib(A) = span{es} and A* = span{es}.
Then Z(A) = span{es, eq}. Extend this to bases {e4,es,es}, {€3,eq,e5,e6} of A3 and A2, respectively. Take
U = span{ey,ez}.

Case 1: Let N be the matrix (ii) then the nontrivial multiplications in A given as follows:

le1,e1] = es,[e1,e2] = ares + azes + azes = —[ea,eq],[er,e3] = PBies + Paes + Baeg, [e3,e1] = —Pies —
Baes + Paee, [e2, €3] = Bses + Boes + Pres, [e3,e2] = —Psea — Pees + Pses, [es, e3] = Boes, [e1,ed] = yie5 =
—[64, 61}, [62764] = 7265 = —[647 62]

From Leibniz identities we get the following equations:

Bs+B4=0

=0
Z iﬁs (2.5)
Bsy1 — Biye =0

Case 1.1: Let 72 = 0. Then ~; # 0 since A* # 0. So by (2.5) we have 85 = 0. Then (1,37 # 0 since
dim(A3) = 3. Then the nontrivial multiplications in A given as the following:
le1,e1] = e, [e1,€2] = aiez + ases + azes = —lea,e1],[e1,e3] = Bies + Paes + Baes = —[es, 1], [ea, e3] =
Bees + Pres = —les, ea], [e1, ea] = yies = —[eq, e1]
If Bs = 0 then the base change d; = a;f37e1,02 = ea,03 = a1 87(a1e3 +azes +azes), s = i B152es+ (a3 232 +
adagy1B2)es + af B3 B2eq, 05 = afBiv183es, 06 = a3 B2es shows A is isomorphic to A;s.

If B¢ # 0 then the base change §; = W(%)z/?’el,(& = (a%ﬁg%wl)l/:’eg,dg = %(aleg +

nea -+ anes). s = (F20)7 s (Brea+ Baes + Pac) + (£ 28, b = ()79 2855 . 6o =

W(ﬁf—gl)”?’e(ﬁ shows A is isomorphic to Ajg.

Case 1.2: Let 9 # 0. Then with the base change §; = 7261 — 71€2,02 = €2,03 = e3,04 = €4,05 =
es,06 = Y2eg we can make v, = 0. Then by (2.5) we have $; = 0. Then S5, 33 # 0 since dim(A3) = 3.

If ﬁg = 0 then the base change 61 = 61,52 = #62,53 = L(Oqeg —+ ey + 04365),54 = #ﬁg(,@164 + ,8265 +

a1f3 a1B3
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Bses) + %65, 05 = {21%323 es, 06 = eg shows A is isomorphic to A;7.
If ﬂg # 0 then the base change 61 = ’28%’7%2 61,62 = (1153 62,53 = a?%z%g, (06163 + ageq + 04365),54 =
a?%?ﬁ‘l (Breq + Baes + Bses) + 770‘2'802%; es, 05 = all%’;% es, 06 = ( 2;%2) eg shows A is isomorphic to A;jg.

Case 2: Let N be the matrix (iii) then the nontrivial multiplications in A given as follows:

le1,e1] = es,[e1,e2] = ares + ageq + azes = —lea, e1],[ea,e2] = eg,[e1,€3] = Pres + Paes + Pses, [e3,€1] =
—1es — Baes + Paes, [e2, €3] = Pses + Boes + PBres, [es, e2] = —fses — Poes + Pses, [e3, €3] = Poes, [e1, ea] = v1e5 =
—lea, e1], [e2, e4] = y2e5 = —[es, €2]

From Leibniz identities again we get the equations (2.5).
Case 2.1: Let 75 = 0. Then 7, # 0 since A* # 0. So by (2.5) we obtain 35 = 0 and Sy, 37 # 0 since
dim(A3%) = 3. Then the nontrivial multiplications in A given by
[e1,e1] = €6, [e1, €2] = are3 + azes + azes = —[ea, e1], [e2, e2] = €6, [e1, €3] = Brea + Paes + Bzes = —[e3, e1],

le2, e3] = Bees + Bres = —[es, ea], [e1, e4] = y1e5 = —[es,e1]  (2.6)

The base change &; = - B e1,00 = a1167 es,03 = m(meg + aoeq + ages), 04 = a2153 (Brea + Baes + Paeg) +
177

a%gé es, 05 = 354 Les, 0g = (a157)2 eg shows A is isomorphic to Ajg(a).

Case 2.2: Let 75 # 0. If 74 = 0 then by 2.5 we have $; = 0. Then the base change §; = e3,d2 =
e1,03 = e3,04 = e4,05 = e5,06 = eg shows A is isomorphic to an algebra with the nonzero multiplications
given by (2.6). So A is isomorphic to Ajg(a). Now let v; # 0. If ¥ + 42 # 0 then the base change
01 = y1e1 + Y2e2,02 = Y€1 — Y1€2,03 = €3,04 = €4,05 = e5,06 = (72 + 73)eg shows A is isomorphic to an
algebra with the nonzero multiplications given by (2.6). Hence again A is isomorphic to A;9(«). Now consider

the case 72 +~5 = 0. Then by (2.5) we get 87 + 82 = 0. Take 6; = ﬁ% $B2 and 63 = a1(B7 —if3). The base

Y1 = €1,Y2 = €,Y3 = q1€3 + ey + azes, ys = a1(Bres + Paes + Baes) + azvies, ys = a1Pivies, ye = eg shows

A is isomorphic to the following algebra:

[y1,91] = ye: [y1,v2] = ys = —[y2, vl [¥2,92] = ve [Y1,43] = ya = —[ys,v1), [y2, y3] = iya + O1ys + O2ys =

—[y3,y2l, [y1. ya] = ys = —[ya, 1], [y2, va] = y5 = —[ya, v2]

Note that 6 # 0 since dim(A3) = 3.

If #; = 0 then the base change d; = éyl,% = 9—12y2,53 = %y3,54 = %y4,55 = 9—1§y5,56 = %yG shows A is

isomorphic to Asg.

If 6; # 0 then with suitable change of basis A isomorphic to As; . O
Now suppose dim(Z(A)) = 1. Then we have A* = Z(A) = Leib(A).

Theorem 2.5 Let dim(A) = 6, dim(A?) = 4, dim(A3) = 3, dim(A*) = 1, dim(Z(A)) = 1, and

dim(Leib(A)) = 1. Then, up to isomorphism, the nonzero multiplications in A is given by one of the fol-

lowing:

A22 [51751] = 567[51762] = 63 = _[52761]7[51753] = 54 = _[63751]7[62753] = 55 = _[53752]7[62764] = 56 =
—[04, 2], [01,05] = 6 = —[d5,61].

Aas(a) [01,01] = b6, [01,02] = 03 = —[d2,01],[01,03] = 64 = —[03,01], [02,03] = 05 = —[d3,02],[01,04] = b6 =
—[04,601], [02, 04] = adg = —[d4, 82], [02,05] = 66 = —[I5,d2].
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Az [01,01] = d6,[01, 02) = 63 = —[02,01], [02, 2] = J6, [01,03] = 04 = —[d3, 1], [02,03] = 65 = —[03,02], [02,04] =
d6 = —[04,02], [01,05] = 06 = —[d5,01].

Aas (o, B) [01,01] = 0d6,[01,02] = 3 = —[02,01],[02,02] = 06, [01,03] = 0a = —[03,61],[02,03] = 5 =
—[03, 02], [01, 04] = adg = —[d4, 61], [01,05] = Bds = —[05, 1], [02,05] = 06 = —[05, J2].

Proof Note that A* = Z(A) = Leib(A). From Leibniz identities [A, [A, A3]] = [[4, A], A%] +[A, [A, A3]] and
[A3, (A A]] = [[A3, A, Al 4 A, [A3, A]] we get [A%, A3] = 0= [A3, A%]. Let Leib(A) = span{es} = Z(A) = A*.
Extend this to bases {e4,es,e6},{e3,ea,€5,e6} of A® and A2, respectively. Take U = span{e;,es}.

Case 1: If the matrix N = (i7), then the nontrivial multiplications in A given as follows:
le1,e1] = eq, [e1,e2] = are3 + aves + azes = —lez, en], [e1, e3] = Pres + Baes + Bses, [es, e1] = —Pres — Baes +
Baee, [e2, e3] = Bsea + Boes + Pree, [es, ea] = —PBsea — Boes + Pses, [ea; ea] = Poes, [e1,ea] = 1€, [ea, 1] =
Y2€6, (€2, €4] = V3€6, [e4, €2] = Va€s, [e1, €5] = O1¢6, [e5, e1] = Oaes, [e2, €5] = O3¢6, [e5, €2] = Oacq

From Leibniz identities we get the following equations:

a1(Bs + Ba) + as(mn +72) + as(0h +62) =0
a1(Br + Bs) + az(v3 +74) + az(03 +04) =0
Bo =0

Bsm1 + Beb1 — Bz — B2b3 =0

Br(y1 +2) + B2(61 +602) =0

Bs71 + BeO1 + Biya + B204 =0

Bsv2 + Beba + B1vs + B203 =0

Bs (73 + va) + Bo(03 +04) =0

(2.7)

Notice that if S5 # 0, with the base change §; = e1,00 = e2,03 = e3,04 = e5,05 = Bse4 + Bges5,06 = €g
we can make 35 = 0. So let 85 = 0. Then B1,8; # 0 since dim(A%) = 3. So by (2.7) we have
O034+0,=0=01+0 =~v3+v =1 +7 = B3+ Ps = B7 + Bs. Then the nontrivial multiplications in
A given as the following:

le1,e1] = eq,[e1,e2] = ares + anes + azes = —leg, e1],[e1,e3] = Brea + Paes + Pseg = —[es, e1], [ea, e3] =
Bees + Pres = *[63,62], [61764] = 71€6 = *[64,61], [62,64] = 7Y3€6 = *[64,62}, [61,65} =16 = *[65,61], [62765] =
O3e6 = —[es, €3]

If f3 = 0 then 6; # 0 since dim(Z(A)) = 1. Notice that if 73 = 0 then 01e4 — y1e5 € Z(A), contradiction.
So v3 # 0. Then with the base change §; = y3e; — y1€2,02 = €2,03 = e€3,04 = €4,05 = e5,06 = Yieg We

can make v; = 0. The base change §; = ey, = W62,63 = W(aleg + ageq + ases), 04 =

W(Bla + Baes + Bzeg) + ﬁeﬁ, 05 = ﬁ(ﬂg% + Breg) + %[23166, 06 = eg shows A is isomorphic
to Ass.

If 3 # 0 then with the base change §; = f3e; — 01€2,02 = €2,03 = €3,04 = €4,05 = e5,06 = 03¢5 we can
make 6; = 0. Note that if 74 = 0 then 0se4 — v3e5 € Z(A), contradiction. Hence ; # 0. Then the base

(Bs03)*/*
— st ——eq, 02
ay? (B34

043(,3603)1/491 66 5 — 1
a2 (Biy)T/e Y o372 (B171)3/4(Bs03) /4

is isomorphic to Aaz().

_ _ 1 _ 1 _ _ (Bebs)"/*
Change 51 = = W@Q,ag = m(@[l@g +06264 + OL365),54 = #(6164 +

al/?(Biy)7/4

0.)1/2
[1(Bses + Bres) + aayzes), 0 = %66 shows A

Baes + Bzeg) +
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Case 2: If the matrix N = (4i¢), then the nontrivial multiplications in A given as follows:
le1,e1] = es,[e1,e2] = ares + aseq + azes = —[e,e1],[e2,ea] = eq, [e1,e3] = Pres + Baes + Pzes, [e3,e1] =
—pies — Paes + Baes, [e2,e3] = Pses + Poes + PBres, [es, e2] = —Pses — Bses + Pses, [es, e3] = Boes, [e1, e4]
V1€, [€4, €1] = Y266, [€2, €4] = V366, [€4, €2] = Va€6, [€1, €5] = D166, €5, 1] = Oaeg, [e2, e5] = Ose, [e5, 2] = Ose6
Again Leibniz identities yield the equations (2.7). Notice that if 85 = 0, with the base change d; = e1,d02 =
€2,03 = e3,04 = e5,05 = Pseq + Poes,06 = eg we can make O5 = 0. Let 5 = 0. Then (1,85 # 0 since
dim(A43) = 3. So by (2.7) we have 03 + 04 =0 =0y + 03 =3 +74 = Y1 + 72 = B3 + B4 = B7 + Bs. Then the

nontrivial multiplications in A given as the following:

le1,e1] = e, [e1, e2] = aresztagest+azes = —[ea, e1], [e2, e2] = €6, [e1, €3] = Prea+Baes+Bzes = —[es, 1], [ea, e3] =
Bees+ Bres = —[es, ea], [e1, ea] = y1e6 = —[ea, e1], [e2, €4] = v3e6 = —[ea, €3], [e1,€5] = b1e6 = —[e5, €1], [e2,e5] =
Ose6 = —[es, e2)

If 03 = 0 then 6; # 0 since dim(Z(A)) = 1. Notice that if v3 = 0 then 61eq4 — y1e5 € Z(A), contradiction.

So 73 # 0. Then with the base change §; = e1,d2 = e3,03 = e3,04 = 014 — V165,05 = e5,06 = eg wWe can

make y; = 0. The base change §; = W@l,ég = Weg,ég = m(aleg + ageq + ages), 0y =
30
e (Grea + Baes + faco) + grgiyisemco b5 = T o (Baes + Breo) + TE Sz ameo b = wpmes

shows A is isomorphic to Asgy.

If 63 # 0 then with the base change 61 = e1,00 = e2,03 = e3,04 = O3e4 — V3€5,05 = €5,06 = €5 We

can make v3 = 0. Note that 73 # 0 because otherwise e, € Z(A), contradiction. Then the base change

01 = Graegs 7761 02 = Garpagry77€2: 03 = aigag; (Qes + azes +ases), 04 = opparzlon(Brea + Baes + Baes) +

(cey1 + asby)egl, 05 = W[O{l(5665 + Bres) + azbses), dg = meﬁ shows A is isomorphic to Ags (v, ).

O

Finally consider the case dim(A*) = 2. Then dim(A®) = 0 or dim(A%) = 1. Suppose dim(A°%) = 0.

Then by Lemma 1.1 and Lemma 1.2 we have A* C Z(A) C A%. If dim(Z(A)) = 3, take A% = A3 & W such

that W C Z(A). Then A% = [A, A?%] = [A, A3 & W] = A%, contradiction. Hence dim(Z(A)) = 2. This implies

that A* = Z(A).

From Leibniz identities [A, [A4, A3]] = [[A4, A], A3] + [A, [A, A3]] and [A3,[A, A]] = [[A3, A], A + [A, [ 43, A]] we

get [A% A3 =0 =[A3,.A4%].

Let Leib(A) = span{eg}. Extend this to bases {es,es},{es,es,es},{€3,€eq,€5,€6}, {€1,€2,€3,e4,€5,e6} of

Z(A) = A* A3, A% and A, respectively. Then the nontrivial multiplications in A given by

le1, e1] = Oieg, [e1, e2] = ares+ases+azes+aueg, [e2, 1] = —ar1e3—ases—azes +aseq, [e2, €] = baeg, [e1, €3] =
Bres + Paes + Paeg, e, e1] = —Pres — Paes + Paes, [e2,e3] = Pses + Pees + Pres, [es,ea] = —Bseq — Boes +
Bses, [e3, €3] = O3eq, [e1, e4] = y1€5 + Y266, [€4, €1] = —Y1€5 + Y3€6, [€2, €4] = Va5 + Y566, [€4, €2] = —V4E5 + Y6€6

From Leibniz identities we get the following equations:

Biva —Bs11 =0
Bsv2 — a1l — B1ys =0
Bsv2 + a1z + Bive =0 (2.8)

Bsvs — arfls + Biys =0
B5(v5 +76) =0

Let 85 # 0. If 8, = 0 then by (2.8) we have 73 = 0 = 72 = 3 = 75 + ¥6. This implies that dim(A*) =1,
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contradiction. Note that if 5; # 0 then with the base change §; = e1,02 = f5e1 — Sre2,03 = e3,04 = e4,05 =
es,06 = eg we can make (5 = 0. Without loss of generality, assume 35 = 0. Then 3; # 0 since dim(A3%) = 3.
Then from (2.8) we have 74 = 0 = 45 = 76 = 72 + 3. This implies that dim(A*) = 1, contradiction. Hence
there is no Leibniz algebra when dim(A°%) = 0!

Theorem 2.6 Let dim(A) =6, dim(A?%) =4, dim(A43%) = 3, dim(A*) =2 dim(A®) =1 and dim(Leib(A)) =

1. Then, up to isomorphism, the nonzero multiplications in A is given by one of the following:

Ase [01,01] = 86, [01,02] = 03 = —[02,01],[01,03] = 014 = —[d3,01],[01,04] = 05 = —[04,01],[01,05] = d6 =
7[55751}‘
A7 [01,01] = 66, [01,02] = 03 = —[02,61],[01,03] = 01 = —[d3,01],[02,03] = 06 = —[03,02],[01,04] = 5 =

—[04,01], [01, 05] = 86 = —[5, 1]

Aag [01,01] = 86, [01,02] = 83 = —[02,01],[01,03] = 64 = —[d3,61],[02,03] = 05
—[04,61], [02,04] = 06 = —[d4,02],[01,05] = d6 = —[J5, 01].

—[03, 2], [01,04] = 05 =

Asg [61,01] = d6,[01,02] = 03 = —[02,01],[01,03] = da = —[d3,01],[01,04] = 85 = —[d4,61],[02,05]) = b6 =
—[05, 62] .
Aso [01,01] = b6,[01,02] = 03 = —[02,61],[01,03] = 04 = —[d3,01],[02,03] = 05 = —[d3,02],[01,04] = 65 =

—[04,01], [02, 05] = 06 = —[d5, 02] .

Ay [01,01] = 86, [01,02] = 03 = —[02,01],[02,03] = 64 = —[d3,02],[02,04] = 05
—[05,62] .

—[04,02], [02,05] = 06 =

Agzo [61,01] = d,[01,02] = 03 = —[02,01],[01,03] = d6¢ = —[J3,01], [02,03] = da
—[04, 02], [62, 05] = 06 = —[d5, 02] .

—[03,02], [02,04] = 05 =

Asg [01,01] = 86, [01,02] = 03 = —[02,01],[01,03] = 65 = —[d3,61],[02,03] = 04
—[04,01], [02, 04] = 05 = —[d4, 02|, [02,05] = 66 = —[05, J2].

_[53752]7[51,54] = 66 =

Aszq [61,01] = d6,[01,02] = 03 = —[02,01],[02,03] = d4 = —[d3,82],[02,04] = 05 = —[d4,02],[01,05] = b6 =
—[05,61] .
Ass [01,01] = 86, [01,02] = 03 = —[02,61],[01,04] = 05 = —[04,01],[02,03] = 04 = —[03,02], [02,04] = 5 =

_[64762}7 [51755] = 56 = _[65161] .

Ase() [01,01] = J6,[01,02] = 03 = —[d2,01],[01, 03] = ads = —[d3,01],[02,03] = 04 = —[d3,02],[02,04] = 05 =
—[04, 02, [01, 05) = 06 = —[d5, 1], [02,05] = 66 = —[J5, J2].

As7() [01,01] = b6, [01,02] = 03 = —[02,01], [02,02] = J6, [01, 03] = 04 = —[d3,01], [02, 03] = adg = —[I3, J2], [01,04] =
05 = —[04,01], [01,05] = 06 = —[05, 1] .

Asg(c, B) [01,01] = 6, [01,02] = 83 = —[02,01], [02,02] = e, [01,03] = da = —[03,01], [02,03] = 5 + Bds =
—[03, 2], [01, 04] = 85 = —[b4,61], [02, 04| = 66 = —[d4, b2], [61,05] = d6 = —[05, 1]
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A39(a) [51751] = 567 [61752} = 53 = 7[62351]3 [52362] = 667 [51753] = 54 = 7[63’61}7 [61754} = 55 = 7[54551]ﬂ [51’55] =
adg = —[05,01], [02,05] = 06 = —[05,02] .

Agola, B) [01,01) = 06,[01,02] = 03 = —[d2,01],[02,02] = ads,[01,03] = d4 = —[03,01],[02,03] = 05 =
—[03,02],[01,04] = 05 = —[04,01],[02,04] = Bd6 = —[04,02],[01,05] = Bds = —[J5,61],[02,05] = d6 =
—[05,62] .

As(a, B) [01,01) = d6,[01,02] = 63 = —[d2,01], [02,02] = 06,[01,03] = 04 = —[d3,01], [02,03] = 04 + b5 =
—[03, 02], [01,04] = 05 = —[d4,01],[02, 84] = 905 + Bd6 = —[d4,d2], [01,05] = d6 = —[J5, 01].

Asa(e, B) [01,61] = J6,[01,02] = 03 = —[02,01], [02,02] = J6,[01,03] = 64 = —[03,01], [02,03] = @04 + ads =
—[03,02], [01,04] = 05 = —[04, 1], [02,04] = 165 + Bds = —[04, 02, [01,05] = d6 = —[I5, 1], [02,05] = ids =
—[05, 62] .

Proof Here dim(A®%) = 1. Then by Lemma 1.1 and Lemma 1.2 we have A® C Z(A) C A?. If dim(Z(A)) = 3,

take A% = A3 @ W such that W C Z(A). Then A* = [A A% = [A, A% & W] = A*, contradiction.

Now suppose dim(Z(A)) = 2. If Z(A) C A3 then A3 = A* @ W such that W C Z(A). This implies

that A* = [A4,A°%] = [A, A* @ W] = A%, and otherwise A% = A* @ W such that W C Z(A). Then

A3 = [A A% = [A, A2 & W] = A*. So we arrived contradictions on both cases. Hence dim(Z(A)) = 1.

Therefore A° = Z(A) = Leib(A).

From Leibniz identities [A, [A, A3]] = [[A4, A], A3] + [A, [A, A%]] and [A3, [A, A]] = [[A43, A], A] + [A, A3, A]] we

get [A%, A% =0 = [A3, A?]. Let Leib(A) = span{eg} = Z(A) = A°. Extend this to bases {es, s}, {€s, 5, €6}, {€3, €4, €5, €6}
of A* A3 and A2, respectively. Take U = span{ej, ez} .

Case 1: If the matrix N = (i), then the nontrivial multiplications in .4 given as follows:

le1,e1] = eq, [e1,€2] = are3 + ases + azes = —[ea, eq], [e1, €3] = Prea + Paes + Pses, [e3, e1] = —fres — Paes +
Baes, [e2, €3] = Bsea + Poes + Pres, [e3, ea] = —Bsea — Boes + Pses, [es, 3] = Boes, [e1, ea] = y1€5 + Y266, [ea, e1] =
—Y1€5+73€6, [€2, €4] = Yaes5+5€6, [€4, €2] = —Yae5+V6€6, [€1, €5] = O1¢€6, [€5, €1] = Oaes, [e2, 5] = O3e6, [e5, €2] =
9466.

From Leibniz identities we get the following equations:

041(53 + ,64) + 042(72 + ’}/3) + 03(91 + 92) =0
a1(Br + Bs) + az(vs +76) + a3(03 +04) =0
Bsy1 — Biya=0

Bsy2 + Bef1 — 1By — B17vs — B2bl3 =0

V401 — 71103 =0

Bi(y2 +73) + B2(b1 +02) =0

Bsv2 + Beb01 + 189 + 176 + P2bs = 0

’}/1(91 + 92) =0

Y401 + 7104 =0

B5v3 + Beb2 + B175 + B203 — a1 89 =0

Bs(vs +76) + Bs(03 + 04) =0

’}/4(93 + 94) =0

(2.9)

Case 1.1: Let 5 = 0. Then 3; # 0 since dim(A®) = 3. Using the equations (2.9) we obtain

1937



DEMIR/Turk J Math

Ya=0=P09g =01 +02=03+04 =7 +73 =03+ Bs=Pr+ PBs =5 + 6. Then the nontrivial multiplications
in A given as the following:

le1,e1] = eq,[e1,e2] = ares + anes + azes = —lea, e1],[e1,e3] = Prea + Paes + Pseg = —[es, e1], [ea, e3] =
Boes + Bree = —[es,ea],[e1,ea] = mies + yoe6 = —les,e1],[e2,e4] = 56 = —les,e2],[e1,e5] = Oreg =
—[es, e1], [e2, e5] = Oses = —[es, ea].

Case 1.1.1: Let 63 = 0. Then 6; # 0 since dim(A°) = 1.
First suppose 75 = 0. Then from (2.9) we have g = 0. If 87 = 0 then the base change 61 = e1,02 =

F 2003 = g (1eatazestages), 01 = szl (a1 (BreatPaes+Paes) az(mies+yzes) +azbies), 05 =
m[alﬂl(%% + voe6) + 01 (a1 P2 + asfi)es], 06 = eg shows A is isomorphic to Agg. If 57 # 0 then the
1/5

. — 7 — 1 — 1 _

base change 61 = a}/5(ﬁ17191)2/5e1,52 = a§/553/5(ﬁ1%01)1/562,53 = ST i) (ares + ageq + ases), 8y =
1/5
armr L (Brea + Baes + Baes) + aa(vies +2e6) + asbieg), 55 = T Gno ) [o1 B1(71e5 + Yoe6) + 01 (o1 B2 +
2/5

asf1)egl, 06 = meg shows A is isomorphic to As7. Now let 75 # 0. Then w.s.c.0.b. A isomorphic
to Ass.

Case 1.1.2: Let 93 7£ 0. Then with the base change 51 = 61,52 = 62,53 = 63,64 = 9364 — ’}/565,55 =
65,56 = e W€ can make Y5 = 0. Also with the base change 51 = 9361 — 9162,62 = 62,53 = 63,64 = 64,55 =

es, 06 = eg we can make 61 = 0. If g = 0 then with the base change §; = ey, 02 = es,d3 = f3e3 — Bres, Iy

. _ 1 _ _ 1
e4,05 = e5,06 = eg we can make S7 = 0. Then the base change §; = mel,ég = e9,03 = m(aleg +

azes+ases), 04 = pigyz Lo (Biea + Baes + Baes) + an(mies +72¢6)], 05 = arpmrans 11 (vies +y2e6), 6 =
W@G shows A is isomorphic to Asg. If Bg # 0 then w.s.c.o.b. A isomorphic to Asgg.

Case 1.2: Let (85 # 0. Then with the base change 61 = f5e1 — f1e2,02 = €2,03 = e3,04 = e4,05 =
es, 06 = eg we can make 1 = 0. Using the equations (2.9) we obtain 13 = 0= 89 = 01 + 602 = 03+ 04 =
Yo +v3 = B3 + B4 = B7r + Bs =5 + 6. Then the nontrivial multiplications in A given as the following:

le1, e1] = e, [e1, e2] = are3 + ases + ages = —[ea, e1], [e1, €3] = Paes + Bzeg = —[es, e1], [e2, €3] = Bses + Poes +
Bres = —[63762]7 [61764] = Y266 = —[64,61], [62,64] = Y4€5 + Y566 = —[64,62]7 [61,65} =066 = —[65,61]7 [62765] =
O3e6 = —[es, ea].

Case 1.2.1: Let 6; = 0. Then 63 # 0 since dim(A°%) = 1.
First suppose 2 = 0. Then from (2.9) we have 83 = 0. If 85 = 0 then the base change d; = a1 857403€1,02 =
e2,03 = a1 P54t (e + ases + azes), 04 = a1 B57403]an (Bsesa + Boes + Bres) + az(vaes +vs5€6) + azbzes], 65 =
1 B57a03[0n Bs (aes + vse6) + O03(1 B + avva)es], 06 = (1 Bs7a3)?es shows A is isomorphic to Az . If 83 # 0

then the base change 81 = a1 857403€1, 00 = ——ey, d5 = 5210 (a1e3 + aneq + ases), 0y = B;?ggs [a1(Bseq +

a1f3 B3

Bees + Bres) + aa(vaes +s5e6) +azblzes), 05 = ﬁz%fg? [a1 85 (vaes +v5€6) + 03 (1 B6 + aava)ec), 66 = (o1 B57403)%es
shows A is isomorphic to Asz. Now let 9 # 0. Then w.s.c.o.b. A isomorphic to Ass.

Case 1.2.2: Let #; # 0. Then with the base change d; = e1,00 = e3,035 = e3,04 = 61e4 —
Yo€5,05 = e5,06 = eg we can make 5 = 0. Suppose 63 = 0. If g3 = 0 then with the base change
01 = e1,02 = e9,03 = Bre3 — Pses, 04 = e4,05 = e5,06 = eg we can make 3 = 0. Then the base change
01 = e1,02 = e2,03 = ez + azseq + ages, 0y = a1(Bses + Boes + PBres) + aa(yaes + vs5e6) + azbses, 65 =

a1 05(yaes + Y5e6) + (186 + a2v4)b3€6, 96 = eg shows A is isomorphic to Asg. If betas # 0 then w.s.c.o.b. A
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is isomorphic to Ass. Now suppose 63 # 0. Then w.s.c.o.b. A is isomorphic to Asg(c).

Case 2: If the matrix N = (i4i), then the nontrivial multiplications in A given as follows:

le1,e1] = eq, [e1,e2] = ares + ages + azes = —lea, e1],[ea, 2] = e, [€1,€3] = Prea + Paes + Pses, [e3,€1] =
—pB1req — Baes + Baes, [e2,e3] = Bses + Bees + Pres, [es,ea] = —Pses — Poes + Pses, [e3,e3] = Boes, [e1, eq] =
Y1€es + Y2e6, [€a,€1] = —71€5 + Y366, [€2,€4] = Vaes + V€6, [€a, 2] = —yae5 + Y6€s, [€1,€5] = bres, [e5,€1] =

Ose6, [e2, €5] = Oseq, [e5, e2] = O4e6.
From Leibniz identities we get the equations (2.9) again.

Case 2.1: Let 35 = 0. Then B; # 0 since dim(A4%) = 3. Using the equations (2.9) we obtain
Ya=0=09g =01 +02=03+04 =2+ = B3+ Bs =07+ Ps =75 + 6. Then the nontrivial multiplications
in A given by

le1, e1] = eq, [e1, ea] = ares + azes + azes = —[e, 1], [e2, ea] = eg, [e1, €3] = Bres + Baes + Bzes = —[es, e1],
[e2, €3] = Bees + Pres = —[es, ea], [e1, €a] = y1€5 + Y266 = —[eq, 1], [e2, e4] = V5€6 = —eu, €],
le1,e5] = O1eg = —[es, e1], [ea, e5] = O3e6 = —[e5,e2]  (2.10)

Case 2.1.1: Let 63 = 0. Then 6; # 0 since dim(A%) = 1.

First suppose 75 = 0. Then from (2.9) we have g = 0. Then the base change §; = i

1
—C 6 =
a1 B817101)173 “12 02

W@v 03 = W(CHCB + azes +azes), 01 = m[al(&% + Baes + Bses) + az(ies +2e6) +

agbiegl, 05 = W[alﬁl(’yleg) + vae6) + 01 (1 B + a2f)eg), 06 = W@g shows A is isomorphic
to Asrz(a). Now let v5 # 0. Then w.s.c.o.b. A isomorphic to Ass(a, 3).

Case 2.1.2: Let 63 # 0. Then with the base change d; = e1,d2 = e2,03 = e3,04 = O3e4 — Y5€5,05 =
es, 06 = eg we can make v5 = 0. If 85 = 0 then with the base change §; = ey, 09 = eq,d3 = f3e3 — Bres, 04 =
03 =

e4,05 = e5,06 = eg we can make 7 = 0. Then the base change d; = e1,00 =

1 1
(a1 B171103)1/3 (@1B17105)173 €22

W(ale?’ + azes + ases), 04 = m[al(ﬁlez; + Baes + Bseg) + aa(m1es + Y2e6) + asbres], o5 =
W[Oﬂﬁl (y1€5 4+ Y2€6) + 01 (182 + 231 )eg], 86 = W@G shows A is isomorphic to Asg(cr). If
Bs # 0 then w.s.c.o.b. A isomorphic to A4 (e, §).

Case 2.2: Let 5 # 0. If 81 = 0 then the base change §; = e9,00 = €1,03 = e3,04 = ey4,05 =
es,06 = eg shows A is isomorphic to an algebra with the nonzero multiplications given by (2.10). Hence A is
isomorphic to Asz(a), Ass(a, B), Asg(a) or Asgo(c, 3). Now let By # 0. If 52 + B2 # 0 then the base change
81 = Bre1 + Pse2, 02 = Bser — Prea, 03 = e3,04 = e4,05 = e5,06 = (B% + B2)es shows A is isomorphic to an
algebra with the nonzero multiplications given by (2.10). Thus, A is isomorphic to As7(a), Ass(a, ), Ase()
or Ago(a, 3). Now consider the case 7 + 32 = 0. Then by (2.9) we get 72 +~3 = 0. Using the equations
(2.9) we obtain B9 =0 =01 4+0; =03+604 =+ = B3+ B4 = Br+ Bs =75 + V6. Then the nontrivial
multiplications in A given as the following:

le1,e1] = e, [e1, e2] = ares+azes+ases = —[ea, e1], [e2, e2] = eg, [e1, €3] = B1+Paes+PBses = —[es, e1], [e2, €3] =
Bses + Pees + Bres = —es, 2], [e1,es] = yies + y2e6 = —lea, €1, [e2,e4] = yae5 + 566 = —lea, €2],[e1,e5] =
ties = —[es, e1], [ea, e5] = O3e6 = —[e5, €a].

If 63 =0 then w.s.c.o.b. A isomorphic to A4y(a, ). If 63 # 0 then w.s.c.o.b. A isomorphic to Ays(a, ). O
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3. Conclusion

We obtain 32 single algebras, 5 one-parameter infinite families and 5 two-parameter infinite families of classes
of complex non-Lie nilpotent Leibniz algebras of dimension 6 with two dimensional derived algebra and Leib
ideal is one dimensional. Taking into account the fact that all the isomorphism classes of 6—dimensional
complex nilpotent Lie algebras consist of only 20 single algebras, it can be deduced that the classification
problem for Leibniz algebras is wild. Nonetheless extending this bilinear forms technique to higher dimensions,

the classification of complex nilpotent Leibniz algebras with two dimensional derived algebra can be given.
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