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Abstract: This article is a contribution to the improvement of classification theory in Leibniz algebras. We extend
the method of congruence classes of matrices of bilinear forms that was used to classify complex nilpotent Leibniz
algebras with one dimensional derived algebra. In this work we focus on applying this method to the classification of
6−dimensional complex nilpotent Leibniz algebras with two dimensional derived algebra.
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1. Introduction
Leibniz algebras are introduced by Loday [9] as a nonantisymmetric generalization of Lie algebras. A. Bloh
had studied these algebraic structures in 1965 and emphasizing their connections with derivations called them
D -algebras [4]. A vector space A over C equipped with a bilinear product [ , ] : A × A −→ A such that
the left multiplication is a derivation is said to be a Leibniz algebra. Define the ideals of A , A1 = A and
Aj = [A,Aj−1] for j ∈ Z≥2 . A Leibniz algebra A is nilpotent of class c if Ac+1 = 0 but Ac ̸= 0 for some
positive integer c . The most important ideal of A is Leib(A) = span{[a, a] | a ∈ A} . Recall that if a Leibniz
algebra A with Leib(A) = 0 , is a Lie algebra. Hence, if Leib(A) ̸= 0 , we will call A a non-Lie Leibniz algebra
throughout the paper. We define the center of A by Z(A) = {z ∈ A | [z, a] = 0 = [a, z] for all a ∈ A} . A
Leibniz algebra A is said to be split if it can be written as a direct sum of two nontrivial ideals. Otherwise it
is called nonsplit. Throughout this paper, we assume the vector spaces we study is over the field of complex
numbers C .

It is always an interesting problem to give the classification of any kind of algebras. The classification of
nilpotent Lie algebras is a difficult problem and it is still unsolved. Since antisymmetry property is not satisfied
in Leibniz algebras the problem of classification of non-Lie nilpotent Leibniz algebras is much harder. The
classification of nilpotent Leibniz algebras over C of dimension less than or equal to four has been completed
(see [1, 2, 5–7, 9, 10]). The classification of 5−dimensional non-Lie nilpotent Leibniz algebras is given in [8]
with bilinear forms technique. In this paper, we apply this congruence classes of bilinear forms technique to
give the classification of a subclass of 6−dimensional non-Lie nilpotent Leibniz algebras. This approach can
be used to classify any n−dimensional nilpotent Leibniz algebras with (n − 2)−dimensional derived algebra.
Using the Mathematica program implementing Algorithm 2.6 given in [5], we verify that the classes we obtained
are indeed pairwise nonisomorphic.
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Consider A be a n−dimensional complex non-Lie nilpotent Leibniz algebra with dim(A2) = n− 2 and
dim(Leib(A)) = 1 . It is sufficient to classify nonsplit Leibniz algebras. We give the following Lemmas which
are very useful. The first of them is an immediate consequence of Proposition 4.2 in [6].

Lemma 1.1 Let A be a nilpotent Leibniz algebra of class c . Then we have Ac ⊆ Z(A) .

Lemma 1.2 If A is a nonsplit Leibniz algebra then Z(A) ⊆ A2 .

Proof Let A be a nonsplit Leibniz algebra. Assume Z(A) ̸⊆ A2 . Take a complementary subspace W to A2

in A such that A = A2 ⊕W . Let V be a complementary to Z(A)∩W in A such that A = V ⊕ (Z(A)∩W ) .
Choose I1 = Z(A) ∩W and I2 = V .
Note that Z(A) ∩ W ⊆ Z(A) hence it is an ideal. Also V is an ideal since V contains A2 . Therefore,
A = I1 ⊕ I2 where I1 and I2 are nontrivial ideals of A . Then A is split, which is a contradiction. 2

Lemma 1.3 Let A be a nilpotent Leibniz algebra and dim(Leib(A)) = 1 . Then Leib(A) ⊆ Z(A) .

Proof Assume [A, Leib(A)] ̸= 0 . Then using Leib(A) is an ideal we get Leib(A) = [A, Leib(A)] . So
Leib(A) = [A, Leib(A)] ⊆ [A,A2] = A3 ⇒ Leib(A) ⊆ A3 .
Leib(A) = [A, Leib(A)] ⊆ [A,A3] = A4 ⇒ Leib(A) ⊆ A4 . By doing this repetitively we see that Leib(A) ⊆ An

for any natural number n . This implies A is not nilpotent which is a contradiction. Hence our assumption is
wrong. Then [A, Leib(A)] = 0 which implies that Leib(A) ⊆ Z(A) 2

We omit the proofs of the following Lemmas since they are already given in [8].

Lemma 1.4 Let A be a n−dimensional nilpotent Leibniz algebra with dim(Z(A)) = n−k . If dim(Leib(A)) = 1

then dim(A2) ≤ k2−k+2
2 .

Lemma 1.5 Let A be a n−dimensional nilpotent Leibniz algebra with dim(A2) = n − k, dim(Leib(A)) = 1

and dim(A3) = t . Then

(i) n ≤ t+ k2+k+2
2

(ii) n ≤ t+ k2+k
2 if Leib(A) ⊆ A3

Lemma 1.6 Let A be a n−dimensional nilpotent Leibniz algebra with dim(A2) = n − k and A4 ̸= 0 . Then
dim(Z(A)) < n− k − 1 .

Proof Note that by Lemma 1.2 and since A3 ̸= 0 we have Z(A) ⊂ A2 . So it is enough to show that
dim(Z(A)) ̸= n− k − 1 . Assume dim(Z(A)) = n− k − 1 . Take a complementary subspace W to Z(A) in A2

such that A2 = Z(A)⊕W . Using the fact that A3 ⊆ A2 and A4 ̸= 0 we can see that W ⊆ A3 . Hence

A3 = [A,A2] = [A, Z(A)⊕W ] = A4

which is a contradiction. So dim(Z(A)) ̸= n− k − 1 , and therefore dim(Z(A)) < n− k − 1 .
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2

Choose Leib(A) = span{un} . We can extend it to a basis {u3, u4, . . . , un−1, un} for A2 and let a
subspace U be complementary to A2 in A so that A = A2 ⊕ U . So [u, v] = α3u3 + α4u4 + αn−1un−1 + αnun

for some αi ∈ C, 3 ≤ i ≤ n , for any u, v ∈ U . Bilinear form f( , ) : U ×U → C can be defined by f(u, v) = αn

for all u, v ∈ U .
Choosing a basis {u1, u2} for U we see that the matrix N of the bilinear form f( , ) : U × U → C is

one the following (see Theorem 3.1 in [11]):

(i)

(
0 1
−1 0

)
, (ii)

(
1 0
0 0

)
, (iii)

(
1 0
0 1

)
, (iv)

(
0 1
−1 1

)
, (v)

(
0 1
c 0

)
where c ̸= 1,−1 . We can assume that N cannot be the matrix (i) because the resulting algebra is a

Lie algebra. It is enough to consider the matrices (ii) and (iii) because others are isomorphic to one of these as
showed in Lemma 2.1 in [8] .

2. Classification of 6-dimensional nilpotent Leibniz algebras with dim(A2) = 4 and dim(Leib(A)) = 1

Let A be a complex nonsplit non-Lie nilpotent Leibniz algebra with dim(A) = 6,dim(A2) = 4 and dim(Leib(A)) =

1 . Then by Lemma 1.3 we get Leib(A) ⊆ Z(A) . Using Lemma 1.5 we have 2 ≤ dim(A3) ≤ 3 . First suppose
dim(A3) = 2 . Then fom Lemma 1.5 we obtain Leib(A) ⊈ A3 . Note that dim(A4) = 0 or dim(A4) = 1 .

Theorem 2.1 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 2 , dim(A4) = 0 , and dim(Leib(A)) = 1 . Then, up
to isomorphism, the nonzero multiplications in A is given by one of the following:

A1 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2] .

A2 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2] .

Proof Let dim(A4) = 0 . Then by Lemma 1.1 and Lemma 1.2 we get A3 ⊆ Z(A) ⊂ A2 . If dim(Z(A)) = 2 then
A3 = Z(A) and by Lemma 1.3 Leib(A) ⊆ A3 , a contradiction. Hence dim(Z(A)) = 3 . Using Leib(A) ⊈ A3 ,
let Leib(A) = span{e6} and A3 = span{e4, e5} . Then Z(A) = span{e4, e5, e6} and {e3, e4, e5, e6} is an
extended basis of A2 . Take U = span{e1, e2} .

Case 1: If the matrix N = (ii) , then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 = −[e3, e1], [e2, e3] = γ1e4 + γ2e5 =

−[e3, e2] , where α1 ̸= 0, β1γ2 − β2γ1 ̸= 0 .
Then the base change δ1 = e1, δ2 = e2, δ3 = α1e3+α2e4+α3e5, δ4 = α1(β1e4+β2e5), δ5 = α1(γ1e4+γ2e5), δ6 = e6

shows A is isomorphic to A1 .
Case 2: If the matrix N = (iii) , then the nontrivial multiplications in A given as follows:

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 = −[e3, e1], [e2, e3] =

γ1e4 + γ2e5 = −[e3, e2] , where α1 ̸= 0, β1γ2 − β2γ1 ̸= 0 .
Then the base change δ1 = e1, δ2 = e2, δ3 = α1e3+α2e4+α3e5, δ4 = α1(β1e4+β2e5), δ5 = α1(γ1e4+γ2e5), δ6 = e6

shows A is isomorphic to A2 . 2

Theorem 2.2 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 2 , dim(A4) = 1 , and dim(Leib(A)) = 1 . Then, up
to isomorphism, the nonzero multiplications in A is given by one of the following:
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A3 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ1, δ4] = δ5 = −[δ4, δ1] .

A4 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1] .

A5 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 = −[δ4, δ2] .

A6 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ5 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2] .

A7 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ1, δ4] = δ5 = −[δ4, δ1] .

A8 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] =

δ5 = −[δ4, δ1] .

A9 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 = −[δ3, δ2], [δ1, δ4] =

δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 = −[δ4, δ2] .

A10 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + δ5 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 = −[δ4, δ2] .

Proof Let dim(A4) = 1 . Then by Lemma 1.1 and Lemma 1.2 we have A4 ⊆ Z(A) ⊂ A2 . Using this with
Lemma 1.6 we get 1 ≤ dim(Z(A)) < 3 . If dim(Z(A)) = 1 then Leib(A) = Z(A) = A4 ⊂ A3 , leads to a
contradiction. Hence dim(Z(A)) = 2 . Note that Leib(A) ̸= A4 because otherwise Leib(A) = A4 ⊂ A3 , a
contradiction. From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and [A3, [A,A]] = [[A3,A],A] +

[A, [A3,A]] we get [A2,A3] = 0 = [A3,A2] . Let Leib(A) = span{e6},A4 = span{e5} and A3 = span{e4, e5} .
Then Z(A) = span{e5, e6} . Extend this to a basis {e3, e4, e5, e6} of A2 . Take U = span{e1, e2} .

Case 1: Let N be the matrix (ii) then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 = −[e3, e1], [e2, e3] = β3e4 + β4e5 =

−[e3, e2], [e1, e4] = γ1e5 = −[e4, e1], [e2, e4] = γ2e5 = −[e4, e2] .
From Leibniz identities we obtain the following equation:

β3γ1 = β1γ2 (2.1)

Case 1.1: Let γ2 = 0 . Then γ1 ̸= 0 since dim(Z(A)) = 2 . So β3 = 0 which implies β1 ̸= 0 . If
β4 = 0 then the base change δ1 = e1, δ2 = e2, δ3 = α1e3 + α2e4 + α3e5, δ4 = α1β1e4 + (α1β2 + α2γ1)e5, δ5 =

α1β1γ1e5, δ6 = e6 shows A is isomorphic to A3 . If β4 ̸= 0 then the base change δ1 = e1, δ2 = β1γ1

β4
e2, δ3 =

β1γ1

β4
(α1e3 + α2e4 + α3e5), δ4 =

α1β
2
1γ1

β4
e4 +

β1γ1

β4
(α1β2 + α2γ1)e5, δ5 =

α1β
2
1γ

2
1

β4
e5, δ6 = e6 shows A is isomorphic

to A4 .
Case 1.2: Let γ2 ̸= 0 . Then with the base change δ1 = γ2e1−γ1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 =

γ2
2e6 we can make γ1 = 0 . Then by (2.1) we have β1 = 0 . So β3 ≠= 0 since dim(A2) = 4 . If β2 = 0 then the

base change δ1 = e1, δ2 = e2, δ3 = α1e3 + α2e4 + α3e5, δ4 = α1β3e4 + (α1β4 + α2γ2)e5, δ5 = α1β3γ2e5, δ6 = e6

shows A is isomorphic to A5 . If β2 ̸= 0 then the base change δ1 = β3γ2

β2
e1, δ2 = e2, δ3 = β3γ2

β2
(α1e3 + α2e4 +

α3e5), δ4 =
α1β

2
3γ2

β2
e4 +

β3γ2

β2
(α1β4 + α2γ2)e5, δ5 =

α1β
2
3γ

2
2

β2
e5, δ6 =

β2
3γ

2
2

β2
2
e6 shows A is isomorphic to A6 .
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Case 2: Let N be the matrix (iii) then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 = −[e3, e1], [e2, e3] =

β3e4 + β4e5 = −[e3, e2], [e1, e4] = γ1e5 = −[e4, e1], [e2, e4] = γ2e5 = −[e4, e2] .
Again from Leibniz identities we obtain the equation (2.1).

Case 2.1: Let γ2 = 0 . Then γ1 ̸= 0 since dim(Z(A)) = 2 . So β3 = 0 which implies β1 ̸= 0 . Then the
nontrivial multiplications in A given by

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 = −[e3, e1],

[e2, e3] = β4e5 = −[e3, e2], [e1, e4] = γ1e5 = −[e4, e1], [e3, e4] = γ3e5 = −[e4, e3]. (2.2)

If β4 = 0 then the base change δ1 = e1, δ2 = e2, δ3 = α1e3 + α2e4 + α3e5, δ4 = α1β1e4 + (α1β2 + α2γ1)e5, δ5 =

α1β1γ1e5, δ6 = e6 shows A is isomorphic to A7 . If β4 ̸= 0 then the base change δ1 = β4

β1γ1
e1, δ2 = β4

β1γ1
e2, δ3 =

β2
4

β2
1γ

2
1
(α1e3 + α2e4 + α3e5), δ4 =

α1β
3
4

β2
1γ

3
1
e4 +

β3
4

β3
1γ

3
1
(α1β2 + α2γ1)e5, δ5 =

α1β
4
4

β3
1γ

3
1
e5, δ6 =

β2
4

β2
1γ

2
1
e6 shows A is isomorphic

to A8 .
Case 2.2: Let γ2 ̸= 0 . If γ1 = 0 then by (2.1) we have β1 = 0 . Then the base change δ1 =

e2, δ2 = e1, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = e6 shows A is isomorphic to an algebra with the nonzero
multiplications given by (2.2). Hence A is isomorphic to A7 or A8 . Now let γ1 ̸= 0 . If γ2

1 + γ2
2 ̸= 0

then the base change δ1 = e1, δ2 = − γ2√
γ2
1+γ2

2

e1 + γ1√
γ2
1+γ2

2

e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = e6 shows

A is isomorphic to an algebra with the nonzero multiplications given by (2.2). Hence A is isomorphic to
A7 or A8 . Now consider the case γ2

1 + γ2
2 = 0 . Then by (2.1) we get β2

1 + β2
3 = 0 . The base change

y1 = e1, y2 = e2, y3 = α1e3 + α2e4 + α3e5, y4 = α1β1e4 + (α1β2 + α2γ1)e5, y5 = α1β1γ1e5, y6 = e6 shows A is
isomorphic to the following algebra:

[y1, y1] = y6, [y1, y2] = y3 = −[y2, y1], [y2, y2] = y6, [y1, y3] = y4 = −[y3, y1], [y2, y3] = iy4 + θy5 = −[y3, y2],

[y1, y4] = y5 = −[y4, y1], [y2, e4] = iy5 = −[y4, y2]

If θ = 0 then the base change δ1 = y1, δ2 = y2, δ3 = y3, δ4 = y4, δ5 = y5, δ6 = y6 shows A is isomorphic to
A9 . If θ ̸= 0 then the base change δ1 = θy1, δ2 = θy2, δ3 = θ2y3, δ4 = θ3y4, δ5 = θ4y5, δ6 = θ2y6 shows A is
isomorphic to A10 . 2

Now suppose dim(A3) = 3 . Then fom Lemma 1.5 we have Leib(A) ⊆ A3 . Note that dim(A4) =

0,dim(A4) = 1 or dim(A4) = 2 .
Let dim(A4) = 0 . Then by Lemma 1.1 and Lemma 1.2 we have A3 ⊆ Z(A) ⊂ A2 . Hence dim(Z(A)) = 3 .
Using Leib(A) ⊆ A3 , let Leib(A) = span{e6} and A3 = span{e4, e5, e6} = Z(A) . Extend this to bases
{e3, e4, e5, e6}, {e1, e2, e3, e4, e5, e6} of A2 and A , respectively. Leibniz identity [A, [A,A2]] = [[A,A],A2] +

[A, [A,A2]] implies that [A2,A2] = 0 . Then the nontrivial multiplications in A given as follows:
[e1, e1] = θ1e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = θ2e6, [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] =

−β1e4 − β2e5 + β4e6, [e2, e3] = γ1e4 + γ2e5 + γ3e6, [e3, e2] = −γ1e4 − γ2e5 + γ4e6 .
But then the Leibniz identities yield the equations β4 = −β3 and γ4 = −γ3 which implies dim(A3) = 2 ,
contradiction. There is no Leibniz algebra in this case.
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Let dim(A4) = 1 . Then by Lemma 1.1 and Lemma 1.2 we have A4 ⊆ Z(A) ⊂ A2 . We get dim(Z(A)) < 3

from Lemma 1.6. Then dim(Z(A)) = 1 or dim(Z(A)) = 2 .
First suppose dim(Z(A)) = 2 . Take a complementary subspace W to A3 in A2 . Here Z(A) ⊆ A3 because
otherwise A2 = A3 ⊕ W such that W ⊆ Z(A) . But then A3 = [A,A2] = [A,A3 ⊕ W ] = A4 , which is a
contradiction. We need to consider two cases: A4 = Leib(A) and A4 ̸= Leib(A) .

Theorem 2.3 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 3 , dim(A4) = 1 , dim(Z(A)) = 2 , A4 = Leib(A)

and dim(Leib(A)) = 1 . Then, up to isomorphism, the nonzero multiplications in A is given by one of the
following:

A11 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] = δ6 =

−[δ4, δ1] .

A12 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ5 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ6 =

−[δ4, δ2] .

A13 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] =

δ6 = −[δ4, δ1] .

A14 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + δ5 =

−[δ3, δ2], [δ1, δ4] = δ6 = −[δ4, δ1], [δ2, δ4] = iδ6 = −[δ4, δ2] .

Proof Let A4 = Leib(A) . From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and [A3, [A,A]] =

[[A3,A],A]+[A, [A3,A]] we get [A2,A3] = 0 = [A3,A2] . Using Leib(A) ⊆ Z(A) , let Leib(A) = A4 = span{e6}
and Z(A) = span{e5, e6} . Extend this to bases {e4, e5, e6}, {e3, e4, e5, e6} of A3 and A2 , respectively. Take
U = span{e1, e2} .

Case 1: If the matrix N = (ii) , then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] = −β1e4 − β2e5 +

β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] = γ1e6, [e4, e1] =

γ2e6, [e2, e4] = γ3e6, [e4, e2] = γ4e6

From Leibniz identities we get the following equations:

α1(β3 + β4) + α2(γ1 + γ2) = 0

α1(β7 + β8) + α2(γ3 + γ4) = 0

β5γ1 − α1β9 − β1γ3 = 0

β1(γ1 + γ2) = 0

β1γ4 + β5γ1 + α1β9 = 0

β1γ3 + β5γ2 − α1β9 = 0

β5(γ3 + γ4) = 0

(2.3)

Case 1.1: Let β5 = 0 . Then β1 ̸= 0 since dim(A3) = 3 . So by (2.3) we obtain γ2 = −γ1, β4 =

−β3, β9 = 0 = γ3 = γ4 and β8 = −β7 . Then the nontrivial multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1], [e2, e3] =

β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1] Then the base change δ1 = e1, δ2 = 1
α1β1γ1

e2, δ3 =
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1
α1β1γ1

(α1e3 + α2e4 + α3e5), δ4 = 1
γ1
e4 + β2

β1γ1
e5 + ( β3

β1γ1
+ α2

α1β1
)e6, δ5 = 1

α1β2
1γ

2
1
(β6e5 + β7e6), δ6 = e6 shows

A is isomorphic to A11 .
Case 1.2: Let β5 ̸= 0 . Then with the base change δ1 = β5e1 − β1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = β2
5e6 we can make β1 = 0 . So by (2.3) we obtain γ4 = −γ3, β4 = −β3, β9 = 0 = γ1 = γ2 and β8 = −β7 .

Then the nontrivial multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β2e5 + β3e6 = −[e3, e1], [e2, e3] = β5e4 + β6e5 +

β7e6 = −[e3, e2], [e2, e4] = γ3e6 = −[e4, e2] Then the base change δ1 = α1β5γ1e1, δ2 = e2, δ3 = α1β5γ1(α1e3 +

α2e4+α3e5), δ4 = α2
1β

2
5γ1e4+α2

1β5β6γ1e5+(α2
1β5β7γ1+α1α2β5γ

2
1)e6, δ5 = α3

1β
2
5γ

2
1(β2e5+β3e6), δ6 = α2

1β
2
5γ

2
1e6

shows A is isomorphic to A12 .
Case 2: If the matrix N = (iii) , then the nontrivial multiplications in A given as follows:

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] =

−β1e4 − β2e5 + β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] =

γ1e6, [e4, e1] = γ2e6, [e2, e4] = γ3e6, [e4, e2] = γ4e6

Again from Leibniz identities we obtain the equations (2.3).
Case 2.1: Let β5 = 0 . Then β1 ̸= 0 since dim(A3) = 3 . So by (2.3) we obtain γ2 = −γ1, β4 =

−β3, β9 = 0 = γ3 = γ4 and β8 = −β7 . Then the nontrivial multiplications in A given by

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1],

[e2, e3] = β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1]. (2.4)

Then the base change δ1 = ( 1
α1β1γ1

)1/2e1, δ2 = ( 1
α1β1γ1

)1/2e2, δ3 = 1
α1β1γ1

(α1e3+α2e4+α3e5), δ4 = α1

(α1β1γ1)3/2
(β1e4+

β2e5 + β3e6) +
α2γ1

(α1β1γ1)3/2
, δ5 = α1

(α1β1γ1)3/2
(β6e5 + β7e6), δ6 = 1

α1β1γ1
e6 shows A is isomorphic to A13 .

Case 2.2: Let β5 ̸= 0 . If β1 = 0 then by 2.3 we have γ4 = −γ3, β4 = −β3, β9 = 0 = γ1 = γ2 and
β8 = −β7 . Then the base change δ1 = e2, δ2 = e1, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = e6 shows A is isomorphic to
an algebra with the nonzero multiplications given by (2.4). Hence A is isomorphic to A13 . Now let β1 ̸= 0 . If
β2
1 + β2

5 ̸= 0 then the base change δ1 = β1e1 + β5e2, δ2 = β5e1 − β1e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = (β2
1 + β2

5)e6

shows A is isomorphic to an algebra with the nonzero multiplications given by (2.4). Hence A is isomorphic
to A13 . Now consider the case β2

1 + β2
5 = 0 . Then by (2.3) we get γ2

1 + γ2
3 = 0 . Then the base change

δ1 = ( 1
α1β1γ1

)1/2e1, δ2 = ( 1
α1β1γ1

)1/2e2, δ3 = 1
α1β1γ1

(α1e3 + α2e4 + α3e5), δ4 = α1

(α1β1γ1)3/2
(β1e4 + β2e5 + β3e6) +

α2γ1

(α1β1γ1)3/2
, δ5 = α1

(α1β1γ1)3/2
((β6 − iβ2)e5 + (β7 − iβ3)e6), δ6 = 1

α1β1γ1
e6 shows A is isomorphic to A14 . 2

Theorem 2.4 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 3 , dim(A4) = 1 , dim(Z(A)) = 2 , A4 ̸= Leib(A)

and dim(Leib(A)) = 1 . Then, up to isomorphism, the nonzero multiplications in A is given by one of the
following:

A15 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ6 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1] .

A16 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 + δ6 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1] .
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A17 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ6 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2] .

A18 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ5 + δ6 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2] .

A19(α) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = αδ5 + δ6 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1] .

A20 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + δ6 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 = −[δ4, δ2] .

A21 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + δ5 + δ6 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 = −[δ4, δ2] .

Proof Let A4 ̸= Leib(A) . From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and [A3, [A,A]] =

[[A3,A],A] + [A, [A3,A]] we get [A2,A3] = 0 = [A3,A2] . Let Leib(A) = span{e6} and A4 = span{e5} .
Then Z(A) = span{e5, e6} . Extend this to bases {e4, e5, e6}, {e3, e4, e5, e6} of A3 and A2 , respectively. Take
U = span{e1, e2} .

Case 1: Let N be the matrix (ii) then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] = −β1e4 −
β2e5 + β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] = γ1e5 =

−[e4, e1], [e2, e4] = γ2e5 = −[e4, e2]

From Leibniz identities we get the following equations:


β3 + β4 = 0

β7 + β8 = 0

β9 = 0

β5γ1 − β1γ2 = 0

(2.5)

Case 1.1: Let γ2 = 0 . Then γ1 ̸= 0 since A4 ̸= 0 . So by (2.5) we have β5 = 0 . Then β1, β7 ̸= 0 since
dim(A3) = 3 . Then the nontrivial multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1], [e2, e3] =

β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e5 = −[e4, e1]

If β6 = 0 then the base change δ1 = α1β7e1, δ2 = e2, δ3 = α1β7(α1e3+α2e4+α3e5), δ4 = α3
1β1β

2
7e4+(α3

1β2β
2
7 +

α2
1α2γ1β

2
7)e5 + α3

1β3β
2
7e6, δ5 = α4

1β1γ1β
3
7e5, δ6 = α2

1β
2
7e6 shows A is isomorphic to A15 .

If β6 ̸= 0 then the base change δ1 = 1
(α1β7)1/3

( β6

β1γ1
)2/3e1, δ2 = ( β6

α2
1β

2
7β1γ1

)1/3e2, δ3 = β6

α1β7β1γ1
(α1e3 +

α2e4 + α3e5), δ4 = ( β6

β1γ1
)5/3 α1

(α1β7)4/3
(β1e4 + β2e5 + β3e6) + ( β6

β1γ1
)5/3 α2γ1

(α1β7)4/3
e5, δ5 = ( β6

β1γ1
)7/3 α1β1γ1

(α1β7)5/3
e5, δ6 =

1
(α1β7)2/3

( β6

β1γ1
)4/3e6 shows A is isomorphic to A16 .

Case 1.2: Let γ2 ̸= 0 . Then with the base change δ1 = γ2e1 − γ1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = γ2
2e6 we can make γ1 = 0 . Then by (2.5) we have β1 = 0 . Then β5, β3 ̸= 0 since dim(A3) = 3 .

If β2 = 0 then the base change δ1 = e1, δ2 = 1
α1β3

e2, δ3 = 1
α1β3

(α1e3 + α2e4 + α3e5), δ4 = 1
α1β2

3
(β1e4 + β2e5 +
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β3e6) +
α2γ2

(α1β3)2
e5, δ5 = α1β5γ2

(α1β3)3
e5, δ6 = e6 shows A is isomorphic to A17 .

If β2 ̸= 0 then the base change δ1 = β5γ2

α2
1β2β2

3
e1, δ2 = 1

α1β3
e2, δ3 = β5γ2

α3
1β2β3

3
(α1e3 + α2e4 + α3e5), δ4 =

β5γ2

α3
1β2β4

3
(β1e4 + β2e5 + β3e6) +

α2β5γ
2
2

α4
1β2β4

3
e5, δ5 =

α1β
2
5γ

2
2

(α1β3)3
e5, δ6 = ( β5γ2

α2
1β2β2

3
)2e6 shows A is isomorphic to A18 .

Case 2: Let N be the matrix (iii) then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] =

−β1e4−β2e5+β4e6, [e2, e3] = β5e4+β6e5+β7e6, [e3, e2] = −β5e4−β6e5+β8e6, [e3, e3] = β9e6, [e1, e4] = γ1e5 =

−[e4, e1], [e2, e4] = γ2e5 = −[e4, e2]

From Leibniz identities again we get the equations (2.5).
Case 2.1: Let γ2 = 0 . Then γ1 ̸= 0 since A4 ̸= 0 . So by (2.5) we obtain β5 = 0 and β1, β7 ̸= 0 since

dim(A3) = 3 . Then the nontrivial multiplications in A given by

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1],

[e2, e3] = β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e5 = −[e4, e1] (2.6)

The base change δ1 = 1
α1β7

e1, δ2 = 1
α1β7

e2, δ3 = 1
(α1β7)2

(α1e3 + α2e4 + α3e5), δ4 = 1
α2

1β
3
7
(β1e4 + β2e5 + β3e6) +

α2γ1

α3
1β

3
7
e5, δ5 = β1γ1

α3
1β

4
7
e5, δ6 = 1

(α1β7)2
e6 shows A is isomorphic to A19(α) .

Case 2.2: Let γ2 ̸= 0 . If γ1 = 0 then by 2.5 we have β1 = 0 . Then the base change δ1 = e2, δ2 =

e1, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = e6 shows A is isomorphic to an algebra with the nonzero multiplications
given by (2.6). So A is isomorphic to A19(α) . Now let γ1 ̸= 0 . If γ2

1 + γ2
2 ̸= 0 then the base change

δ1 = γ1e1 + γ2e2, δ2 = γ2e1 − γ1e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = (γ2
1 + γ2

2)e6 shows A is isomorphic to an
algebra with the nonzero multiplications given by (2.6). Hence again A is isomorphic to A19(α) . Now consider
the case γ2

1 + γ2
2 = 0 . Then by (2.5) we get β2

1 + β2
5 = 0 . Take θ1 = β6−iβ2

β1γ1
and θ2 = α1(β7 − iβ3) . The base

y1 = e1, y2 = e2, y3 = α1e3 + α2e4 + α3e5, y4 = α1(β1e4 + β2e5 + β3e6) + α2γ1e5, y5 = α1β1γ1e5, y6 = e6 shows
A is isomorphic to the following algebra:
[y1, y1] = y6, [y1, y2] = y3 = −[y2, y1], [y2, y2] = y6, [y1, y3] = y4 = −[y3, y1], [y2, y3] = iy4 + θ1y5 + θ2y6 =

−[y3, y2], [y1, y4] = y5 = −[y4, y1], [y2, y4] = y5 = −[y4, y2]

Note that θ2 ̸= 0 since dim(A3) = 3 .
If θ1 = 0 then the base change δ1 = 1

θ2
y1, δ2 = 1

θ2
y2, δ3 = 1

θ2
2
y3, δ4 = 1

θ3
2
y4, δ5 = 1

θ4
2
y5, δ6 = 1

θ2
2
y6 shows A is

isomorphic to A20 .
If θ1 ̸= 0 then with suitable change of basis A isomorphic to A21 . 2

Now suppose dim(Z(A)) = 1 . Then we have A4 = Z(A) = Leib(A) .

Theorem 2.5 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 3 , dim(A4) = 1 , dim(Z(A)) = 1 , and
dim(Leib(A)) = 1 . Then, up to isomorphism, the nonzero multiplications in A is given by one of the fol-
lowing:

A22 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ2, δ4] = δ6 =

−[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .

A23(α) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] = δ6 =

−[δ4, δ1], [δ2, δ4] = αδ6 = −[δ4, δ2], [δ2, δ5] = δ6 = −[δ5, δ2] .
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A24 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ2, δ4] =

δ6 = −[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .

A25(α, β) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 =

−[δ3, δ2], [δ1, δ4] = αδ6 = −[δ4, δ1], [δ1, δ5] = βδ6 = −[δ5, δ1], [δ2, δ5] = δ6 = −[δ5, δ2] .

Proof Note that A4 = Z(A) = Leib(A) . From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and
[A3, [A,A]] = [[A3,A],A]+[A, [A3,A]] we get [A2,A3] = 0 = [A3,A2] . Let Leib(A) = span{e6} = Z(A) = A4 .
Extend this to bases {e4, e5, e6}, {e3, e4, e5, e6} of A3 and A2 , respectively. Take U = span{e1, e2} .

Case 1: If the matrix N = (ii) , then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] = −β1e4 − β2e5 +

β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] = γ1e6, [e4, e1] =

γ2e6, [e2, e4] = γ3e6, [e4, e2] = γ4e6, [e1, e5] = θ1e6, [e5, e1] = θ2e6, [e2, e5] = θ3e6, [e5, e2] = θ4e6

From Leibniz identities we get the following equations:

α1(β3 + β4) + α2(γ1 + γ2) + α3(θ1 + θ2) = 0

α1(β7 + β8) + α2(γ3 + γ4) + α3(θ3 + θ4) = 0

β9 = 0

β5γ1 + β6θ1 − β1γ3 − β2θ3 = 0

β1(γ1 + γ2) + β2(θ1 + θ2) = 0

β5γ1 + β6θ1 + β1γ4 + β2θ4 = 0

β5γ2 + β6θ2 + β1γ3 + β2θ3 = 0

β5(γ3 + γ4) + β6(θ3 + θ4) = 0

(2.7)

Notice that if β5 ̸= 0 , with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = e5, δ5 = β5e4 + β6e5, δ6 = e6

we can make β5 = 0 . So let β5 = 0 . Then β1, β6 ̸= 0 since dim(A3) = 3 . So by (2.7) we have
θ3 + θ4 = 0 = θ1 + θ2 = γ3 + γ4 = γ1 + γ2 = β3 + β4 = β7 + β8 . Then the nontrivial multiplications in
A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1], [e2, e3] =

β6e5+β7e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] = γ3e6 = −[e4, e2], [e1, e5] = θ1e6 = −[e5, e1], [e2, e5] =

θ3e6 = −[e5, e2]

If θ3 = 0 then θ1 ̸= 0 since dim(Z(A)) = 1 . Notice that if γ3 = 0 then θ1e4 − γ1e5 ∈ Z(A) , contradiction.
So γ3 ̸= 0 . Then with the base change δ1 = γ3e1 − γ1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = γ2

3e6 we
can make γ1 = 0 . The base change δ1 = e1, δ2 = 1

(α1β1γ3)1/2
e2, δ3 = 1

(α1β1γ3)1/2
(α1e3 + α2e4 + α3e5), δ4 =

α1

(α1β1γ3)1/2
(β1e4 + β2e5 + β3e6) +

α3θ1
(α1β1γ3)1/2

e6, δ5 = 1
β1γ3

(β6e5 + β7e6) +
α2

α1β1
e6, δ6 = e6 shows A is isomorphic

to A22 .
If θ3 ̸= 0 then with the base change δ1 = θ3e1 − θ1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = θ23e6 we can
make θ1 = 0 . Note that if γ1 = 0 then θ3e4 − γ3e5 ∈ Z(A) , contradiction. Hence γ1 ̸= 0 . Then the base

change δ1 = (β6θ3)
1/4

α
1/2
1 (β1γ1)3/4

e1, δ2 = 1
(α2

1β1β6γ1θ3)1/4
e2, δ3 = 1

α1β1γ1
(α1e3 + α2e4 + α3e5), δ4 = (β6θ3)

1/4

α
1/2
1 (β1γ1)7/4

(β1e4 +

β2e5 + β3e6) +
α3(β6θ3)

1/4θ1

α
3/2
1 (β1γ1)7/4

e6, δ5 = 1

α
3/2
1 (β1γ1)5/4(β6θ3)1/4

[α1(β6e5 + β7e6) + α2γ3e6], δ6 = (β6θ3)
1/2

α1(β1γ1)3/2
e6 shows A

is isomorphic to A23(α) .
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Case 2: If the matrix N = (iii) , then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] =

−β1e4 − β2e5 + β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] =

γ1e6, [e4, e1] = γ2e6, [e2, e4] = γ3e6, [e4, e2] = γ4e6, [e1, e5] = θ1e6, [e5, e1] = θ2e6, [e2, e5] = θ3e6, [e5, e2] = θ4e6

Again Leibniz identities yield the equations (2.7). Notice that if β5 = 0 , with the base change δ1 = e1, δ2 =

e2, δ3 = e3, δ4 = e5, δ5 = β5e4 + β6e5, δ6 = e6 we can make β5 = 0 . Let β5 = 0 . Then β1, β6 ̸= 0 since
dim(A3) = 3 . So by (2.7) we have θ3 + θ4 = 0 = θ1 + θ2 = γ3 + γ4 = γ1 + γ2 = β3 + β4 = β7 + β8 . Then the
nontrivial multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3+α2e4+α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4+β2e5+β3e6 = −[e3, e1], [e2, e3] =

β6e5+β7e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] = γ3e6 = −[e4, e2], [e1, e5] = θ1e6 = −[e5, e1], [e2, e5] =

θ3e6 = −[e5, e2]

If θ3 = 0 then θ1 ̸= 0 since dim(Z(A)) = 1 . Notice that if γ3 = 0 then θ1e4 − γ1e5 ∈ Z(A) , contradiction.
So γ3 ̸= 0 . Then with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = θ1e4 − γ1e5, δ5 = e5, δ6 = e6 we can
make γ1 = 0 . The base change δ1 = 1

(α1β1γ3)1/2
e1, δ2 = 1

(α1β1γ3)1/2
e2, δ3 = 1

α1β1γ3
(α1e3 + α2e4 + α3e5), δ4 =

α1

(α1β1γ3)1/2
(β1e4 + β2e5 + β3e6) +

α3θ1
(α1β1γ3)1/2

e6, δ5 = 1

α
1/2
1 (β1γ3)3/2

(β6e5 + β7e6) +
α2

(α1β1)3/2γ
1/2
3

e6, δ6 = 1
α1β1γ3

e6

shows A is isomorphic to A24 .
If θ3 ̸= 0 then with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = θ3e4 − γ3e5, δ5 = e5, δ6 = e6 we
can make γ3 = 0 . Note that γ1 ̸= 0 because otherwise e4 ∈ Z(A) , contradiction. Then the base change
δ1 = 1

(α1β6θ3)1/2
e1, δ2 = 1

(α1β6θ3)1/2
e2, δ3 = 1

α1β6θ3
(α1e3 +α2e4 +α3e5), δ4 = 1

(α1β6θ3)3/2
[α1(β1e4 +β2e5 +β3e6)+

(α2γ1+α3θ1)e6], δ5 = 1
(α1β6θ3)3/2

[α1(β6e5+β7e6)+α3θ3e6], δ6 = 1
α1β6θ3

e6 shows A is isomorphic to A25(α, β) .
2

Finally consider the case dim(A4) = 2 . Then dim(A5) = 0 or dim(A5) = 1 . Suppose dim(A5) = 0 .
Then by Lemma 1.1 and Lemma 1.2 we have A4 ⊆ Z(A) ⊂ A2 . If dim(Z(A)) = 3 , take A2 = A3 ⊕W such
that W ⊆ Z(A) . Then A3 = [A,A2] = [A,A3 ⊕W ] = A4 , contradiction. Hence dim(Z(A)) = 2 . This implies
that A4 = Z(A) .
From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and [A3, [A,A]] = [[A3,A],A] + [A, [A3,A]] we
get [A2,A3] = 0 = [A3,A2] .
Let Leib(A) = span{e6} . Extend this to bases {e5, e6}, {e4, e5, e6}, {e3, e4, e5, e6}, {e1, e2, e3, e4, e5, e6} of
Z(A) = A4,A3,A2 and A , respectively. Then the nontrivial multiplications in A given by
[e1, e1] = θ1e6, [e1, e2] = α1e3+α2e4+α3e5+α4e6, [e2, e1] = −α1e3−α2e4−α3e5+α5e6, [e2, e2] = θ2e6, [e1, e3] =

β1e4 + β2e5 + β3e6, [e3, e1] = −β1e4 − β2e5 + β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 +

β8e6, [e3, e3] = θ3e6, [e1, e4] = γ1e5 + γ2e6, [e4, e1] = −γ1e5 + γ3e6, [e2, e4] = γ4e5 + γ5e6, [e4, e2] = −γ4e5 + γ6e6

From Leibniz identities we get the following equations:

β1γ4 − β5γ1 = 0

β5γ2 − α1θ3 − β1γ5 = 0

β5γ2 + α1θ3 + β1γ6 = 0

β5γ3 − α1θ3 + β1γ5 = 0

β5(γ5 + γ6) = 0

(2.8)

Let β5 ̸= 0 . If β1 = 0 then by (2.8) we have γ1 = 0 = γ2 = γ3 = γ5 + γ6 . This implies that dim(A4) = 1 ,
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contradiction. Note that if β1 ̸= 0 then with the base change δ1 = e1, δ2 = β5e1 − β1e2, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = e6 we can make β5 = 0 . Without loss of generality, assume β5 = 0 . Then β1 ̸= 0 since dim(A3) = 3 .
Then from (2.8) we have γ4 = 0 = γ5 = γ6 = γ2 + γ3 . This implies that dim(A4) = 1 , contradiction. Hence
there is no Leibniz algebra when dim(A5) = 0 !

Theorem 2.6 Let dim(A) = 6 , dim(A2) = 4 , dim(A3) = 3 , dim(A4) = 2 dim(A5) = 1 and dim(Leib(A)) =

1 . Then, up to isomorphism, the nonzero multiplications in A is given by one of the following:

A26 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ1, δ4] = δ5 = −[δ4, δ1], [δ1, δ5] = δ6 =

−[δ5, δ1] .

A27 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ6 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1], [δ1, δ5] = δ6 = −[δ5, δ1] .

A28 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1], [δ2, δ4] = δ6 = −[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .

A29 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ5] = δ6 =

−[δ5, δ2] .

A30 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 = −[δ3, δ2], [δ1, δ4] = δ5 =

−[δ4, δ1], [δ2, δ5] = δ6 = −[δ5, δ2] .

A31 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 = −[δ4, δ2], [δ2, δ5] = δ6 =

−[δ5, δ2] .

A32 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ6 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2], [δ2, δ5] = δ6 = −[δ5, δ2] .

A33 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = δ5 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ1, δ4] = δ6 =

−[δ4, δ1], [δ2, δ4] = δ5 = −[δ4, δ2], [δ2, δ5] = δ6 = −[δ5, δ2] .

A34 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 = −[δ4, δ2], [δ1, δ5] = δ6 =

−[δ5, δ1] .

A35 [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .

A36(α) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ1, δ3] = αδ5 = −[δ3, δ1], [δ2, δ3] = δ4 = −[δ3, δ2], [δ2, δ4] = δ5 =

−[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1], [δ2, δ5] = δ6 = −[δ5, δ2] .

A37(α) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = αδ6 = −[δ3, δ2], [δ1, δ4] =

δ5 = −[δ4, δ1], [δ1, δ5] = δ6 = −[δ5, δ1] .

A38(α, β) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = αδ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 + βδ6 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = δ6 = −[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .
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A39(α) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ1, δ4] = δ5 = −[δ4, δ1], [δ1, δ5] =

αδ6 = −[δ5, δ1], [δ2, δ5] = δ6 = −[δ5, δ2] .

A40(α, β) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = αδ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = δ5 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = βδ6 = −[δ4, δ2], [δ1, δ5] = βδ6 = −[δ5, δ1], [δ2, δ5] = δ6 =

−[δ5, δ2] .

A41(α, β) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + αδ5 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 + βδ6 = −[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1] .

A42(α, β) [δ1, δ1] = δ6, [δ1, δ2] = δ3 = −[δ2, δ1], [δ2, δ2] = δ6, [δ1, δ3] = δ4 = −[δ3, δ1], [δ2, δ3] = iδ4 + αδ5 =

−[δ3, δ2], [δ1, δ4] = δ5 = −[δ4, δ1], [δ2, δ4] = iδ5 + βδ6 = −[δ4, δ2], [δ1, δ5] = δ6 = −[δ5, δ1], [δ2, δ5] = iδ6 =

−[δ5, δ2] .

Proof Here dim(A5) = 1 . Then by Lemma 1.1 and Lemma 1.2 we have A5 ⊆ Z(A) ⊂ A2 . If dim(Z(A)) = 3 ,
take A2 = A3 ⊕ W such that W ⊆ Z(A) . Then A3 = [A,A2] = [A,A3 ⊕ W ] = A4 , contradiction.
Now suppose dim(Z(A)) = 2 . If Z(A) ⊆ A3 then A3 = A4 ⊕ W such that W ⊆ Z(A) . This implies
that A4 = [A,A3] = [A,A4 ⊕ W ] = A5 , and otherwise A2 = A3 ⊕ W such that W ⊆ Z(A) . Then
A3 = [A,A2] = [A,A3 ⊕ W ] = A4 . So we arrived contradictions on both cases. Hence dim(Z(A)) = 1 .
Therefore A5 = Z(A) = Leib(A) .
From Leibniz identities [A, [A,A3]] = [[A,A],A3] + [A, [A,A3]] and [A3, [A,A]] = [[A3,A],A] + [A, [A3,A]] we
get [A2,A3] = 0 = [A3,A2] . Let Leib(A) = span{e6} = Z(A) = A5 . Extend this to bases {e5, e6}, {e4, e5, e6}, {e3, e4, e5, e6}
of A4,A3 and A2 , respectively. Take U = span{e1, e2} .

Case 1: If the matrix N = (ii) , then the nontrivial multiplications in A given as follows:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] = −β1e4 − β2e5 +

β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] = γ1e5 + γ2e6, [e4, e1] =

−γ1e5+γ3e6, [e2, e4] = γ4e5+γ5e6, [e4, e2] = −γ4e5+γ6e6, [e1, e5] = θ1e6, [e5, e1] = θ2e6, [e2, e5] = θ3e6, [e5, e2] =

θ4e6 .
From Leibniz identities we get the following equations:

α1(β3 + β4) + α2(γ2 + γ3) + α3(θ1 + θ2) = 0

α1(β7 + β8) + α2(γ5 + γ6) + α3(θ3 + θ4) = 0

β5γ1 − β1γ4 = 0

β5γ2 + β6θ1 − α1β9 − β1γ5 − β2θ3 = 0

γ4θ1 − γ1θ3 = 0

β1(γ2 + γ3) + β2(θ1 + θ2) = 0

β5γ2 + β6θ1 + α1β9 + β1γ6 + β2θ4 = 0

γ1(θ1 + θ2) = 0

γ4θ1 + γ1θ4 = 0

β5γ3 + β6θ2 + β1γ5 + β2θ3 − α1β9 = 0

β5(γ5 + γ6) + β6(θ3 + θ4) = 0

γ4(θ3 + θ4) = 0

(2.9)

Case 1.1: Let β5 = 0 . Then β1 ̸= 0 since dim(A3) = 3 . Using the equations (2.9) we obtain
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γ4 = 0 = β9 = θ1 + θ2 = θ3 + θ4 = γ2 + γ3 = β3 + β4 = β7 + β8 = γ5 + γ6 . Then the nontrivial multiplications
in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1], [e2, e3] =

β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e5 + γ2e6 = −[e4, e1], [e2, e4] = γ5e6 = −[e4, e2], [e1, e5] = θ1e6 =

−[e5, e1], [e2, e5] = θ3e6 = −[e5, e2] .
Case 1.1.1: Let θ3 = 0 . Then θ1 ̸= 0 since dim(A5) = 1 .

First suppose γ5 = 0 . Then from (2.9) we have β6 = 0 . If β7 = 0 then the base change δ1 = e1, δ2 =

1
α1β1γ1θ1

e2, δ3 = 1
α1β1γ1θ1

(α1e3+α2e4+α3e5), δ4 = 1
α1β1γ1θ1

[α1(β1e4+β2e5+β3e6)+α2(γ1e5+γ2e6)+α3θ1e6], δ5 =

1
α1β1γ1θ1

[α1β1(γ1e5 + γ2e6) + θ1(α1β2 + α2β1)e6], δ6 = e6 shows A is isomorphic to A26 . If β7 ̸= 0 then the

base change δ1 =
β
1/5
7

α
1/5
1 (β1γ1θ1)2/5

e1, δ2 = 1

α
3/5
1 β

2/5
7 (β1γ1θ1)1/5

e2, δ3 = 1

α
4/5
1 β

1/5
7 (β1γ1θ1)3/5

(α1e3 + α2e4 + α3e5), δ4 =

1
α1β1γ1θ1

[α1(β1e4 + β2e5 + β3e6) +α2(γ1e5 + γ2e6) +α3θ1e6], δ5 =
β
1/5
7

α
6/5
1 (β1γ1θ1)7/5

[α1β1(γ1e5 + γ2e6) + θ1(α1β2 +

α2β1)e6], δ6 =
β
2/5
7

α
2/5
1 (β1γ1θ1)4/5

e6 shows A is isomorphic to A27 . Now let γ5 ̸= 0 . Then w.s.c.o.b. A isomorphic

to A28 .
Case 1.1.2: Let θ3 ̸= 0 . Then with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = θ3e4 − γ5e5, δ5 =

e5, δ6 = e6 we can make γ5 = 0 . Also with the base change δ1 = θ3e1 − θ1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = e6 we can make θ1 = 0 . If β6 = 0 then with the base change δ1 = e1, δ2 = e2, δ3 = θ3e3 − β7e5, δ4 =

e4, δ5 = e5, δ6 = e6 we can make β7 = 0 . Then the base change δ1 = 1
α1β1γ1θ3

e1, δ2 = e2, δ3 = 1
α1β1γ1θ3

(α1e3 +

α2e4+α3e5), δ4 = 1
(α1β1γ1θ3)2

[α1(β1e4+β2e5+β3e6)+α2(γ1e5+ γ2e6)], δ5 = 1
(α1β1γ1θ3)3

α1β1(γ1e5+ γ2e6), δ6 =

1
(α1β1γ1θ3)2

e6 shows A is isomorphic to A29 . If β6 ̸= 0 then w.s.c.o.b. A isomorphic to A30 .
Case 1.2: Let β5 ̸= 0 . Then with the base change δ1 = β5e1 − β1e2, δ2 = e2, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = e6 we can make β1 = 0 . Using the equations (2.9) we obtain γ1 = 0 = β9 = θ1 + θ2 = θ3 + θ4 =

γ2 + γ3 = β3 + β4 = β7 + β8 = γ5 + γ6 . Then the nontrivial multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e1, e3] = β2e5 + β3e6 = −[e3, e1], [e2, e3] = β5e4 + β6e5 +

β7e6 = −[e3, e2], [e1, e4] = γ2e6 = −[e4, e1], [e2, e4] = γ4e5+γ5e6 = −[e4, e2], [e1, e5] = θ1e6 = −[e5, e1], [e2, e5] =

θ3e6 = −[e5, e2] .
Case 1.2.1: Let θ1 = 0 . Then θ3 ̸= 0 since dim(A5) = 1 .

First suppose γ2 = 0 . Then from (2.9) we have β2 = 0 . If β3 = 0 then the base change δ1 = α1β5γ4θ3e1, δ2 =

e2, δ3 = α1β5γ4θ3(α1e3 + α2e4 + α3e5), δ4 = α1β5γ4θ3[α1(β5e4 + β6e5 + β7e6) + α2(γ4e5 + γ5e6) + α3θ3e6], δ5 =

α1β5γ4θ3[α1β5(γ4e5 + γ5e6)+ θ3(α1β6 +α2γ4)e6], δ6 = (α1β5γ4θ3)
2e6 shows A is isomorphic to A31 . If β3 ̸= 0

then the base change δ1 = α1β5γ4θ3e1, δ2 = 1
α1β3

e2, δ3 = β5γ4θ3
β3

(α1e3 + α2e4 + α3e5), δ4 = β5γ4θ3
α1β2

3
[α1(β5e4 +

β6e5+β7e6)+α2(γ4e5+γ5e6)+α3θ3e6], δ5 = β5γ4θ3
α2

1β
3
3
[α1β5(γ4e5+γ5e6)+θ3(α1β6+α2γ4)e6], δ6 = (α1β5γ4θ3)

2e6

shows A is isomorphic to A32 . Now let γ2 ̸= 0 . Then w.s.c.o.b. A isomorphic to A33 .
Case 1.2.2: Let θ1 ̸= 0 . Then with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = θ1e4 −

γ2e5, δ5 = e5, δ6 = e6 we can make γ2 = 0 . Suppose θ3 = 0 . If β2 = 0 then with the base change
δ1 = e1, δ2 = e2, δ3 = θ1e3 − β3e5, δ4 = e4, δ5 = e5, δ6 = e6 we can make β3 = 0 . Then the base change
δ1 = e1, δ2 = e2, δ3 = α1e3 + α2e4 + α3e5, δ4 = α1(β5e4 + β6e5 + β7e6) + α2(γ4e5 + γ5e6) + α3θ3e6, δ5 =

α1β5(γ4e5 + γ5e6) + (α1β6 + α2γ4)θ3e6, δ6 = e6 shows A is isomorphic to A34 . If beta2 ̸= 0 then w.s.c.o.b. A
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is isomorphic to A35 . Now suppose θ3 ̸= 0 . Then w.s.c.o.b. A is isomorphic to A36(α) .
Case 2: If the matrix N = (iii) , then the nontrivial multiplications in A given as follows:

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6, [e3, e1] =

−β1e4 − β2e5 + β4e6, [e2, e3] = β5e4 + β6e5 + β7e6, [e3, e2] = −β5e4 − β6e5 + β8e6, [e3, e3] = β9e6, [e1, e4] =

γ1e5 + γ2e6, [e4, e1] = −γ1e5 + γ3e6, [e2, e4] = γ4e5 + γ5e6, [e4, e2] = −γ4e5 + γ6e6, [e1, e5] = θ1e6, [e5, e1] =

θ2e6, [e2, e5] = θ3e6, [e5, e2] = θ4e6 .
From Leibniz identities we get the equations (2.9) again.

Case 2.1: Let β5 = 0 . Then β1 ̸= 0 since dim(A3) = 3 . Using the equations (2.9) we obtain
γ4 = 0 = β9 = θ1 + θ2 = θ3 + θ4 = γ2 + γ3 = β3 + β4 = β7 + β8 = γ5 + γ6 . Then the nontrivial multiplications
in A given by

[e1, e1] = e6, [e1, e2] = α1e3 + α2e4 + α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1e4 + β2e5 + β3e6 = −[e3, e1],

[e2, e3] = β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e5 + γ2e6 = −[e4, e1], [e2, e4] = γ5e6 = −[e4, e2],

[e1, e5] = θ1e6 = −[e5, e1], [e2, e5] = θ3e6 = −[e5, e2] (2.10)

Case 2.1.1: Let θ3 = 0 . Then θ1 ̸= 0 since dim(A5) = 1 .
First suppose γ5 = 0 . Then from (2.9) we have β6 = 0 . Then the base change δ1 = 1

(α1β1γ1θ1)1/3
e1, δ2 =

1
(α1β1γ1θ1)1/3

e2, δ3 = 1
(α1β1γ1θ1)2/3

(α1e3 +α2e4 +α3e5), δ4 = 1
α1β1γ1θ1

[α1(β1e4 +β2e5 +β3e6)+α2(γ1e5 + γ2e6)+

α3θ1e6], δ5 = 1
(α1β1γ1θ1)4/3

[α1β1(γ1e5 + γ2e6) + θ1(α1β2 + α2β1)e6], δ6 = 1
(α1β1γ1θ1)2/3

e6 shows A is isomorphic

to A37(α) . Now let γ5 ̸= 0 . Then w.s.c.o.b. A isomorphic to A38(α, β) .
Case 2.1.2: Let θ3 ̸= 0 . Then with the base change δ1 = e1, δ2 = e2, δ3 = e3, δ4 = θ3e4 − γ5e5, δ5 =

e5, δ6 = e6 we can make γ5 = 0 . If β6 = 0 then with the base change δ1 = e1, δ2 = e2, δ3 = θ3e3 − β7e5, δ4 =

e4, δ5 = e5, δ6 = e6 we can make β7 = 0 . Then the base change δ1 = 1
(α1β1γ1θ3)1/3

e1, δ2 = 1
(α1β1γ1θ3)1/3

e2, δ3 =

1
(α1β1γ1θ3)2/3

(α1e3 + α2e4 + α3e5), δ4 = 1
α1β1γ1θ3

[α1(β1e4 + β2e5 + β3e6) + α2(γ1e5 + γ2e6) + α3θ1e6], δ5 =

1
(α1β1γ1θ3)4/3

[α1β1(γ1e5 + γ2e6) + θ1(α1β2 + α2β1)e6], δ6 = 1
(α1β1γ1θ3)2/3

e6 shows A is isomorphic to A39(α) . If

β6 ̸= 0 then w.s.c.o.b. A isomorphic to A40(α, β) .
Case 2.2: Let β5 ̸= 0 . If β1 = 0 then the base change δ1 = e2, δ2 = e1, δ3 = e3, δ4 = e4, δ5 =

e5, δ6 = e6 shows A is isomorphic to an algebra with the nonzero multiplications given by (2.10). Hence A is
isomorphic to A37(α),A38(α, β),A39(α) or A40(α, β) . Now let β1 ̸= 0 . If β2

1 + β2
5 ̸= 0 then the base change

δ1 = β1e1 + β5e2, δ2 = β5e1 − β1e2, δ3 = e3, δ4 = e4, δ5 = e5, δ6 = (β2
1 + β2

5)e6 shows A is isomorphic to an
algebra with the nonzero multiplications given by (2.10). Thus, A is isomorphic to A37(α),A38(α, β),A39(α)

or A40(α, β) . Now consider the case β2
1 + β2

5 = 0 . Then by (2.9) we get γ2
1 + γ2

4 = 0 . Using the equations
(2.9) we obtain β9 = 0 = θ1 + θ2 = θ3 + θ4 = γ2 + γ3 = β3 + β4 = β7 + β8 = γ5 + γ6 . Then the nontrivial
multiplications in A given as the following:
[e1, e1] = e6, [e1, e2] = α1e3+α2e4+α3e5 = −[e2, e1], [e2, e2] = e6, [e1, e3] = β1+β2e5+β3e6 = −[e3, e1], [e2, e3] =

β5e4 + β6e5 + β7e6 = −[e3, e2], [e1, e4] = γ1e5 + γ2e6 = −[e4, e1], [e2, e4] = γ4e5 + γ5e6 = −[e4, e2], [e1, e5] =

θ1e6 = −[e5, e1], [e2, e5] = θ3e6 = −[e5, e2] .
If θ3 = 0 then w.s.c.o.b. A isomorphic to A41(α, β) . If θ3 ̸= 0 then w.s.c.o.b. A isomorphic to A42(α, β) . 2
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3. Conclusion
We obtain 32 single algebras, 5 one-parameter infinite families and 5 two-parameter infinite families of classes
of complex non-Lie nilpotent Leibniz algebras of dimension 6 with two dimensional derived algebra and Leib
ideal is one dimensional. Taking into account the fact that all the isomorphism classes of 6−dimensional
complex nilpotent Lie algebras consist of only 20 single algebras, it can be deduced that the classification
problem for Leibniz algebras is wild. Nonetheless extending this bilinear forms technique to higher dimensions,
the classification of complex nilpotent Leibniz algebras with two dimensional derived algebra can be given.
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