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Abstract: In this study, it is aimed to examine the solutions of the following nonlocal boundary value problem

y(4) + g(x, y) = 0, x ∈ [c, d], y(c) = y′(c) = y′′(c) = 0, y(d) = λy(ξ).

Here, ξ ∈ (c, d), λ ∈ R, g ∈ C([c, d] × R,R) and g(x, 0) ̸= 0. It is concentrated on applications of Green’s function that
corresponds to the above problem to derive existence and uniqueness results for the solutions. One example is also given
to demonstrate the results.
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1. Introduction
We investigate the following boundary value problem

y(4) + g(x, y) = 0, x ∈ [c, d], (1.1)

y(c) = y′(c) = y′′(c) = 0, y(d) = λy(ξ). (1.2)

Here, ξ ∈ (c, d), λ ∈ R, g ∈ C([c, d]× R,R) and g(x, 0) ̸= 0.

Fourth-order three-point boundary value problems for ordinary differential equations can be expressed
as an important phenomenon since it emerges in the studies of applied mathematics, physics, and engineering.
Therefore this phenomenon can be further discussed and improved to be used in the future studies in those
fields. In order to obtain more precise models for the solutions, the usage of nonlocal boundary conditions can be
accepted since it considers the values inside the domain rather than considering only the boundary conditions.

This paper aims to find a result for the existence of a unique solution of (1.1)–(1.2) for a class of functions
g . The corresponding Green’s function is obtained to be used in the contracting mapping theorem to obtain
the results for the unique solutions of these particular equations. If the value λ is taken as to be equal to 0,
this means one gets a two-point boundary value problem. Therefore it can be said that the two-point boundary
value problem is a special case of the problem (1.1)–(1.2).

Many researches are conducted for the nonlinear multipoint boundary value problems and existence of
their solutions. Some of those researches are [1, 6, 7] including their referenced works. In [3], Schauder’s fixed
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point theorem, the upper and lower solution method, and topological degree theory are used in order to conclude
to the existence of unbounded solutions for a fourth-order three-point boundary value problem on a half-line.

Green’s function plays an important role in the theory of boundary value problems. In the boundary
value problems theory, applying the Green’s function is highly functional. The background of this approach
with the Green’s function is well addressed in [8]. Using the Green’s function method for the fourth-order
three-point boundary value problems was heavily studied in [4, 5, 9], which promoted current research. The
existence of nontrivial solution for a fifth-order three-point boundary value problem was proved by using the
Leray–Schauder nonlinear alternative in [2].

The remaining of the paper is arranged as follows. In Section 2, we construct Green’s function imple-
menting integral equation formula and some additional assumptions. Section 3 is assigned to estimation of the
Green’s function. In Section 4, we prove our main theorem on the existence and uniqueness for solution of the
considered problem. Also, one example is given to illustrate the result. The conclusion is set out in Section 5.

2. Computation of the Green’s function
At the first instance let us construct Green’s function for the following three-point boundary value problem

v(4) + w(x) = 0, x ∈ [c, d], (2.1)

v(c) = v′(c) = v′′(c) = 0, v(d) = 0, (2.2)

and afterwards, supposing that the solution of the following three-point boundary value problem

y(4) + w(x) = 0, x ∈ [c, d], (2.3)

y(c) = y′(c) = y′′(c) = 0, y(d) = λy(ξ), (2.4)

can be stated as follows:
y(x) = v(x) + (a0 + a1x+ a2x

2 + a3x
3)v(ξ)

, where a0, a1, a2 and a3 are constants that will be specified, we will obtain Green’s function for the problem
(2.3)–(2.4).

Proposition 2.1 If w : [c, d] → R is a continuous function, then boundary value problem (2.1)–(2.2) has a
unique solution

v(x) =

∫ x

c

[
(c− x)3(d− s)3

6(c− d)3
− (x− s)3

6

]
w(s)ds+

∫ d

x

[
(c− x)3(d− s)3

6(c− d)3

]
w(s)ds,

that we can rewrite as

v(x) =

∫ d

c

B(x, s)w(s)ds,

where

B(x, s) =

{
(c−x)3(d−s)3

6(c−d)3 − (x−s)3

6 , c ≤ s ≤ x ≤ d,
(c−x)3(d−s)3

6(c−d)3 , c ≤ x ≤ s ≤ d.
(2.5)

1942



ERTÜRK/Turk J Math

Proof It is well known that the problem (2.1)–(2.2) is equivalent to solving the integral equation

v(x) = b0 + b1x+ b2x
2 + b3x

3 − 1

6

∫ x

c

(x− s)3w(s)ds,

where b0, b1, b2 and b3 are some real constants. Using boundary conditions (2.2), we can obtain

b0 = c3

6(c−d)3

∫ d

c
(d− s)3w(s) ds, b1 = − c2

2(c−d)3

∫ d

c
(d− s)3w(s) ds,

b2 = c
2(c−d)3

∫ d

c
(d− s)3w(s) ds, b3 = − 1

6(c−d)3

∫ d

c
(d− s)3w(s) ds.

Thus, we get

v(x) =

∫ d

c

(c− x)3(d− s)3

6(c− d)3
w(s)ds− 1

6

∫ x

c

(x− s)3w(s)ds

=

∫ x

c

(c− x)3(d− s)3

6(c− d)3
w(s)ds+

∫ d

x

(c− x)3(d− s)3

6(c− d)3
w(s)ds− 1

6

∫ x

c

(x− s)3w(s)ds

=

∫ x

c

[
(c− x)3(d− s)3

6(c− d)3
− (x− s)3

6

]
w(s)ds+

∫ d

x

[
(c− x)3(d− s)3

6(c− d)3

]
w(s)ds.

2

The uniqueness follows from the fact that the corresponding homogeneous problem to BVP (2.1)–(2.2) only
admits the trivial zero solution. Hence, the proof of Proposition 2.1 is completed.

Proposition 2.2 Assume w : [c, d] → R is a continuous function. If λ(c − ξ)3 ̸= (c − d)3, (c ̸= ξ), then
boundary value problem (2.3)-(2.4) has a unique solution

y(x) = v(x) +
λ(c− x)3

(c− d)3 − λ(c− ξ)3
v(ξ),

that we can rewrite as

y(x) =

∫ d

c

G(x, s)w(s)ds,

where

G(x, s) = B(x, s) +
λ(c− x)3

(c− d)3 − λ(c− ξ)3
B(ξ, s). (2.6)

Proof Let y(x) = v(x) + (a0 + a1x + a2x
2 + a3x

3)v(ξ) ,where a0, a1, a2 and a3 are constants that will be

identified using boundary conditions (2.4) and v(x) =
∫ d

c
B(x, s)w(s)ds. So,

y(c) = v(c) + (a0 + a1c+ a2c
2 + a3c

3)v(ξ) = (a0 + a1c+ a2c
2 + a3c

3)v(ξ),

y′(c) = v′(c) + (a1 + 2a2c+ 3a3c
2)v(ξ) = (a1 + 2a2c+ 3a3c

2)v(ξ),

y′′(c) = v′′(c) + (2a2 + 6a3c)v(ξ) = (2a2 + 6a3c)v(ξ),

y(d) = v(d) + (a0 + a1d+ a2d
2 + a3d

3)v(ξ) = (a0 + a1d+ a2d
2 + a3d

3)v(ξ),

y(ξ) = v(ξ) + (a0 + a1ξ + a2ξ
2 + a3ξ

3)v(ξ) = v(ξ)(a0 + a1ξ + a2ξ
2 + a3ξ

3 + 1).
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We get

(a0 + a1c+ a2c
2 + a3c

3)v(ξ) = 0,

(a1 + 2a2c+ 3a3c
2)v(ξ) = 0,

(2a2 + 6a3c)v(ξ) = 0,

(a0 + a1d+ a2d
2 + a3d

3)v(ξ) = λv(ξ)(a0 + a1ξ + a2ξ
2 + a3ξ

3 + 1),

or 
a0 + a1c+ a2c

2 + a3c
3 = 0,

a1 + 2a2c+ 3a3c
2 = 0,

2a2 + 6a3c = 0,

(1− λ)a0 + (d− λξ)a1 + (d2 − λξ2)a2 + (d3 − λξ3)a3 = λ.

Solving the system, we have

a0 =
c3λ

(c− d)3 − λ(c− ξ)3
, a1 =

3c2λ

(d− c)3 − λ(ξ−c)3
,

a2 =
3cλ

(c− d)3 − λ(c− ξ)3
, a3 =

λ

(c− d)3 − λ(ξ − c)3
.

Therefore

y(x) = v(x) +

(
c3λ

(c− d)3 − λ(c− ξ)3
+

3c2λx

(d− c)3 − λ(ξ − c)3

+
3cλx2

(c− d)3 − λ(c− ξ)3
+

λx3

(d− c)3 − λ(ξ − c)3

)
v(ξ)

= v(x) +

(
c3λ+ 3cλx2

(c− d)3 − λ(c− ξ)3
+

3c2λx+ λx3

(d− c)3 − λ(ξ − c)3

)
v(ξ)

= v(x) + λ

(
(c− x)3

(c− d)3 − λ(c− ξ)3

)
v(ξ).

Let us prove the uniqueness. Assume that q(x) is also a solution of (2.3)-(2.4), that is

q(4)(x) + w(x) = 0, x ∈ [c, d],

q(c) = q′(c) = q′′(c) = 0, q(d) = λq(ξ).

Let p(x) = q(x)− y(x), x ∈ [c, d]. Due to linearity property of derivative operator, we have

p(4)(x) = q(4)(x)− y(4)(x) = −w(x) + w(x) = 0, x ∈ [c, d].

Therefore p(x) = b0 + b1x+ b2x
2 + b3x

3 , where b0, b1, b2 and b3 are constants that we will specify. We have

p(c) = q(c)− y(c) = 0,

p′(c) = q′(c)− y′(c) = 0,

p′′(c) = q′′(c)− y′′(c) = 0,

p(d) = q(d)− y(d) = λq(ξ)− λy(ξ) = λ(q(ξ)− y(ξ)) = λp(ξ),

1944



ERTÜRK/Turk J Math

or

p(c) = b0 + b1c+ b2c
2 + b3c

3 = 0,

p′(c) = b1 + 2b2c+ 3b3c
2 = 0,

p′′(c) = 2b2 + 6b3c = 0,

p(d) = b0 + b1d+ b2d
2 + b3d

3 = λ(b0 + b1ξ + b2ξ
2 + b3ξ

3) = λp(ξ).

We get the following homogeneous system


b0 + b1c+ b2c

2 + b3c
3 = 0,

b1 + 2b2c+ 3b3c
2 = 0,

2b2 + 6b3c = 0,

(1− λ)b0 + (d− λξ)b1 + (d2 − λξ2)b2 + (d3 − λξ3)b3 = 0.

with determinant

∣∣∣∣∣∣∣∣
1 c c2 c3

0 1 2c 3c2

0 0 2 6c
1− λ d− λξ d2 − λξ2 d3 − λξ3

∣∣∣∣∣∣∣∣ = −2[(c− d)3 − λ(c− ξ)3] ̸= 0.

So the homogeneous system has only the trivial solution and hence p(x) ≡ 0,

x ∈ [c, d] or q(x) ≡ y(x), x ∈ [c, d]. The proof is done. 2

3. The Green’s function estimation

Proposition 3.1 Let B(x, s) be the Green’s function given in Proposition 2.1. Then

∫ d

c

| B(x, s) | ds ≤ (d− c)4

12

for x ∈ [c, d] .

1945



ERTÜRK/Turk J Math

Proof ∫ d

c

| B(x, s) | ds =
∫ x

c

| B(x, s) | ds+
∫ d

x

| B(x, s) | ds

=

∫ x

c

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3
− (x− s)3

6

∣∣∣∣ds+ ∫ d

x

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3

∣∣∣∣ds
≤

∫ x

c

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3
+

(x− s)3

6

∣∣∣∣ds+ ∫ d

x

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3

∣∣∣∣ds
≤

∫ x

c

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3

∣∣∣∣ds+ ∫ x

c

∣∣∣∣ (x− s)3

6

∣∣∣∣ds+ ∫ d

x

∣∣∣∣ (c− x)3(d− s)3

6(c− d)3

∣∣∣∣ds
=

1

6

∣∣∣∣ (c− x)3

(c− d)3

∣∣∣∣ ∫ x

c

|(d− s)3|ds+ 1

6

∫ x

c

|(x− s)3|ds+ 1

6

∣∣∣∣ (c− x)3

(c− d)3

∣∣∣∣ ∫ d

x

|(d− s)3|ds

≤ 1

6

[
(c− d)4

4

]
+

1

6

[
(c− d)4

4

]

=
(d− c)4

12
.

2

Proposition 3.2 The Green’s function G(x, s) given in (2.6) satisfies the following inequality

∫ d

c

| G(x, s) | ds ≤ (d− c)4

12
+

|λ|(d− c)7

12 | (c− d)3 − λ(c− ξ)3 |

for x ∈ [c, d].

Proof ∫ d

c

| G(x, s) | ds =
∫ d

c

∣∣∣∣B(x, s) +
λ(c− x)3

(c− d)3 − λ(c− ξ)3
B(ξ, s)

∣∣∣∣ds
≤

∫ d

c

| B(x, s) | ds+
∣∣∣∣ λ(c− x)3

(c− d)3 − λ(c− ξ)3

∣∣∣∣ ∫ d

c

| B(ξ, s) | ds

≤ (d− c)4

12
+

| λ(c− x)3 |
| (c− d)3 − λ(c− ξ)3 |

(d− c)4

12

≤ (d− c)4

12
+

| λ | |(d− c)3|
|(c− d)3 − λ(c− ξ)3|

(d− c)4

12

=
(d− c)4

12
+

| λ | (d− c)3

|(c− d)3 − λ(c− ξ)3|
(d− c)4

12

=
(d− c)4

12
+

| λ | (d− c)7

12|(c− d)3 − λ(c− ξ)3|

2
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4. Existence of a unique solution

Theorem 4.1 Suppose that g : [c, d]× R → R is continuous and satisfies a uniform Lipschitz condition with
respect to y on [c, d]× R ,namely there is a constant L such that, for every (x, y1), (x, y2) ∈ [c, d]× R ,

| g(x, y1)− g(x, y2) |≤ L | y1 − y2 | .

If (c− d)3 ̸= λ(c− ξ)3, (c ̸= ξ) and (d− c) is so small that

(d− c)4

12
+

| λ | (d− c)7

12|(c− d)3 − λ(c− ξ)3|
<

1

L
, (4.1)

then there exists a unique solution of (1.1)–(1.2).

Proof Let Y be the Banach space of continuous functions on [c, d] with maximum norm

∥y∥ = max{| y(x) |: c ≤ x ≤ d}.

Note that y(x) is a solution of (1.1)–(1.2) if and only if it is a solution of (2.3)–(2.4) with w(x) = g(x, y(x)).

But (2.3)–(2.4) has a unique solution

y(x) =

∫ d

c

G(x, s)g(s, y(s))ds,

where G(x, s) is defined in Proposition 2.2. Define the operator Υ : Y → Y by

Υy(x) =

∫ d

c

G(x, s)g(s, y(s))ds,

for x ∈ [c, d].

We will apply Banach fixed point theorem to show the operator Υ has a unique fixed point. Let p, q ∈ Y .
Then

| Υp(x)−Υq(x) | =
∣∣∣∣ ∫ d

c

G(x, s)(g(s, p(s))− g(s, q(s)))ds

∣∣∣∣
≤

∫ d

c

| G(x, s) | . | g(s, p(s))− g(s, q(s)) | ds

≤
∫ d

c

| G(x, s) | L | p(s)− q(s) | ds ≤ L

∫ d

c

| G(x, s) | ∥p− q∥ds

≤ L

[
(d− c)4

12
+

| λ | (d− c)7

12|(c− d)3 − λ(c− ξ)3|

]
∥p− q∥, for x ∈ [c, d],

where we have used Proposition 3.2. It follows that

∥Υp−Υq∥ ≤ β∥p− q∥,
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where

β = L

[
(d− c)4

12
+

| λ | (d− c)7

12|(c− d)3 − λ(c− ξ)3|

]
.

By (4.1), β < 1 and we deduce that Υ is a contraction mapping on Y , and by the Banach contraction mapping
theorem we get the asked result. 2

Example 4.2 In this part we give an example to illustrate the usefulness of our main results. Let us consider
the following boundary value problem

y(4) − sin y + 1− y = 0, y(0) = y′(0) = y′′(0) = 0, y(1) =
7

10
y

(
1√
3

)
. (4.2)

We have g(x, y) = − sin y + 1− y (g(x, 0) = 1 ̸= 0) and

max
0≤x≤1

∣∣∣∣∂g∂y
∣∣∣∣ = max

0≤x≤1
| − cos y − 1| ≤ max

0≤x≤1
| cos y|+ 1 ≤ L = 2.

So, g is Lipschitz with respect to y on [c, d]× R , with Lipschitz constant L = 2.

Since (c− d)3 = −1 ̸= −7
30

√
3
= λ(c− ξ)3 and

(d− c)4

12
+

| λ | (d− c)7

12|(c− d)3 − λ(c− ξ)3|
=

1

12
+

21

360− 28
√
3
∼= 0.150749 <

1

L
= 0.5.

Now an application of Theorem 4.1 proves that the problem (4.2) has a unique solution. The graph of solution
y(x) is displayed in Figure.

Figure. Solution of the problem (4.2).
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5. Conclusion
In conclusion, we have given some sufficient conditions which show the existence and uniqueness of solutions
for a nonlocal boundary value problem. An example is confirmed if the derived results can be valid.
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