Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: 1950 - 1954
© TÜBİTAK
doi:10.3906/mat-2002-122

The third logarithmic coefficient for the class \mathcal{S}

Milutin OBRADOVIC ${ }^{1}$ © ${ }^{(D)}$, Nikola TUNESKI ${ }^{2, *}$ ©

${ }^{1}$ Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
${ }^{2}$ Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
Received: 28.02.2020 • Accepted/Published Online: 31.08.2020 • Final Version: 21.09 .2020

Abstract

In this paper we give an upper bound of the third logarithmic coefficient for the class \mathcal{S} of univalent functions in the unit disc.

Key words: Univalent, third logarithmic coefficient

1. Introduction

Let \mathcal{A} be the class of functions f that are analytic in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

and let \mathcal{S} be its subclass consisting of functions that are univalent in the unit disc \mathbb{D}.
The logarithmic coefficients of the function f given by (1.1) are defined in \mathbb{D} by

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{1.2}
\end{equation*}
$$

By using (1.1), after differentiation and comparing the coefficients, we can obtain that $\gamma_{1}=\frac{1}{2} a_{2}, \gamma_{2}=$ $\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right)$ and

$$
\begin{equation*}
\gamma_{3}=\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) \tag{1.3}
\end{equation*}
$$

Very little is known about the estimates of the modulus of the logarithmic coefficients for the whole class \mathcal{S} of normalized of univalent functions. The Koebe function $k(z)=\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n}$ with $\gamma_{n}=\frac{1}{n}$ being extremal in majority estimates over the class \mathcal{S} inspires a conjecture that $\left|\gamma_{n}\right| \leq \frac{1}{n}$ for $n=1,2, \ldots$ and $f \in \mathcal{S}$. Apparently, this is true only for the class of starlike functions ([8]), but not for the class \mathcal{S} in general ([5, Theorem 8.4, p.242]). Sharp estimates for the class \mathcal{S} are known only for the first two coefficients, $\left|\gamma_{1}\right| \leq 1$ and $\left|\gamma_{2}\right| \leq \frac{1}{2}+\frac{1}{e}$.

In this paper we give an upper bound of $\left|\gamma_{3}\right|$ for the class \mathcal{S}.
*Correspondence: nikola.tuneski@mf.edu.mk
2010 AMS Mathematics Subject Classification: 30C45, 30C50, 30C55.

OBRADOVIĆ and TUNESKI/Turk J Math

It is worth mentioning that the problem of estimating the modulus of the first three logarithmic coefficients is widely studied for the subclasses of \mathcal{S} and in some cases sharp bounds are obtained. Namely, sharp estimates for the class of strongly starlike functions of certain order and γ-starlike functions are given in [8] and [3], respectively, while nonsharp estimates for the class of Bazilevic, close-to-convex and different subclasses of close-to-convex functions are given in [4], [1] and [7], respectively.

2. Main result

As announced before, here is an estimate of the modulus of the third logarithmic coefficient for the whole class of univalent functions.

Theorem 2.1 For the class \mathcal{S} we have

$$
\left|\gamma_{3}\right| \leq \frac{\sqrt{133}}{15}=0.7688 \ldots
$$

Proof In the proof of this theorem we will use mainly the notations and results given in the book of N. A. Lebedev ([6]).

Let $f \in \mathcal{S}$ and let

$$
\log \frac{f(t)-f(z)}{t-z}=\sum_{p, q=0}^{\infty} \omega_{p, q} t^{p} z^{q}
$$

where $\omega_{p, q}$ are called Grunsky's coefficients with property $\omega_{p, q}=\omega_{q, p}$. For those coefficients we have the next Grunsky's inequality ([5, 6]):

$$
\begin{equation*}
\sum_{q=1}^{\infty} q\left|\sum_{p=1}^{\infty} \omega_{p, q} x_{p}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{p}\right|^{2}}{p} \tag{2.1}
\end{equation*}
$$

where x_{p} are arbitrary complex numbers such that last series converges.
Further, it is well-known that if f given by (1.1) belongs to \mathcal{S}, then also

$$
\begin{equation*}
f_{2}(z)=\sqrt{f\left(z^{2}\right)}=z+c_{3} z^{3}+c_{5} z^{5}+\cdots \tag{2.2}
\end{equation*}
$$

belongs to the class \mathcal{S}. Then for the function f_{2} we have the appropriate Grunsky's coefficients of the form $\omega_{2 p-1,2 q-1}^{(2)}$ and the inequality (2.1) has the form

$$
\begin{equation*}
\sum_{q=1}^{\infty}(2 q-1)\left|\sum_{p=1}^{\infty} \omega_{2 p-1,2 q-1}^{(2)} x_{2 p-1}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{2 p-1}\right|^{2}}{2 p-1} \tag{2.3}
\end{equation*}
$$

As it has been shown in [6, p.57], if f is given by (1.1) then the coefficients a_{2}, a_{3}, a_{4} are expressed by Grunsky's coefficients $\omega_{2 p-1,2 q-1}^{(2)}$ of the function f_{2} given by (2.2) in the following way (in the next text we omit upper index 2 in $\omega_{2 p-1,2 q-1}^{(2)}$):

$$
\begin{align*}
& a_{2}=2 \omega_{11} \\
& a_{3}=2 \omega_{13}+3 \omega_{11}^{2} \tag{2.4}\\
& a_{4}=2 \omega_{33}+8 \omega_{11} \omega_{13}+\frac{10}{3} \omega_{11}^{3}
\end{align*}
$$

Now, from (1.3) and (2.3) we have

$$
\gamma_{3}=\omega_{33}+2 \omega_{11} \omega_{13}
$$

On the other hand, from (2.4) for $x_{2 p-1}=0, p=3,4, \ldots$ we have

$$
\begin{equation*}
\left|\omega_{11} x_{1}+\omega_{31} x_{3}\right|^{2}+3\left|\omega_{13} x_{1}+\omega_{33} x_{3}\right|^{2} \leq\left|x_{1}\right|^{2}+\frac{\left|x_{3}\right|^{2}}{3} \tag{2.5}
\end{equation*}
$$

From (2.5) for $x_{1}=2 \omega_{11}, x_{3}=1$ and since $\omega_{31}=\omega_{13}$, we have

$$
\left|2 \omega_{11}^{2}+\omega_{13}\right|^{2}+3\left|\gamma_{3}\right|^{2} \leq 4\left|\omega_{11}\right|^{2}+\frac{1}{3}
$$

and from here

$$
\begin{aligned}
\left|\gamma_{3}\right|^{2} & \leq \frac{1}{9}+\frac{4}{3}\left|\omega_{11}\right|^{2}-\frac{1}{3}\left|2 \omega_{11}^{2}+\omega_{13}\right|^{2} \\
& =\frac{1}{9}+\frac{4}{3}\left|\omega_{11}\right|^{2}-\frac{1}{3}\left(4\left|\omega_{11}\right|^{4}+\left|\omega_{13}\right|^{2}+4 \operatorname{Re}\left\{\omega_{13}{\overline{\omega_{11}}}^{2}\right\}\right) \\
& =\frac{1}{9}+\frac{4}{3}\left|\omega_{11}\right|^{2}-\frac{4}{3}\left|\omega_{11}\right|^{4}-\frac{1}{3}\left|\omega_{13}\right|^{2}-\frac{4}{3} \operatorname{Re}\left\{\omega_{13}{\overline{\omega_{11}}}^{2}\right\}
\end{aligned}
$$

Using the fact that

$$
-\left|\omega_{13}\right|^{2} \leq-\left|\operatorname{Re}\left\{\omega_{13}\right\}\right|^{2}=-\left(\operatorname{Re}\left\{\omega_{13}\right\}\right)^{2}
$$

we obtain

$$
\left|\gamma_{3}\right|^{2} \leq \frac{1}{9}+\frac{4}{3}\left|\omega_{11}\right|^{2}-\frac{4}{3}\left|\omega_{11}\right|^{4}-\frac{1}{3}\left(\operatorname{Re}\left\{\omega_{13}\right\}\right)^{2}-\frac{4}{3} \operatorname{Re}\left\{\omega_{13}{\bar{\omega}_{11}}^{2}\right\} .
$$

Next, without loss of generality using suitable rotation of f we can assume that $0 \leq a_{2} \leq 2$ and $a_{2}=2 \omega_{11}$ receive that $0 \leq \omega_{11} \leq 1$. So, let put $\omega_{11}=a, 0 \leq a \leq 1$, and continue analysing

$$
\begin{equation*}
\left|\gamma_{3}\right|^{2} \leq \frac{1}{9}+\frac{4}{3} a^{2}-\frac{4}{3} a^{4}-\frac{1}{3}\left(\operatorname{Re}\left\{\omega_{13}\right\}\right)^{2}-\frac{4}{3} a^{2} \operatorname{Re}\left\{\omega_{13}\right\} \tag{2.6}
\end{equation*}
$$

It is a classical result that for the class \mathcal{S} we have $\left|a_{3}-a_{2}^{2}\right| \leq 1$ (see [9, p.5]), which is by (2.4) equivalent with

$$
\left|2 \omega_{13}-\omega_{11}^{2}\right| \leq 1
$$

From here,

$$
-1 \leq \operatorname{Re}\left\{2 \omega_{13}-\omega_{11}^{2}\right\} \leq 1
$$

i.e.

$$
\begin{equation*}
-\frac{1}{2}\left(1-a^{2}\right) \leq \operatorname{Re}\left\{\omega_{13}\right\} \leq \frac{1}{2}\left(1+a^{2}\right) \tag{2.7}
\end{equation*}
$$

If we put $x_{1}=1$ and $x_{3}=0$ in (2.5), then we get

$$
\left|\omega_{11}\right|^{2}+3\left|\omega_{13}\right|^{2} \leq 1
$$

which implies

$$
\left|\omega_{13}\right| \leq \frac{1}{\sqrt{3}} \sqrt{1-\left|\omega_{11}\right|^{2}}=\frac{1}{\sqrt{3}} \sqrt{1-a^{2}}
$$

Combining this with (2.7), we receive

$$
-\frac{1}{2}\left(1-a^{2}\right) \leq \operatorname{Re}\left\{\omega_{13}\right\} \leq \frac{1}{\sqrt{3}} \sqrt{1-a^{2}}
$$

(because $\left.-\frac{1}{2}\left(1-a^{2}\right) \geq-\frac{1}{\sqrt{3}} \sqrt{1-a^{2}}\right)$.
By using (2.6), (2.7) and the notation $t=\operatorname{Re}\left\{\omega_{13}\right\}$ we obtain

$$
\left|\gamma_{3}\right|^{2} \leq \frac{1}{9}+\frac{4}{3} a^{2}-\frac{4}{3} a^{4}-\frac{1}{3} t^{2}-\frac{4}{3} a^{2} t: \equiv \psi(a, t)=\frac{1}{9}+\frac{1}{3} \varphi(a, t)
$$

where $0 \leq a \leq 1,-\frac{1}{2}\left(1-a^{2}\right) \leq t \leq \frac{1}{\sqrt{3}} \sqrt{1-a^{2}}$ and $\varphi(a, t)=4 a^{2}-4 a^{4}-t^{2}-4 a^{2} t$.
It remains to show that the maximal value of the function $\psi(a, t)$ over the region $\Omega=[0,1] \times\left[-\frac{1}{2}(1-\right.$ $\left.\left.a^{2}\right), \frac{1}{\sqrt{3}} \sqrt{1-a^{2}}\right]$ equals $\left(\frac{\sqrt{133}}{15}\right)^{2}=\frac{133}{225}$, or equivalently that $\varphi(a, t)$ has maximal value $\frac{36}{25}$ on the same region.

Indeed, the system of equations

$$
\left\{\begin{array}{l}
\varphi_{a}^{\prime}(a, t)=8 a-16 a^{3}-8 a t=0 \\
\varphi_{t}^{\prime}(a, t)=-4 a^{2}-2 t=0
\end{array}\right.
$$

has unique real solution $a=t=0$ with $\varphi(0,0)=0$, while on the edges of the region Ω we have the following:

- for $a=0$ we have that the function $\varphi(0, t)=-t^{2}$ on the interval $-\frac{1}{2} \leq t \leq \frac{1}{\sqrt{3}}$ attains maximal value $\varphi(0,0)=0 ;$
- when $a=1, t$ can take single value, $t=0$, and in that case $\varphi(1,0)=0$;
- for $t=-\frac{1}{2}\left(1-a^{2}\right)$, the function $\varphi\left(a,-\frac{1}{2}\left(1-a^{2}\right)\right)=-\frac{1}{4}\left(a^{2}-1\right)\left(a^{2}-\frac{1}{25}\right)$ is with maximal value $\frac{36}{25}$ on the interval $0 \leq a \leq 1$ attained for $a=\frac{\sqrt{13}}{5}$;
- for $t=\frac{1}{\sqrt{3}} \sqrt{1-a^{2}}$, the values of the function

$$
\begin{aligned}
\varphi\left(a, \frac{1}{\sqrt{3}} \sqrt{1-a^{2}}\right) & =\frac{1}{3}\left(-12 a^{4}+13 a^{2}-1\right)-\frac{4 a^{2}}{\sqrt{3}} \sqrt{1-a^{2}} \\
& \leq \frac{1}{3}\left(-12 a^{4}+13 a^{2}-1\right)<\frac{36}{25}
\end{aligned}
$$

on the interval $0 \leq a \leq 1$ are smaller than $\frac{36}{25}$.
This completes the proof.

References

[1] Ali MF, Vasudevarao A. On logarithmic coefficients of some close-to-convex functions. Proceedings of the American Mathematical Sociecty 2018; 146 (3): 1131-1142. doi: 10.1090/proc/13817
[2] Cho NE, Kowalczyk B, Kwon OS, Lecko A, Sim YJ. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2020; 114. doi: 10.1007/s13398-020-00786-7
[3] Darus M, Thomas DK. α-logarithmically convex functions. Indian Journal of Pure and Applied Mathematics 1998; 29 (10): 1049-1059.
[4] Deng Q. On the logarithmic coefficients of Bazilevič functions. Applied Mathematics and Compututation 2011; 217 (12): 5889-5894. doi: 10.1016/j.amc.2010.12.075
[5] Duren PL. Univalent function. New York, NY, USA: Springer-Verlag, 1983.
[6] Lebedev NA. Area principle in the theory of univalent functions. Moscow, Russia: Nauka, 1975 (in Russian).
[7] Thomas DK. The logarithmic coefficients of close-to convex functions. Proceedings of the American Mathematical Society 2016; 144 (2): 1681-1687. doi: 10.1090/proc/12921
[8] Thomas DK. On the coefficients of strongly starlike functions. Indian Journal of Mathematics 2016; 58 (2): 135-146.
[9] Thomas DK, Tuneski N, Vasudevarao A. Univalent Functions: A Primer. De Gruyter Studies in Mathematics, 69. Berlin, Germany: De Gruyter, 2018.

