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Abstract: In this paper we give an upper bound of the third logarithmic coefficient for the class S of univalent functions
in the unit disc.
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1. Introduction
Let A be the class of functions f that are analytic in the open unit disc D = {z : |z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (1.1)

and let S be its subclass consisting of functions that are univalent in the unit disc D .
The logarithmic coefficients of the function f given by (1.1) are defined in D by

log
f(z)

z
= 2

∞∑
n=1

γnz
n. (1.2)

By using (1.1), after differentiation and comparing the coefficients, we can obtain that γ1 = 1
2a2 , γ2 =

1
2

(
a3 − 1

2a
2
2

)
and

γ3 =
1

2

(
a4 − a2a3 +

1

3
a32

)
. (1.3)

Very little is known about the estimates of the modulus of the logarithmic coefficients for the whole class
S of normalized of univalent functions. The Koebe function k(z) = z

(1−z)2 =
∑∞

n=1 nz
n with γn = 1

n being

extremal in majority estimates over the class S inspires a conjecture that |γn| ≤ 1
n for n = 1, 2, . . . and f ∈ S .

Apparently, this is true only for the class of starlike functions ([8]), but not for the class S in general ([5,
Theorem 8.4, p.242]). Sharp estimates for the class S are known only for the first two coefficients, |γ1| ≤ 1 and
|γ2| ≤ 1

2 + 1
e .

In this paper we give an upper bound of |γ3| for the class S .
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It is worth mentioning that the problem of estimating the modulus of the first three logarithmic coefficients
is widely studied for the subclasses of S and in some cases sharp bounds are obtained. Namely, sharp estimates
for the class of strongly starlike functions of certain order and γ -starlike functions are given in [8] and [3],
respectively, while nonsharp estimates for the class of Bazilevic, close-to-convex and different subclasses of
close-to-convex functions are given in [4], [1] and [7], respectively.

2. Main result
As announced before, here is an estimate of the modulus of the third logarithmic coefficient for the whole class
of univalent functions.

Theorem 2.1 For the class S we have

|γ3| ≤
√
133

15
= 0.7688 . . . .

Proof In the proof of this theorem we will use mainly the notations and results given in the book of N. A.
Lebedev ([6]).

Let f ∈ S and let

log
f(t)− f(z)

t− z
=

∞∑
p,q=0

ωp,qt
pzq,

where ωp,q are called Grunsky’s coefficients with property ωp,q = ωq,p . For those coefficients we have the next
Grunsky’s inequality ([5, 6]):

∞∑
q=1

q

∣∣∣∣∣
∞∑
p=1

ωp,qxp

∣∣∣∣∣
2

≤
∞∑
p=1

|xp|2

p
, (2.1)

where xp are arbitrary complex numbers such that last series converges.
Further, it is well-known that if f given by (1.1) belongs to S , then also

f2(z) =
√
f(z2) = z + c3z

3 + c5z
5 + · · · (2.2)

belongs to the class S . Then for the function f2 we have the appropriate Grunsky’s coefficients of the form

ω
(2)
2p−1,2q−1 and the inequality (2.1) has the form

∞∑
q=1

(2q − 1)

∣∣∣∣∣
∞∑
p=1

ω
(2)
2p−1,2q−1x2p−1

∣∣∣∣∣
2

≤
∞∑
p=1

|x2p−1|2

2p− 1
. (2.3)

As it has been shown in [6, p.57], if f is given by (1.1) then the coefficients a2, a3, a4 are expressed by Grunsky’s

coefficients ω(2)
2p−1,2q−1 of the function f2 given by (2.2) in the following way (in the next text we omit upper

index 2 in ω
(2)
2p−1,2q−1 ):

a2 = 2ω11,

a3 = 2ω13 + 3ω2
11,

a4 = 2ω33 + 8ω11ω13 +
10

3
ω3
11.

(2.4)
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Now, from (1.3) and (2.3) we have
γ3 = ω33 + 2ω11ω13

On the other hand, from (2.4) for x2p−1 = 0 , p = 3, 4, . . . we have

|ω11x1 + ω31x3|2 + 3|ω13x1 + ω33x3|2 ≤ |x1|2 +
|x3|2

3
. (2.5)

From (2.5) for x1 = 2ω11 , x3 = 1 and since ω31 = ω13 , we have

|2ω2
11 + ω13|2 + 3|γ3|2 ≤ 4|ω11|2 +

1

3
,

and from here

|γ3|2 ≤ 1

9
+

4

3
|ω11|2 −

1

3
|2ω2

11 + ω13|2

=
1

9
+

4

3
|ω11|2 −

1

3

(
4|ω11|4 + |ω13|2 + 4Re

{
ω13ω11

2
})

=
1

9
+

4

3
|ω11|2 −

4

3
|ω11|4 −

1

3
|ω13|2 −

4

3
Re

{
ω13ω11

2
}
.

Using the fact that
−|ω13|2 ≤ − |Re {ω13}|2 = − (Re {ω13})2 ,

we obtain

|γ3|2 ≤ 1

9
+

4

3
|ω11|2 −

4

3
|ω11|4 −

1

3
(Re {ω13})2 −

4

3
Re

{
ω13ω11

2
}
.

Next, without loss of generality using suitable rotation of f we can assume that 0 ≤ a2 ≤ 2 and a2 = 2ω11

receive that 0 ≤ ω11 ≤ 1 . So, let put ω11 = a , 0 ≤ a ≤ 1 , and continue analysing

|γ3|2 ≤ 1

9
+

4

3
a2 − 4

3
a4 − 1

3
(Re {ω13})2 −

4

3
a2Re {ω13} . (2.6)

It is a classical result that for the class S we have |a3−a22| ≤ 1 (see [9, p.5]), which is by (2.4) equivalent
with

|2ω13 − ω2
11| ≤ 1.

From here,
−1 ≤ Re {2ω13 − ω2

11} ≤ 1,

i.e.

−1

2
(1− a2) ≤ Re {ω13} ≤ 1

2
(1 + a2). (2.7)

If we put x1 = 1 and x3 = 0 in (2.5), then we get

|ω11|2 + 3|ω13|2 ≤ 1,

which implies

|ω13| ≤
1√
3

√
1− |ω11|2 =

1√
3

√
1− a2.
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Combining this with (2.7), we receive

−1

2
(1− a2) ≤ Re {ω13} ≤ 1√

3

√
1− a2

(because − 1
2 (1− a2) ≥ − 1√

3

√
1− a2 ).

By using (2.6), (2.7) and the notation t = Re {ω13} we obtain

|γ3|2 ≤ 1

9
+

4

3
a2 − 4

3
a4 − 1

3
t2 − 4

3
a2t :≡ ψ(a, t) =

1

9
+

1

3
φ(a, t),

where 0 ≤ a ≤ 1 , − 1
2 (1− a2) ≤ t ≤ 1√

3

√
1− a2 and φ(a, t) = 4a2 − 4a4 − t2 − 4a2t .

It remains to show that the maximal value of the function ψ(a, t) over the region Ω = [0, 1] × [− 1
2 (1 −

a2), 1√
3

√
1− a2] equals

(√
133
15

)2

= 133
225 , or equivalently that φ(a, t) has maximal value 36

25 on the same region.

Indeed, the system of equations

{
φ′
a(a, t) = 8a− 16a3 − 8at = 0

φ′
t(a, t) = −4a2 − 2t = 0

has unique real solution a = t = 0 with φ(0, 0) = 0 , while on the edges of the region Ω we have the following:

- for a = 0 we have that the function φ(0, t) = −t2 on the interval − 1
2 ≤ t ≤ 1√

3
attains maximal value

φ(0, 0) = 0 ;

- when a = 1 , t can take single value, t = 0 , and in that case φ(1, 0) = 0 ;

- for t = − 1
2 (1− a2) , the function φ

(
a,− 1

2 (1− a2)
)
= − 1

4 (a
2 − 1)

(
a2 − 1

25

)
is with maximal value 36

25 on

the interval 0 ≤ a ≤ 1 attained for a =
√
13
5 ;

- for t = 1√
3

√
1− a2 , the values of the function

φ

(
a,

1√
3

√
1− a2

)
=

1

3
(−12a4 + 13a2 − 1)− 4a2√

3

√
1− a2

≤ 1

3
(−12a4 + 13a2 − 1) <

36

25
.

on the interval 0 ≤ a ≤ 1 are smaller than 36
25 .

This completes the proof. 2
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