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Abstract: Let A be a unital, complex normed ∗ -algebra with the identity element e such that the set of all algebraic
elements of A is norm dense in the set of all self-adjoint elements of A and let {Dn}∞n=0 and {∆n}∞n=0 be sequences of
continuous linear mappings on A satisfying

Dn+1(p) =
∑n

k=0 Dn−k(p)Dk(p),

∆n+1(p) =
∑n

k=0 ∆n−k(p)Dk(p),

for all projections p of A and all nonnegative integers n . Moreover, suppose that D0(p) = D0(p)
2 holds for all

projections p of A . Then

∆n =
Cn

2

(
RD0(e)∆0 + L∆0(e)D0

)
for all n ∈ N , where Cn denotes the nth Catalan number and RD0(e)(a) = aD0(e) and L∆0(e)(a) = ∆0(e)a for all
a ∈ A . Using this result, we present a characterization of left τ -centralizers satisfying a certain recursive relation. In
addition, a characterization of generalized higher derivations is presented. Moreover, we show that higher derivations,
prime higher derivations, left higher derivations, and σ -derivations are zero under certain conditions.

Key words: Recursive sequence, ∗ -algebra, derivation, left τ -centralizer, higher derivation, prime higher derivation

1. Introduction and preliminaries
Today, the use of recursive sequences is seen in most applied fields, such as the number theory, combinatorial
theory, and computer sciences. In combinatorial theory, the Catalan numbers form a sequence of natural
numbers that occur in various counting problems, often involving recursively-defined objects; for more details,
see [2, 12, 13] and references therein. Thus, solving these sequences in Banach algebras and C∗ -algebras seems to
be useful and necessary. The main purpose of this paper is to solve some recursive sequences in some ∗ -algebras.

We first introduce some basic notations that play a fundamental role in what follows. Throughout the
paper, let A be a unital complex normed ∗ -algebra with the identity element e . By Asa , we denote the set
of all self-adjoint elements of A (i.e. Asa = {a ∈ A | a∗ = a}), and the set of all projections of A is denoted
by P (A) (i.e., P (A) =

{
p ∈ A | p2 = p, p∗ = p

}
). An element of A is usually called an algebraic element if it
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can be written as a finite real-linear combination of mutually orthogonal projections of A . We denote the set
of all algebraic elements of A by OA . Thus, we have PA ⊆ OA ⊆ Asa . If A is a von Neumann algebra, then
OA is norm dense in Asa , that is, OA = Asa . More generally, the same is true for AW ∗ -algebras. For more
material about C∗ -algebras and W ∗ -algebras, see, for example, [8, 11, 14] and the references therein.

Let a be an arbitrary element of an algebra A . We define the linear mappings La, Ra : A → A by
La(b) = ab and Ra(b) = ba (b ∈ A). A straightforward verification shows that RbLa = LaRb for all a, b ∈ A .
One of the main goals of this research is to show that left τ -centralizers are the solutions of certain recursive
sequences. Let A be an algebra and let τ be an endomorphism of A . A linear mapping f : A → A is
called a left (resp. right) τ -centralizer if f(ab) = f(a)τ(b) (resp. f(ab) = τ(a)f(b)) for all a, b ∈ A . A
linear mapping f : A → A is called a Jordan left (resp. right) τ -centralizer of A if f(a2) = f(a)τ(a) (resp.
f(a2) = τ(a)f(a)) for all a ∈ A . For more details about τ -centralizers and Jordan τ -centralizers, see, e.g.
[1, 3]. Let Nk = {k, k + 1, k + 2, ...} for all k ∈ {0, 1, 2, ...} . Our main result regarding τ -centralizers says that
let A be a unital, complex normed ∗ -algebra with the identity element e such that OA is norm dense in Asa

and let the sequences {Dn}∞n=0 and {∆n}∞n=0 satisfy

 Dn+1(p) =
∑n

k=0 Dn−k(p)Dk(p),

∆n+1(p) =
∑n

k=0 ∆n−k(p)Dk(p),

for all p ∈ P (A) and all n ∈ N0 . Let ∆0(p) = ∆0(p)D0(p) for all p ∈ P (A) . Suppose A is semiprime and D0

is a surjective endomorphism such that D0(Z(A)) = Z(A) , where Z(A) denotes the center of A . Then ∆n is
a left D0 -centralizer on A for all n ∈ N0 .

In this article, we also present a characterization of generalized higher derivations via generating functions.
As another purpose of this study, we present some conditions under which higher derivations, prime higher
derivations, and left higher derivations are identically zero. For instance, our result concerning higher derivations
is as follows. Let A be a unital, prime complex normed ∗ -algebra such that OA is norm dense in Asa . If
{dn}∞n=0 is a bounded higher derivation such that dn(p) ∈ Z(A) for all n ∈ N and all p ∈ P (A) , then dn = 0

for all n ∈ N . Some other related results are also discussed.

2. Results and proofs

Let OA , Asa , P (A) , and Nk be the symbols which have been introduced in the Introduction. Throughout
this section, without further mention, e stands for the identity element of any unital algebra and any unital
ring. We use Cn to denote the nth Catalan number and we know that

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!

for all n ∈ N0 .

Our first theorem, which has been motivated by [4] is as follows.

Theorem 2.1 Let A be a unital, complex normed ∗-algebra such that OA is norm dense in Asa and let
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{Dn}∞n=0 and {∆n}∞n=0 be sequences of continuous linear mappings on A satisfying Dn+1(p) =
∑n

k=0 Dn−k(p)Dk(p),

∆n+1(p) =
∑n

k=0 ∆n−k(p)Dk(p),

for all p ∈ P (A) and all n ∈ N0 . Moreover, suppose that D0(p) = D0(p)
2 for all p ∈ P (A) . Then

∆n =
Cn

2

(
RD0(e)∆0 + L∆0(e)D0

)
for all n ∈ N .

Proof By induction, we obtain that  Dn(p) = CnD0(p),

∆n(p) = Cn∆0(p)D0(p)

for all n ∈ N . Let p and q be orthogonal projections of A . Clearly, p+ q is a projection and we have

∆n(p+ q) = ∆n(p) + ∆n(q). (2.1)

On the other hand, we have

∆n(p+ q) = ∆n((p+ q)2) = Cn∆0(p+ q)D0(p+ q)

= Cn∆0(p)D0(p) + Cn

(
∆0(p)D0(q) + ∆0(q)D0(p)

)
+ Cn∆0(q)D0(q)

= ∆n(p) + Cn

(
∆0(p)D0(q) + ∆0(q)D0(p)

)
+∆n(q),

which means that

∆n(p+ q) = ∆n(p) + Cn

(
∆0(p)D0(q) + ∆0(q)D0(p)

)
+∆n(q). (2.2)

Comparing (2.1) and (2.2), we get that

∆0(p)D0(q) + ∆0(q)D0(p) = 0.

Therefore, if p1, . . . , pm are projections of A such that pipj = pjpi = 0 (i ̸= j ), then

∆0(pi)D0(pj) + ∆0(pj)D0(pi) = 0 (2.3)

for all i, j ∈ {1, . . . ,m} with i ̸= j . Assume that a is an arbitrary algebraic element of A . Therefore, a =∑m
i=1 λipi for some mutually orthogonal projections p1, . . . , pm of A . We know that ∆n(p) = Cn∆0(p)D0(p)

for all p ∈ P (A) and all n ∈ N . Therefore, we have

∆n(a
2) = ∆n

( m∑
i=1

λ2
i pi

)
=

m∑
i=1

λ2
i∆n(pi) = Cn

m∑
i=1

λ2
i∆0(pi)D0(pi). (2.4)
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On the other hand, using (2.3) and (2.4), we have

Cn∆0(a)D0(a) = Cn∆0

( m∑
i=1

λipi

)
D0

( m∑
i=1

λipi

)

= Cn

m∑
i=1

λ2
i∆0(pi)D0(pi)

+ Cn

m−1∑
j=1

m∑
i=j+1

λiλj

(
∆0(pi)D0(pj) + ∆0(pj)D0(pi)

)

= Cn

m∑
i=1

λ2
i∆0(pi)D0(pi)

= ∆n(a
2).

Hence, we see that ∆n(a
2) = Cn∆0(a)D0(a) for all a ∈ OA and all n ∈ N . Since every self-adjoint element of

A can be approximated in norm by algebraic elements and ∆n and Dn are continuous (equivalently, bounded)
linear mappings for all n ∈ N0 , we obtain that

∆n(a
2) = Cn∆0(a)D0(a) (a ∈ Asa, n ∈ N). (2.5)

Let a1 and a2 be two arbitrary self-adjoint elements of A . Replacing a by a1 + a2 in (2.5) and then using
that, we arrive at

∆n(a1a2 + a2a1) = Cn∆0(a1)D0(a2) + Cn∆0(a2)D0(a1)

for all a1, a2 ∈ Asa . Let a be an arbitrary element of A . Then there exist two self-adjoint elements a1, a2 of
A such that a = a1 + ia2 . Hence,

∆n(a
2) = ∆n

(
a21 − a22 + i(a1a2 + a2a1)

)
= Cn∆0(a1)D0(a1)− Cn∆0(a2)D0(a2)

+ iCn

(
∆0(a1)D0(a2) + ∆0(a2)D0(a1)

)
= Cn∆0(a1 + ia2)D0(a1 + ia2)

= Cn∆0(a)D0(a),

which means that

∆n(a
2) = Cn∆0(a)D0(a) (a ∈ A, n ∈ N). (2.6)

Replacing a by a+ b in (2.6) and using that, we have

∆n(ab+ ba) = Cn

(
∆0(a)D0(b) + ∆0(b)D0(a)

)
(a, b ∈ A, n ∈ N).
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Considering b = e in the previous equation, we have

∆n(a) =
Cn

2

(
∆0(a)D0(e) + ∆0(e)D0(a)

)
=

Cn

2

(
RD0(e)∆0(a) + L∆0(e)D0(a)

)
=

Cn

2

(
RD0(e)∆0 + L∆0(e)D0

)
(a),

which means that

∆n =
Cn

2

(
RD0(e)∆0 + L∆0(e)D0

)
(n ∈ N). (2.7)

Now, we show that ∆n = Cn∆1 for all n ∈ N . It follows from (2.6) that ∆1(a
2) = ∆0(a)D0(a) for all a ∈ A .

Thus, we have

∆n(a
2) = Cn∆1(a

2) (a ∈ A, n ∈ N). (2.8)

Putting a+ b instead of a in (2.8), we get that

∆n(ab+ ba) = Cn∆1(ab+ ba) (n ∈ N).

Letting b = e in the previous equation, we find that ∆n(a) = Cn∆1(a) for all a ∈ A and all n ∈ N . This
completes the proof. 2

We denote the center of an algebra A by Z(A) . Recall that Z(A) = {c ∈ A | ac = ca for all a ∈ A}.

The following is the immediate consequence of Theorem 2.1.

Corollary 2.2 Let A be a unital, complex normed ∗-algebra such that OA is norm dense in Asa and let the
sequences {Dn}∞n=0 and {∆n}∞n=0 satisfy all the conditions of the above theorem. Let ∆0(p) = ∆0(p)D0(p) for
all projections p ∈ A . Suppose A is semiprime and D0 is a surjective endomorphism such that D0(Z(A)) =

Z(A) . Then ∆n is a left D0 -centralizer on A for all n ∈ N0 .

Proof Using an argument similar to the proof of Theorem 2.1, we can show that ∆0 is a Jordan left D0 -
centralizer on A , that is, ∆0(a

2) = ∆0(a)D0(a) for all a ∈ A . By [3, Theorem 1], ∆0 is a left D0 -centralizer,
that is, ∆0(ab) = ∆0(a)D0(b) for all a, b ∈ A . Now, we define Φn = ∆n − Cn

2 RD0(e)∆0 for all n ∈ N . It

follows from (2.7) that Φn = Cn

2 L∆0(e)D0 for all n ∈ N . Then we have the following equalities:

Φn(ab) =
Cn

2
L∆0(e)D0(ab) =

Cn

2
L∆0(e)D0(a)D0(b) = Φn(a)D0(b),

which means that Φn is a left D0 -centralizer for all n ∈ N . Therefore, we have(
∆n(a)−

Cn

2
RD0(e)∆0(a)

)
D0(b) = Φn(a)D0(b) = Φn(ab)

= ∆n(ab)−
Cn

2
RD0(e)∆0(ab)

= ∆n(ab)−
Cn

2
RD0(e)∆0(a)D0(b).
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Therefore, we get that ∆n(ab) = ∆n(a)D0(b) for all a, b ∈ A and all n ∈ N0 . It means that ∆n is a left
D0 -centralizer for all n ∈ N0 . 2

Let A be an algebra. Recall that a sequence {dn} of linear mappings from A into itself is a higher
derivation if dn(ab) =

∑n
k=0 dn−k(a)dk(b) for all a, b ∈ A and for each n ∈ N0 . Moreover, a sequence {fn} of

linear mappings from A into itself is called a generalized higher derivation if there exists a higher derivation {dn}
such that fn(ab) =

∑n
k=0 fn−k(a)dk(b) for all a, b ∈ A and for each n ∈ N0 . In the next theorem, we present a

characterization of generalized higher derivations on the complex normed ∗ -algebras under certain conditions.
In the proof of the next theorem, generating functions play an essential rule. An interesting connection between
higher derivations and generating functions was given by Miller [9].

Theorem 2.3 Let A be a semiprime Banach ∗-algebra such that OA is norm dense in Asa and let {dn}∞n=0

and {fn}∞n=0 be two uniformly bounded sequences of linear mappings with d0 = f0 = I , where I is the identity
mapping on A . If  fn(p) =

∑n
k=0 fn−k(p)dk(p),

dn(p) =
∑n

k=0 dn−k(p)dk(p),

for all p ∈ P (A) and all n ∈ N0 , then {fn} is a generalized higher derivation associated with the higher
derivation {dn} on A .

Proof Since {fn}∞n=0 and {dn}∞n=0 are uniformly bounded sequences of linear mappings, there exist two
positive real numbers M1 and M2 such that ∥fn∥ ≤ M1 and ∥dn∥ ≤ M2 for all n ∈ N0 . For any t ∈ (−1, 1)

and any a ∈ A , we have∥∥∥ ∞∑
n=0

fn(a)t
n
∥∥∥ ≤

∞∑
n=0

∥fn∥∥a∥|t|n ≤ M1∥a∥
∞∑

n=0

|t|n =
M1∥a∥
1− |t|

< ∞.

Similarly, we have
∥∥∥∑∞

n=0 dn(a)t
n
∥∥∥ < ∞ for all a ∈ A and for each t ∈ (−1, 1) . Thus, we can define

the functions α, β : (−1, 1) → B(A) (the set of all bounded linear mappings from A into itself) by αt =

α(t) =
∑∞

n=0 fnt
n and βt = β(t) =

∑∞
n=0 dnt

n , respectively. Note that αt(a) =
∑∞

n=0 fn(a)t
n and βt(a) =∑∞

n=0 dn(a)t
n for all a ∈ A . We continue the proof similar to the proof of Theorem 2.1. Let p be an arbitrary

projection of A . Then

αt(p)βt(p) =

( ∞∑
n=0

fn(p)t
n

)( ∞∑
n=0

dn(p)t
n

)
=

∞∑
n=0

(
n∑

k=0

fn−k(p)dk(p)

)
tn

=

∞∑
n=0

fn(p)t
n = αt(p),

which means that
αt(p) = αt(p)βt(p) (2.9)

for all p ∈ P (A) and for each t ∈ (−1, 1) . Let p and q be orthogonal projections of A ; then p + q is a
projection and we have

αt(p+ q) = αt(p) + αt(q). (2.10)
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On the other hand, we have

αt(p+ q) = αt((p+ q)2) = αt(p+ q)βt(p+ q)

= αt(p)βt(p) + αt(p)βt(q) + αt(q)βt(p) + αt(q)βt(q)

= αt(p) + αt(p)βt(q) + αt(q)βt(p) + αt(q),

which means that
αt(p+ q) = αt(p) + αt(p)βt(q) + αt(q)βt(p) + αt(q) (2.11)

for each t ∈ (−1, 1) . Comparing (2.10) and (2.11), we obtain that

αt(p)βt(q) + αt(q)βt(p) = 0.

Let a be an arbitrary algebraic element of A . Therefore, a =
∑m

i=1 λipi for some mutually orthogonal
projections p1, . . . , pm of A . Therefore, we have

αt(pi)βt(pj) + αt(pj)βt(pi) = 0, (2.12)

for all i, j ∈ {1, 2, . . . ,m} with i ̸= j and for each t ∈ (−1, 1) . Note that a2 =
∑m

i=1 λ
2
i pi . Thus, we have

αt(a
2) = αt

( m∑
i=1

λ2
i pi

)
=

m∑
i=1

λ2
iαt(pi) =

m∑
i=1

λ2
iαt(pi)βt(pi). (2.13)

On the other hand, using Equations (2.12) and (2.13), we have

αt(a)βt(a) = αt

( m∑
i=1

λipi

)
βt

( m∑
i=1

λipi

)

=

m∑
i=1

λ2
iαt(pi)βt(pi) +

m−1∑
j=1

m∑
i=j+1

λiλj

(
αt(pi)βt(pj) + αt(pj)βt(pi)

)

=

m∑
i=1

λ2
iαt(pi)βt(pi)

= αt(a
2).

Hence, we see that αt(a
2) = αt(a)βt(a) for all a ∈ OA . Since every self-adjoint element of A can be

approximated in norm by algebraic elements and αt and βt are continuous linear mappings for any t ∈ (−1, 1) ,
we obtain that αt(a

2) = αt(a)βt(a) for all a ∈ Asa . Replacing a by a1 + a2 in the previous equation, we get
that αt(a1a2 + a2a1) = αt(a1)βt(a2) + αt(a2)βt(a1) for all a1, a2 ∈ Asa . Let a be an arbitrary element of A .
Then there exist two self-adjoint elements a1 and a2 of A such that a = a1 + ia2 . Hence,

αt(a
2) = αt

(
a21 − a22 + i(a1a2 + a2a1)

)
= αt(a1)βt(a1)− αt(a2)βt(a2) + i

(
αt(a1)βt(a2) + αt(a2)βt(a1)

)
= αt(a1 + ia2)βt(a1 + ia2)

= αt(a)βt(a),
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which means that αt(a
2) = αt(a)βt(a) for all a ∈ A and for each t ∈ (−1, 1) . Thus, we have

∞∑
n=0

fn(a
2)tn = αt(a

2) = αt(a)βt(a) =

( ∞∑
n=0

fn(a)t
n

)( ∞∑
n=0

dn(a)t
n

)

=

∞∑
n=0

n∑
k=0

fn−k(a)dk(a)t
n.

We simply conclude that

fn(a
2) =

n∑
k=0

fn−k(a)dk(a) (2.14)

for all a ∈ A . Reasoning like above, we can show that βt(a
2) = βt(a)

2 for all a ∈ A and for each t ∈ (−1, 1) .
Hence, we can obtain that

dn(a
2) =

n∑
k=0

dn−k(a)dk(a) (2.15)

for all a ∈ A . It follows from (2.14) and (2.15) that {fn} is a generalized Jordan higher derivation associated
with the Jordan higher derivation {dn} . Theorems 2.15 and 2.16 of [15] together show that {fn} is a generalized
higher derivation associated with the higher derivation {dn} . Thereby, we get the required result. 2

In the following, we are going to prove that every higher derivation, prime higher derivation, and left
higher derivation of continuous linear mappings on a unital, prime complex normed ∗ -algebra is identically zero
under mid conditions.

Given an integer n ≥ 2 , a ring R is said to be n -torsion free, if for x ∈ R , nx = 0 implies x = 0 . Re-
call that a ring R is prime if for a, b ∈ R , aRb = {0} implies a = 0 or b = 0 . To show that every higher
derivation is zero under certain conditions, we first establish the auxiliary result below.

Lemma 2.4 Let R be a unital 2-torsion free prime ring containing the element e
2 and let {an}∞n=0 be a

sequence of R satisfying an =
∑n

k=0 an−kak for all n ∈ N . If an ∈ Z(R) (n ∈ N) , then an = 0 for all n ∈ N .

Proof Since an ∈ Z(R) for all n ∈ N , we have a1 = a1a0 + a0a1 = 2a1a0 . Thus, we have

0 = a1 − 2a1a0

= 2a1
e
2
− 2a1a0

= 2a1

(e
2
− a0

)
,

which means that

2a1

(e
2
− a0

)
= 0. (2.16)

Multiplying (2.16) from the left by an arbitrary element a ∈ R , we have 2a1a
(e
2 − a0

)
= 0 and since R is a

2-torsion free prime ring, we obtain that a0 = e
2 or a1 = 0 . We investigate the following three cases:
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(1) a0 ̸= e
2 and a1 = 0 ;

(2) a0 = e
2 and a1 ̸= 0 ;

(3) a0 = e
2 and a1 = 0 .

Case 1. Suppose that a0 ̸= e
2 and a1 = 0 . Therefore, we have a2 = a2a0 + a21 + a0a2 = 2a2a0 . Reasoning like

above, we see that
0 = a2 − 2a2a0

= 2a2
e
2
− 2a2a0

= 2a2

(e
2
− a0

)
,

which means that

2a2

(e
2
− a0

)
= 0. (2.17)

Multiplying (2.17) from the left by an arbitrary element a ∈ R , we have 2a2a
(e
2 − a0

)
= 0 and since R is a

prime ring, we obtain that a0 = e
2 , which is a contradiction. Therefore, a2 = 0 . Continuing this procedure, we

get that an = 0 for all n ∈ N .

Case 2. Suppose that a0 = e
2 and a1 ̸= 0 . We have

a2 = a2a0 + a21 + a0a2

= a2 + a21,

which means that a21 = 0 . Since an ∈ Z(R) for all n ∈ N and R is prime, we have a1 = 0 , which is a
contradiction.

Case 3. Suppose that a0 = e
2 and that a1 = 0 . We have

a4 = a4a0 + a1a3 + a22 + a3a1 + a4a0

= a4
e
2
+ 0 + a22 + 0 + a4

e
2

= a4 + a22,

which means that a22 = 0 . Since an ∈ Z(R) for all n ∈ N and R is prime, a2 = 0 . We show that an = 0 for
all n ≥ 2 . Suppose that a1, . . . , an−1 = 0 for all n ∈ N2 . Therefore, we have

a2n = a2na0 + a2n−1a1 + · · ·+ an+1an−1 + a2n + an−1an+1 + · · ·+ a1a2n−1 + a0a2n

= a2n
e
2
+ a2n +

e
2
a2n

= a2n + a2n,

which means that a2n = 0 . Since an ∈ Z(R) for all n ∈ N and R is prime, an = 0 . This proves the lemma
completely. 2

Now we are ready to prove the following theorem.
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Theorem 2.5 Let A be a unital, prime complex normed ∗-algebra such that OA is norm dense in Asa and let
{dn}∞n=0 be a sequence of continuous linear mappings satisfying dn(p) =

∑n
k=0 dn−k(p)dk(p) for all p ∈ P (A)

and all n ∈ N . If dn(p) ∈ Z(A) for all p ∈ P (A) and all n ∈ N , then dn = 0 for all n ∈ N .

Proof Putting an = dn(p) , where p is an arbitrary projection of A , we get that an =
∑n

k=0 an−kak for
all n ∈ N . Now, all the conditions of Lemma 2.4 are fulfilled, and we achieve that 0 = an = dn(p) for all
p ∈ P (A) and all n ∈ N . Let a be an arbitrary algebraic element of A . Then, a =

∑m
i=1 λipi for some

mutually orthogonal projections p1, p2, . . . , pm of A . Hence, we have

dn(a) = dn(

m∑
i=1

λipi) =

m∑
i=1

λidn(pi) = 0.

Since every self-adjoint element in A can be approximated in norm by algebraic elements and every dn is a
continuous linear mapping, we have dn(a) = 0 for all a ∈ Asa . Let a be an arbitrary element of A . Then
there exist two self-adjoint elements a1 and a2 of A such that a = a1 + ia2 . Hence, dn(a) = dn(a1 + ia2) =

dn(a1) + idn(a2) = 0 for all a ∈ A , which means that dn = 0 for all n ∈ N , as desired. 2

The following corollary provides the conditions under which a σ -derivation is zero.

Corollary 2.6 Let A be a unital, prime complex normed ∗-algebra such that OA is norm dense in Asa and
let d : A → A be a continuous σ -derivation such that dσ = σd = d and σ2 = σ . If d(p) ∈ Z(A) for all
p ∈ P (A) , then d is identically zero.

Proof One can easily prove that for each n ∈ N ,

dn(ab) =

n∑
k=0

(n
k

)
dn−k(a)dk(b)

for all a, b ∈ A , where d0 = σ . If Dn = dn

n! , then Dn(ab) =
∑n

k=0 Dn−k(a)Dk(b) for all a, b ∈ A . Therefore,
Dn(p) =

∑n
k=0 Dn−k(p)Dk(p) for all p ∈ P (A) and all n ∈ N . Since d is continuous and d(p) ∈ Z(A) for all

p ∈ P (A) and also since Z(A) is a closed subalgebra of A , d(A) ⊆ Z(A) . Now, it follows from Theorem 2.5
that Dn is identically zero for all n ∈ N and consequently d = 0 . 2

For more details on σ -derivations, we refer the reader to [6] and the references therein. In the following
theorem, it is supposed that d0 = I , where I is the identity mapping on A .

Theorem 2.7 Let A be a complex normed ∗-algebra such that OA is norm dense in Asa .

(i) If {dn}∞n=0 is a bounded left higher derivation (i.e. dn is a bounded linear mapping for any n ∈ N0 ),
then dn = 0 for all n ∈ N .

(ii) If {dn}∞n=0 is a bounded higher derivation such that dn(p) ∈ Z(A) for all p ∈ P (A) and all n ∈ N ,
then dn = 0 for all n ∈ N .

Proof (i) If {dn}∞n=0 is a higher left derivation, then it follows from [7] that

dn(p) =
∑

i+j=n, i≤j

[
di(p)dj(p) + cijdi(p)dj(p)

]
,
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where

cij =

{
0
1

if i = j,
if i ̸= j.

for all p ∈ P (A) . We have d1(p) = 2pd1(p) . It follows from [5, Theorem 2.11] that d1 is identically zero.
Moreover, we see that d2(p) = pd2(p) + d1(p)d1(p) + pd2(p) = 2pd2(p) , and reusing [5, Theorem 2.11] implies
that d2 = 0 . Continuing this procedure, we get that dn = 0 for all n ∈ N .
(ii) The proof is straightforward. 2

We now intend to prove another fundamental result of this paper. The following auxiliary result is needed
to prove that theorem. In what follows, P stands for the set of all prime numbers.

Lemma 2.8 Let R be a unital 2-torsion free prime ring containing the element e
2 and let {an}∞n=0 be a

sequence of R satisfying an =
∑

k|n an
k
ak for all n ∈ N2 . If an ∈ Z(R) for all n ∈ N2 , then

(i) apn = 0 for all n ∈ N and all p ∈ P .
(ii) ap1p2

= 0 and ap2
1p2

= 0 for all prime numbers p1, p2 ∈ P .
(iii) ap1p2p3

= 0 for all prime numbers p1, p2, p3 ∈ P .
(iv) ap1...pn = 0 for all n ∈ N and all prime numbers p1, . . . , pn ∈ P .
(v) an = 0 for all n ∈ N2 .

Proof (i) Let p be an arbitrary prime number. By putting An = apn and getting idea from [10, Lemma 2.2],
we have

An = apn =
∑
k|pn

a pn

k
ak =

n∑
i=0

a pn

pi
api =

n∑
i=0

apn−iapi =

n∑
i=0

An−iAi

for all n ∈ N . It follows from Lemma 2.4 that An = 0 . Consequently, apn = 0 for all n ∈ N and all p ∈ P .

(ii) Let p1 and p2 be two arbitrary prime numbers. Applying part (i) of the current theorem, we have

ap1p2 =
∑

k|p1p2

a p1p2
k

ak

= ap1p2
a1 + ap2

ap1
+ ap1

ap2
+ a1ap1p2

= 2ap1p2
a1,

which means that

ap1p2(e − 2a1) = 0. (2.18)

Multiplying (2.18) from the left by an arbitrary element a ∈ R , we have 2ap1p2a
(e
2 − a1

)
= 0 , and since R is

a 2-torsion free prime ring, we obtain that a1 = e
2 or ap1p2

= 0 . If ap1p2
= 0 , then there is nothing to prove.
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Now, suppose that a1 = e
2 . We have

a(p1p2)2 = a(p1p2)2a1 + ap1p2
2
ap1 + ap1ap1p2

2
+ ap2

1p2
ap2 + ap2ap2

1p2
+ ap1p2ap1p2

+ ap2
1
ap2

2
+ ap2

2
ap2

1
+ a1a(p1p2)2

= a(p1p2)2
e
2
+ (ap1p2

)2 +
e
2
a(p1p2)2

= a(p1p2)2 + (ap1p2
)2,

which implies that (ap1p2
)2 = 0 . From this equation and using the assumption that R is a prime ring, we

obtain that ap1p2
= 0 . Now, we show that ap2

1p2
= 0 . We have

ap2
1p2

=
∑

k|p2
1p2

a p21p2
k

ak

= ap2
1p2

a1 + ap2ap2
1
+ ap2

1
ap2 + ap1p2ap1 + ap1ap1p2 + a1ap2

1p2

= 2ap2
1p2

a1,

which means that

ap2
1p2

(e − 2a1) = 0. (2.19)

Multiplying (2.19) from the left by an arbitrary element a ∈ R , we infer that ap2
1p2

= 0 or a1 = e
2 . If ap2

1p2
= 0 ,

then there is nothing to prove. Now, suppose that a1 = e
2 . Thus, we have

a(p2
1p2)2 = ap4

1p
2
2
= ap4

1p
2
2
a1 + a1ap4

1p
2
2
+ ap4

1
ap2

2
+ ap2

2
ap4

1
+ ap4

1p2
ap2

+ ap2
ap4

1p2
+ ap3

1
ap1p2

2
+ ap1p2

2
ap3

1

+ ap2
1
ap2

1p
2
2
+ ap2

1p
2
2
ap2

1
+ ap1

ap3
1p

2
2
+ ap3

1p
2
2
ap1

+ ap3
1p2

ap1p2
+ ap1p2

ap3
1p2

+ ap2
1p2

ap2
1p2

= ap4
1p

2
2

e
2
+

e
2
ap4

1p
2
2
+ (ap2

1p2
)2

= ap4
1p

2
2
+ (ap2

1p2
)2,

which implies that (ap2
1p2

)2 = 0 . This equation along with the assumption that R is a prime ring implies that
ap2

1p2
= 0 .

(iii) Let p1, p2 , and p3 be arbitrary prime numbers. Then

ap1p2p3
=

∑
k|p1p2p3

a p1p2p3
k

ak

= ap1p2p3
a1 + a1ap1p2p3

+ ap1p2
ap3

+ ap3
ap1p2

+ ap2p3
ap1

+ ap1
ap2p3

+ ap1p3
ap2

+ ap2
ap1p3

= 2ap1p2p3
a1,

which means that

ap1p2p3(e − 2a1) = 0. (2.20)

Multiplying (2.20) from the left by an arbitrary element a ∈ R , we get that ap1p2p3
= 0 or a1 = e

2 . If
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ap1p2p3 = 0 , then there is nothing to prove. Now, suppose that a1 = e
2 . Therefore, we have

a(p1p2p3)2 = ap2
1p

2
2p

2
3
= ap2

1p
2
2p

2
3
a1 + a1ap2

1p
2
2p

2
3
+ ap1p2

2p
2
3
ap1 + ap1ap1p2

2p
2
3

+ ap2
1p2p2

3
ap2 + ap2ap2

1p2p2
3
+ ap2

1p
2
2p3

ap3 + ap3ap2
1p

2
2p3

+ ap2
1p

2
2
ap2

3
+ ap2

3
ap2

1p
2
2
+ ap2

1p
2
3
ap2

2
+ ap2

2
ap2

1p
2
3

+ ap2
2p

2
3
ap2

1
+ ap2

1
ap2

2p
2
3
+ ap1p2ap1p2p2

3
+ ap1p2p2

3
ap1p2

+ ap1p3ap1p2
2p3

+ ap1p2
2p3

ap1p3 + ap2p3ap2
1p2p3

+ ap2
1p2p3

ap2p3

+ ap2
1p2

ap2p2
3
+ ap2p2

3
ap2

1p2
+ ap2

1p3
ap2

2p3
+ ap3p2

2
ap2

1p3
+ (ap1p2p3

)2

= ap2
1p

2
2p

2
3

e
2
+

e
2
ap2

1p
2
2p

2
3
+ (ap1p2p3

)2

= ap2
1p

2
2p

2
3
+ (ap1p2p3

)2,

which implies that (ap1p2p3
)2 = 0 . This equation along with the assumption that R is a prime ring implies

that ap1p2p3
= 0 .

(iv) Let p1, . . . , pn be arbitrary prime numbers. We know that api
= 0 and apipj

= 0 for all i, j ∈
{1, . . . , n} . Suppose that api1

...pin−1
= 0 for any i1, . . . , in−1 ∈ {1, . . . , n} . Thus, we have

ap1...pn
= ap1...pn

a1 + a1ap1...pn
+
∑

api1
...pik

apik+1
...pin

= ap1...pn
a1 + a1ap1...pn

+ 0

= 2ap1...pn
a1,

such that pi1 . . . pik .pik+1
. . . pin = p1 . . . pn and further, pi1 . . . pik , pik+1

. . . pin ̸= p1 . . . pn . Hence,

ap1...pn(e − 2a1) = 0. (2.21)

Multiplying (2.21) from the left by an arbitrary element a ∈ R , we get that ap1...pn
= 0 or a1 = e

2 . If
ap1...pn = 0 , then there is nothing to prove. Now, suppose that a1 = e

2 . Therefore, we have

a(p1...pn)2 = a(p1...pn)2a1 + a1a(p1...pn)2 + (ap1...pn
)2 +

∑
api1 ...pik

apj1 ...pjr

= a(p1...pn)2
e
2
+

e
2
a(p1...pn)2 + (ap1...pn

)2

= a(p1...pn)2 + (ap1...pn
)2,

such that 

pi1 . . . pik .pj1 . . . pjr = (p1 . . . pn)
2,

pi1 . . . pik ̸= p1 . . . pn,

pj1 . . . pjr ̸= p1 . . . pn,

i1, . . . , ik, j1, . . . , jr ∈ {1, . . . , 2n}.
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Therefore, (ap1...pn)
2 = 0 . This equation along with the assumption that R is a prime ring implies that

ap1...pn = 0 .

(v) Let n be an arbitrary element of N2 . We know that there exist prime numbers p1, . . . , pm such that
n = pα1

1 . . . pαm
m in which α1, . . . , αm are positive integers. Therefore, we have

an = apα1
1 ...pαm

m
=

∑
k|pα1

1 ...pαm
m

a p
α1
1 ...p

αm
m

k

ak.

Using the facts (i), (ii), (iii), and (iv), one can easily conclude that an = 0 for all n ∈ N2 . 2

Theorem 2.9 Let A be a unital, prime complex normed ∗-algebra such that OA is norm dense in Asa and
let {dn} be a sequence of continuous linear mappings satisfying dn(p) =

∑
k|n dn

k
(p)dk(p) for all p ∈ P (A) and

all n ∈ N2 . If dn(p) ∈ Z(A) for all p ∈ P (A) and all n ∈ N2 , then dn = 0 for all n ∈ N2 .

Proof Let p be an arbitrary projection of A . Putting an = dn(p) , we see that an =
∑

k|n an
k
ak for all

n ∈ N2 . Now, all the conditions of Lemma 2.8 (v) are fulfilled and we achieve that 0 = an = dn(p) for all
p ∈ P (A) and all n ∈ N2 . Using similar arguments as used in Theorem 2.5, we can prove that dn = 0 for all
n ∈ N2 . 2

In the following, we plan to show that every prime higher derivation is identically zero under certain conditions.
The concept of a prime higher derivation was defined by Mirzavaziri [10], which we state here.

Definition 2.10 Let A be an algebra. We say that a sequence {dn} of linear mappings from A into A is a
prime higher derivation if dn(ab) =

∑
k|n dn

k
(a)dk(b) for all a, b ∈ A and for each n ∈ N .

Theorem 2.11 Let A be a complex normed ∗-algebra such that OA is norm dense in Asa and let {dn} be
a sequence of continuous linear mappings with d1 = I and dn(q) =

∑
k|n dn

k
(q)dk(q) for all q ∈ P (A) and all

n ∈ N2 . If dn(q) ∈ Z(A) for all q ∈ P (A) and all n ∈ N2 , then dn = 0 for all n ∈ N2 .

Proof Let p ∈ P and let q be an arbitrary projection of A . Note that dp(q) = qdp(q) + dp(q)q = 2qdp(q) .
Then, dp(q) = 0 and hence it follows from [5, Theorem 2.11] that dp is identically zero. A simple argument
shows that dp2 and dp3 are zero for all p ∈ P . Let p be an arbitrary prime number. Suppose that dpk(q) = 0

for any k ∈ {1, . . . , n− 1} and any projection q ∈ A . Our goal is to prove that dpn(q) = 0 . We have

dpn(q) =
∑
k|pn

d pn

k
(q)dk(q) =

n∑
i=0

dpn−i(q)dpi(q)

= dpn(q)q + qdpn(q) +

n−1∑
i=1

dpn−i(q)dpi(q)

= 2qdpn(q),

which means that

dpn(q) = 2qdpn(q).
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Reusing [5, Theorem 2.11], we obtain that dpn = 0 for all p ∈ P and all n ∈ N . Now, suppose that p1 and p2

are arbitrary prime numbers. For any q ∈ P (A) , we have

dp1p2
(q) = dp1p2

(q)q + qdp1p2
(q) + dp1

(q)dp2
(q) + dp2

(q)dp1
(q)

= 2qdp1p2
(q).

Thus, dp1p2
= 0 by [5, Theorem 2.11]. Similarly, we can prove that dp1p2p3

= 0 for all p1, p2, p3 ∈ P .
We show that dp1...pn

= 0 for all p1, . . . , pn ∈ P . To see this, suppose that dpi1 ...pin−1
(q) = 0 for any

i1, . . . , in−1 ∈ {1, . . . , n} and any q ∈ P (A) . Thus, we have

dp1...pn
(q) =

∑
k|p1...pn

d p1...pn
k

(q)dk(q)

= dp1...pn
(q)q + qdp1...pn

(q) +
∑

dpi1 ...pik
(q)dpik+1

...pin
(q)

= dp1...pn
(q)q + qdp1...pn

(q) + 0

= 2qdp1...pn
(q)

such that 
pi1 . . . pik .pik+1

. . . pin = p1 . . . pn,

pi1 . . . pik ̸= p1 . . . pn,

pik+1
. . . pin ̸= p1 . . . pn.

Hence, we have dp1...pn(q) = 2qdp1...pn(q) , and consequently, dp1...pn = 0 . Let n be an arbitrary element
of N2 . We know that there exist prime numbers p1, . . . , pm such that n = pα1

1 . . . pαm
m in which α1, . . . , αm are

positive integers. For any q ∈ P (A) , we have

dn(q) = dpα1
1 ...pαm

m
(q) =

∑
k|pα1

1 ...pαm
m

d p
α1
1 ...p

αm
m

k

(q)dk(q).

Using the fact that dpn(q) = 0 = dp1...pn(q) , one can easily conclude that dn(q) = 0 for all n ∈ N2 . Using
similar arguments as used in Theorem 2.5, we get that dn = 0 for all n ∈ N2 . 2

An immediate consequence of Theorem 2.11 is the following.

Corollary 2.12 Let A be a complex normed ∗-algebra such that OA is norm dense in Asa and let {dn} be a
prime higher derivation of continuous linear mappings with d1 = I . If dn(q) ∈ Z(A) for all q ∈ P (A) and all
n ∈ N2 , then dn = 0 for all n ∈ N2 .

Next, we intend to present the conditions under which the linear mappings satisfying a given recursive
relation are zero. First we prove the following useful lemma.

Lemma 2.13 Let A be a unital C∗ -algebra and let {an}∞n=0 be a uniformly bounded sequence of A satisfying
an =

∑n
k=0 an−kak for all n ∈ N . If the element

∑∞
n=0 ant

n − e
2 is either a positive or negative element of A

for all t ∈ (−1, 1) , then an = 0 for all n ∈ N .
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Proof Since {an} is a uniformly bounded sequence, there exists a positive number M such that ∥an∥ ≤ M

for all n ∈ N0 . For any t ∈ (−1, 1) , we have∥∥∥ ∞∑
n=0

ant
n
∥∥∥ ≤

∞∑
n=0

∥antn∥

=

∞∑
n=0

∥an∥|tn|

≤
∞∑

n=0

M |tn|

=
M

1− |t|
< ∞.

We first define a function f : (−1, 1) → A by f(t) =
∑∞

n=0 ant
n . According to the above discussion, f is

a well-defined function on (−1, 1) . Moreover, the mth derivative of f exists and is given by the formula
f (m)(t) :=

∑∞
n=m

n!
(n−m)!ant

n−m . Therefore, we have

f(t)2 =
( ∞∑

n=0

ant
n
)( ∞∑

n=0

ant
n
)
=

∞∑
n=0

( n∑
k=0

an−kak

)
tn

= a20 +

∞∑
n=1

n∑
k=0

an−kakt
n

= a20 +

∞∑
n=1

ant
n

= a20 +

∞∑
n=0

ant
n − a0

= f(t) + a20 − a0,

which means that
f(t)2 − f(t) = a20 − a0.

Using the previous equation, one can easily observe that(
f(t)− e

2

)2
=

e
4
+ a20 − a0. (2.22)

According to our assumptions, the element
∑∞

n=0 ant
n − e

2 is either a positive or negative element of A for all
t ∈ (−1, 1) . It follows from (2.22) that

f(t) =
e
2
±
(e
4
+ a20 − a0

) 1
2

(−1 < t < 1).

Thus, a1 + 2a2t + 3a3t
2 + · · · = df(t)

dt = 0 . Putting t = 0 in the previous equation, we get that a1 = 0 . We

also see that 2a2 + 3a3t + · · · = d2f(t)
dt2 = 0 . Putting t = 0 in the previous equation, we deduce that a2 = 0 .

Continuing this procedure, we obtain that an = 0 for all n ∈ N . The proof is now completed. 2

We conclude our paper with the following theorem.
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Theorem 2.14 Let A be a unital C∗ -algebra and let {dn}∞n=0 be a sequence of continuous linear mappings
satisfying dn(p) =

∑n
k=0 dn−k(p)dk(p) for all p ∈ P (A) and all n ∈ N . Suppose that

∑∞
n=0 dn(p)t

n − e
2 is

either a positive or negative element of A for all p ∈ P (A) and all t ∈ (−1, 1) . Then, dn = 0 for all n ∈ N .

Proof Applying Lemma 2.13 and using similar arguments as used in Theorem 2.5, we get the required result.
The details are left to the reader. 2
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