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Abstract: Basicity of the system of eigenfunctions of some discontinuous spectral problem for a second order differential
equation with spectral parameter in boundary condition for grand-Lebesgue space Lp)(−1; 1) is studied in this work.
Since the space is nonseparable, a subspace suitable for the spectral problem is defined. The subspace Gp)(−1; 1) of
Lp)(−1; 1) generated by shift operator is considered. Basicity of the system of eigenfunctions for the space Gp)(−1; 1)⊕C ,
1 < p < +∞ , is proved. It is shown that the system of eigenfunctions of considered problem forms a basis for Gp)(−1; 1) ,
1 < p < +∞ , after removal of any of its even-numbered functions.
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1. Introduction
It is known from [34] that the solution of the problem of vibrating string fixed at one or both ends with a mass
in the middle is reduced to the solution of discontinuous spectral problem of the form

y
′′
(x) + λy(x) = 0, x ∈ (−1; 0)

⋃
(0; 1), (1.1)

y(−1) = y(1) = 0,
y(−0) = y(+0),

y
′
(−0)− y

′
(+0) = λmy(0),m ̸= 0.

 (1.2)

The problem (1.1)–(1.2) has the following series of eigenvalues [17]:

λ1,n = (πn)2, n = 1, 2, ...,

λ2,n = ρ22,n, n = 0, 1, 2, ...,

where ρ2,n has asymptotics ρ2,n = πn+ 2
πmn +O( 1

n2 ) , and the corresponding eigenfunctions have the form of

u2n−1(x) = sinπnx, n = 1, 2, ...,
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u2n(x) =

{
sin ρ2,n(1 + x), x ∈ [−1; 0]
sin ρ2,n(1− x), x ∈ [0; 1]

, n = 0, 1, 2, ....

It is also proved in [17] that the system of vectors

û2n−1(x) = (u2n−1(x); 0), n = 1, 2, ...,

û2n(x) = (u2n(x);m sin ρ2,n), n = 0, 1, 2, ...,

forms a basis for the space Lp(−1; 1) ⊕ C , 1 < p < +∞ , and for p = 2 this basis becomes a Riesz basis.
Besides, a biorthogonal system is constructed in [17] for the system {un}∞n=0 . Further developments with
different methods have been proposed in [6, 16, 18, 19, 25, 32, 33] by different methods. In particular, in
[16] the spectral problem (1.1)–(1.2) was considered in weighted Lebesgue spaces. Method of the theory of
basis perturbations is usually used to solve such problems. Basicity problems of some perturbed trigonometric
systems in Morrey-type spaces have been considered in [2–5, 7, 9–12, 27, 28].

Recently, there has been an increase in interest in various nonstandard spaces in the context of applica-
tions to different areas of mathematics. Among those spaces, we can mention Lebesgue spaces with variable
summability index, Morrey spaces, grand-Lebesgue spaces, etc. Many classical facts of harmonic analysis such
as boundedness problems of singular operator with a Cauchy kernel, maximal function, Hilbert transform have
been extended to these spaces (for more details see, e.g., [1, 8, 14, 15, 20, 26, 29–31, 35–39], etc.). These
results stimulate consideration of the problems of theory of differential equations, theory of partial differential
equations, etc. in these spaces. To do so, of course you need to study the basis properties of eigenfunctions
of corresponding differential operators in the considered spaces. In case of nonseparable spaces, you need to
consider separable subspaces suited for your differential equation.

This work deals with the basis properties of the system of eigenfunctions of the problem (1.1)–(1.2) in
the spaces Lp)(−1; 1) . Due to the nonseparability of the space Lp)(−1; 1) , a suitable subspace is considered
for the spectral problem. In Lp)(−1; 1) , Gp)(−1; 1) subspace where the set of continuous functions are dense is
defined. Using the method of [17], the basicity of the system of vectors {ûn}∞n=0 for the space Gp)(−1; 1)⊕C ,
1 < p < +∞ , is established. Also, it is proved that the system {un}∞n=0 becomes a basis for Gp)(−1; 1) if any
of its even-numbered functions is excluded.

2. Useful preliminaries and auxiliary results

We will use the following notations. N is the set of positive integers, Z+ = {0}
⋃
N denotes a set of nonnegative

integers, C is a set of complex numbers, δnk is a Kronecker symbol, M is a closure of the set M in a
corresponding space, and L(M) denotes a linear span of M .

Let X and Y be Banach spaces with the norms ∥·∥X and ∥·∥Y , respectively. The value of the functional
f : X → C at the point x ∈ X will be denoted by < x, f > . By D(A) and Z(A) we denote the domain and
the kernel, respectively, of the linear operator A : X → Y . The operator A : X → Y is said to be densely
defined if D(A) = X . By X⊕Y we denote a direct sum of the spaces X and Y . The space X⊕Y is a Banach
space equipped with the norm

∥(x, y)∥X⊕Y = ∥x∥X + ∥y∥Y , (x, y) ∈ X ⊕ Y.
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The linear operator A : X → Y is called closed if its graph G(A) = {(x,Ax), x ∈ D(A)} is a closed set in
X ⊕ Y . The closedness of the linear operator A : X → Y is equivalent to saying that, for any xn ∈ D(A) , xn

tending to x and Axn tending to y imply x ∈ D(A) and Ax = y . Also, the closedness of the linear operator
A : X → Y is equivalent to the density of D(A) with respect to the graph norm

∥x∥A = ∥x∥X + ∥Ax∥Y , x ∈ D(A).

Let the linear operator B : X → Y be an extension of the linear operator A : X → Y . If
dimD(B)/D(A) = m , then the operator B is called an m -multiple extension of the operator A and denoted
as A ⊂ mB , where D(B)/D(A) is a factor-space of the space D(B) with respect to the subspace D(A) . The
linear functional f : D(A) → C , continuous with respect to the graph norm of the linear operator A : X → Y ,
is called an A -boundary form. The space of A -boundary forms is denoted by D(A)′ .

We will need the following result.

Theorem 2.1 [23] Let X and Y be Banach spaces, and the linear operator A : X → Y be closed. Let U ′

be a subspace of the space D(A)′ of dimension m < +∞ , not containing nonzero functionals continuous with
respect to the norm ∥·∥X . Let

D = {x ∈ D(A) : ∀f ∈ U ′, f(x) = 0} .

Then the restriction A|D of the operator A to D is a closed densely defined operator and A|D ⊂ mA .

More details on these facts can be found in the monograph [23].
Let us recall some concepts and facts from the theory of grand-Lebesgue spaces. Denote by Lp)(−π;π) ,

1 < p < +∞ , a grand-Lebesgue space of measurable functions f on [−π;π] satisfying the condition

∥f∥p) = sup
0<ε<p−1

(
ε

2π

∫ π

−π

|f(t)|p−ε
dt

) 1
p−ε

< +∞.

The space Lp)(−π;π) is a complete normed space with the norm ∥f∥p) (see [13]). The space Lp)(−π;π) is
nonseparable. In fact, consider a family of functions

fα(t) =

{
0, 0 ≤ t ≤ α,

(t− α)−
1
p , α < t ≤ 1,

.

α ∈ [0; 1) . We have {fα} ⊂ Lp)(0; 1) . In fact,

∥fα∥p) = sup
0<ε<p−1

(
ε

∫ 1

α

(t− α)−1+ ε
p dt

) 1
p−ε

=

= sup
0<ε<p−1

(
p(t− α)

ε
p |1α
) 1

p−ε

= sup
0<ε<p−1

(
p(1− α)

ε
p

) 1
p−ε

< +∞.

For any different α, β ∈ [0; 1) with α < β we have

∥fα − fβ∥p) ≥ sup
0<ε<p−1

(
ε

∫ β

α

(t− α)−1+ ε
p dt

) 1
p−ε

= sup
0<ε<p−1

(
p(t− α)

ε
p |βα
) 1

p−ε

=
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= sup
0<ε<p−1

(
p(β − α)

ε
p

) 1
p−ε ≥ lim

ε→+0

(
p(β − α)

ε
p

) 1
p−ε

= p
1
p .

This directly implies the nonseparability of the space Lp)(0; 1) .
Let us consider a separable subspace of the space Lp)(−π;π) as follows. Consider a shift operator for

∀δ > 0

Tδf(x) =

{
f(x+ δ), x+ δ ∈ [−π;π],
0, x+ δ ∈ R\[−π;π],

f ∈ Lp)(−π;π),

and a linear manifold G̃p)(−π;π) of functions f ∈ Lp)(−π;π) satisfying the condition

∥Tδf − f∥p) → 0, δ → 0.

Let Gp)(−π;π) be a closure of G̃p)(−π;π) in Lp)(−π;π) . We prove the following lemma.

Lemma 2.2 Continuous imbedding Lp(−π;π) ⊂ Gp)(−π;π) holds, and this imbedding is strict, i.e.

Gp)(−π;π)\Lp(−π;π) ̸= ∅.

Proof Obviously, Lp(−π;π) ⊂ Gp)(−π;π) . The continuity of this imbedding follows from the inequality

∥f∥Gp)
= sup

0<ε<p−1

( ε

2π

) 1
p−ε ∥f∥Lp−ε

≤ ∥f∥Lp
sup

0<ε<p−1

( ε

2π

) 1
p−ε

2
ε

p(p−ε) ≤ 2−
1
p (p− 1) ∥f∥Lp

.

It only remains to prove the validity of the relation Gp)(−π;π)\Lp(−π;π) ̸= ∅ . To do so, it suffices to find a
function from Gp)(0; 1) not contained in Lp(0; 1) . Consider a sequence of functions

fn(t) =

{
t−

1
p , t ∈ [exp

{
−n2p

}
; 1]

0, t /∈ [exp
{
−n2p

}
; 1].

For the norms ∥fn∥p) and ∥fn∥p we have

∥fn∥p) ≤ sup
0<ε<p−1

(
ε

∫ 1

0

t−1+ ε
p dt

) 1
p−ε

= p,

∥fn∥p =

(∫ 1

exp{−n2p}
t−1dt

) 1
p

= n2.

Then it is clear that the convergence of the series
∑∞

n=1

∥fn∥p)

n2 implies the convergence in Lp)(0; 1) of the series∑∞
n=1

fn(t)
n2 . Let f(t) be the sum of this series. Obviously, f ∈ Gp)(0; 1) . Let us show that f /∈ Lp(0; 1) . Let

Sm(t) =

m∑
n=1

fn(t)

n2
.
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As Sm converges to f in Lp−ε(0; 1) as m → ∞ , from the monotonic nondecreasing of Sm it follows that Sm

converges almost everywhere to f as m → ∞ . Then |Sm|p converges almost everywhere to |f |p as m → ∞ .
By Levi theorem, we have ∫ 2π

0

|Sm(t)|p dt →
∫ 2π

0

|f(t)|p dt,m → ∞.

On the other hand, from

∫ 2π

0

|Sm(t)|p dt =
∫ 2π

0

∣∣∣∣∣
m∑

n=1

fn(t)

n2

∣∣∣∣∣
p

dt ≥
m∑

n=1

∫ 2π

0
|fn(t)|p dt
n2p

=

m∑
n=1

n2p

n2p
= m

it follows that
∫ 2π

0
|Sm(t)|p dt → +∞ as m → ∞ . Consequently,

∫ 2π

0
|f(t)|p dt = +∞ . The lemma is proved.

2

The following lemma is also true.

Lemma 2.3 The space C∞
0 [−π;π] is dense in Gp)(−π;π) , 1 < p < +∞ .

Proof Consider an arbitrary number η > 0 and an arbitrary function f ∈ Gp)(−π;π) . Denote by ωη(t) the
following kernel:

ωη(t) =

{
cη exp(− η2

η2−t2 ), |t| ≤ η,

0, |t| > η,
,

where the constant cη is such that
∫ +∞
−∞ ωη(t)dt = 1 . Let the function fη(·) be a convolution with kernel ωη(·) ,

i.e.

fη(t) =

∫ +∞

−∞
f(t− s)ωη(s)ds =

∫ +∞

−∞
ωη(t− s)f(s)ds.

The correctness of such definition follows from the inclusion Lp)(−π;π) ⊂ L1(−π;π) . Obviously, fη(t) is an
infinitely differentiable function. Using Minkowski’s inequality, we obtain

∥f − fη∥p) =
∥∥∥∥∫ +∞

−∞
f(·)ωη(s)ds−

∫ +∞

−∞
f(· − s)ωη(s)ds

∥∥∥∥
p)

=

=

∥∥∥∥∫ +∞

−∞
[f(· − s)− f(·)]ωη(s)ds

∥∥∥∥
p)

=

= sup
0<ε<p−1

(
ε

2π

∫ π

−π

∣∣∣∣∫ +∞

−∞
[f(t− s)− f(t)]ωη(s)ds

∣∣∣∣p−ε

dt

) 1
p−ε

≤

≤
∫ +∞

−∞
ωη(s) sup

0<ε<p−1

(
ε

2π

∫ π

−π

|f(t− s)− f(t)|p−ε
dt

) 1
p−ε

ds ≤

≤ ep sup
|s|≤η

∥f(· − s)− f(·)∥p) → 0, η → 0.

Consequently, C∞[−π;π] is dense in Gp)(−π;π) .
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Consider an arbitrary η > 0 and an arbitrary function f ∈ Gp)(−π;π) . As proved above, there exists
g ∈ C∞[−π;π] such that

∥f − g∥p) <
η

3
. (2.1)

Let us choose the number δ > 0 such that δ < π
(

η
3ep∥g∥∞

)p
, ep = p−1 . Consider the intervals E+

δ = (π−δ;π)

and E−
δ = (−π;−π + δ) of length δ and define the function

gδ(t) =

{
g(t), t ∈ (−π;π)\(E+

δ

⋃
E−

δ ),
0, t ∈ E+

δ

⋃
E−

δ .

We have

∥g − gδ∥p) = sup
0<ε<p−1

(
ε

2π

∫
E+

δ

∪
E−

δ

|g(t)|p−ε
dt

) 1
p−ε

≤

≤ ∥g∥∞ sup
0<ε<p−1

( ε

2π
2δ
) 1

p−ε

<
∥g∥∞ epδ

1
p

π
1
p

<
η

3
. (2.2)

Let

gδ,τ (t) =

∫ +∞

−∞
gδ(t− s)ωτ (s)ds, τ ∈ R.

Obviously, for τ < δ
2 we have gδ,τ ∈ C∞

0 [−π;π] . As ∥gδ − gδ,τ∥p) → 0 for τ → 0 , there exists τ < δ
2 such that

∥gδ − gδ,τ∥p) <
η

3
. (2.3)

Consequently, using (2.1), (2.2) and (2.3), we obtain

∥f − gδ,τ∥p) ≤ ∥f − g∥p) + ∥g − gδ∥p) + ∥gδ − gδ,τ∥p) <
η

3
+

η

3
+

η

3
= η,

i.e. C∞
0 [−π;π] is dense in Gp)(−π;π) . The lemma is proved. 2

3. Main results
Denote by GW 2

p)(a; b) , 1 < p < +∞ , the subspace of grand-Sobolev space W 2
p)(a; b) (see [31]) of functions

f ∈ W 2
p)(a; b) such that f

′′ ∈ Gp)(a; b) . Let

GW 2
p)((−1; 0)

⋃
(0; 1)) = GW 2

p)(−1; 0)⊕GW 2
p)(0; 1).

We then prove the following:

Lemma 3.1 Dirac delta functional δx(u) = u(x) , x ∈ (−1; 1) is linear and bounded in GW 2
p)(−1; 1) and

unbounded in Gp)(−1; 1) , 1 < p < +∞ .

1600



ZEREN et al./Turk J Math

Proof Fix the point x ∈ (−1; 1) . Then for ∀t ∈ (−1; 1) we have

|δx(u)| = |u(x)| =
∣∣∣∣u(t) + ∫ x

t

u
′
(s)ds

∣∣∣∣ ≤ |u(t)|+
∫ x

t

∣∣∣u′
(s)
∣∣∣ ds.

Integrating both sides of the last inequality with respect to t along the interval [−1; 1] , we obtain

2 |δx(u)| ≤
∫ 1

−1

|u(t)| dt+
∫ 1

−1

(∫ x

t

∣∣∣u′
(s)
∣∣∣ ds) dt ≤

≤
∫ 1

−1

|u(t)| dt+ 2

∫ 1

−1

∣∣∣u′
(t)
∣∣∣ dt.

Hence, for ∀ε ∈ (0; p− 1) , using Hölder’s inequality with the index p− ε , we obtain

|δx(u)| ≤ 2−
1

p−ε

(∫ 1

−1

|u(t)|p−ε
dt

) 1
p−ε

+ 21−
1

p−ε

(∫ 1

−1

∣∣∣u′
(t)
∣∣∣p−ε

dt

) 1
p−ε

≤

≤ ε−
1

p−ε (∥u∥p) + 2
∥∥∥u′
∥∥∥
p)
) ≤ 2ε−

1
p−ε (∥u∥p) +

∥∥∥u′
∥∥∥
p)
) =

≤ 2ε−
1

p−ε (∥u∥p) +
∥∥∥u′
∥∥∥
p)
+
∥∥∥u′′

∥∥∥
p)
) = 2ε−

1
p−ε ∥u∥GW 2

p)
,

i.e. the functional δx is linear and bounded in GW 2
p)(−1; 1) .

Now let us establish the unboundedness of the functional δx in Gp)(−1; 1) . Suppose the contrary, i.e.
let δx be bounded in Gp)(−1; 1) . Then there exists the number M > 0 such that

|δx(u)| ≤ M ∥u∥p) ,∀u ∈ Gp)(−1; 1). (3.1)

It is easy to show that ∀u ∈ Lp(−1; 1) the relation

∥u∥p) ≤ 2−
1
p (p− 1) ∥u∥p (3.2)

holds. Then from (3.1) and (3.2) we obtain

|δx(u)| ≤ 2−
1
p (p− 1)M ∥u∥p ,∀u ∈ Lp(−1; 1),

i.e. δx is bounded in Lp(−1; 1) . But this contradicts the unboundedness of the functional δx in Lp(−1; 1) .
Thus, the functional δx is unbounded in Gp)(−1; 1) . The lemma is proved. 2

Consider in Gp)(−1; 1)⊕ C the operator A defined by

A(û) = (−u
′′
, u

′
(−0)− u

′
(+0))

with domain
D(A) =

{
û = (u, α) : u ∈ GW 2

p)((−1; 0)
⋃

(0; 1))
}
.
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We show that A is a closed operator. Let ûn = (un, αn) ∈ D(A) be an arbitrary sequence such that

∥ûn − û∥Gp)⊕C → 0, n → ∞,

∥Aûn − v̂∥Gp)⊕C → 0n → ∞.

where û = (u, α) and v̂ = (v, β) , respectively. Then it is clear that the sequence un converges in Gp)(−1; 1)

to u , and the sequence u
′′

n converges in Gp)(−1; 1) to −v . Consequently, the sequences un and u
′′

n converge,

respectively, to u and −v in the space L1(−1; 1) . As un and u
′

n are absolutely continuous in [−1; 0] , there
exists u

′ , and the functions u and u
′ are absolutely continuous in [−1; 0] . Moreover, the sequence u

′′

n converges
in L1(−1; 0) to u

′′ . So u
′′
(x) = −v(x) almost everywhere in [−1; 0] , and therefore, u

′′ ∈ Gp)(−1; 0) , i.e.
u ∈ GW 2

p)(−1; 0) . It can be similarly shown that u ∈ GW 2
p)(0; 1) . From the obtained inclusions it follows that

û ∈ D(A) . On the other hand, the equality β = u
′
(−0) − u

′
(+0) holds. Thus, A(û) = v̂ , i.e. A is closed in

Gp)(−1; 1)⊕ C . Define the operator L in Gp)(−1; 1)⊕ C by the formula

L(û) = (−u
′′
, u

′
(−0)− u

′
(+0)) (3.3)

with domain

D(L) =
{
û = (u,mu(0)) : u ∈ GW 2

p)((−1; 0)
⋃

(0; 1)), u(−1) = u(1) = 0, u(−0) = u(+0)
}
. (3.4)

Let us show that L is a closed densely defined operator. For ∀û = (u, α) ∈ Gp)(−1; 1)⊕ C , let

F (û) = mu(0)− α,

U1(û) = U(u) = u(−1),

U2(û) = U(u) = u(1),

U3(û) = U(u) = u(−0)− u(+0).

Domain D(L) can be written as follows:

D(L) =
{
û ∈ Gp) ⊕ C : û = (u, α) ∈ GW 2

p)((−1; 0)
⋃

(0; 1)), F (u) = 0, Ui(u) = 0, i = 1, 3
}
.

By Lemma 3.1, the linear functionals F and Ui , i = 1, 2, 3 , are bounded in GW 2
p)(−1; 1)⊕C , but unbounded

in Gp)(−1; 1) ⊕ C . Then, due to the closedness of the operator A , by Theorem 2.1 its restriction L to D(L)

is a closed densely defined operator in Gp)(−1; 1)⊕ C . Thus, we have proved the following theorem.

Theorem 3.2 Let the operator L be defined by the formula (3.3) with domain D(L) defined by (3.4). Then
the operator L is a closed densely defined operator in the space Gp)(−1; 1)⊕ C , 1 < p < +∞ .

Remark 3.1 Note that Theorem 3.2 can also be proved with the use of the statement which says that
L is a closed densely defined operator in Lp(−1; 1)⊕ C , 1 < p < +∞ (see Lemma 3, [17]). This kind of proof
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requires the knowledge of corresponding properties of Dirac functional in these spaces, which is provided by
Lemma 3.1 . This is of independent interest.

The eigenfunctions of the operator L coincide with those of the problem (1.1)–(1.2), and the corresponding
eigenvectors are [17]

û2n−1(x) = (u2n−1(x), 0), n ∈ N

û2n(x) = (u2n(x),m sin ρ2,n), n ∈ Z+.

We state and prove the following main theorem on the basicity of the system {ûn}n∈Z+
for the space

Gp)(−1; 1)⊕ C .

Theorem 3.3 The system of eigenvectors {ûn}n∈Z+
of the operator L forms a basis for the space Gp)(−1; 1)⊕

C , 1 < p < +∞ .

Proof We prove the conditions of basicity criterion for systems (see [32]). Let us first prove the completeness
of the system {ûn}n∈Z+

. Consider an arbitrary vector û ∈ Gp)(−1; 1) ⊕ C and an arbitrary number η > 0 .

From Lemma 2.2 it follows the space Lp(−1; 1) ⊕ C is dense in Gp)(−1; 1) ⊕ C . Consequently, there exists a
vector v̂ ∈ Lp(−1; 1)⊕ C such that

∥û− v̂∥Gp)⊕C < η. (3.5)

From the completeness of the system {ûn}n∈Z+
in Lp(−1; 1) ⊕ C (see Theorem 1, [1]) it follows that there

exists a vector ŵ ∈ L
(
{ûn}n∈Z+

)
such that

∥v̂ − ŵ∥Lp⊕C < η. (3.6)

From (3.2) and (3.6) we obtain

∥v̂ − ŵ∥Gp)⊕C ≤ 2−
1
p (p− 1) ∥v̂ − ŵ∥Lp⊕C < 2−

1
p (p− 1)η. (3.7)

Then, applying the triangle inequality and taking into account the inequalities (3.5) and (3.7), we obtain

∥û− ŵ∥Gp)⊕C ≤ ∥û− v̂∥Gp)⊕C + ∥v̂ − ŵ∥Gp)⊕C ≤

≤ η + 21−
1
p (p− 1)η = Mη,

i.e. the system {ûn}n∈Z+
is complete in Gp)(−1; 1)⊕ C .

We show the minimality of the system {ûn}n∈Z+
in Gp)(−1; 1) ⊕ C . As shown in [17], the system

{ûn}n∈Z+
has a biorthogonal conjugate vector system {v̂n}n∈Z+

: v̂n(x) = (vn(x),mv(0)) in Lp(−1; 1) ⊕ C ,

where the functions vn(x) , n ∈ Z+ are the eigenfunctions of the corresponding conjugate spectral problem

v
′′
(x) + λv(x) = 0, x ∈ (−1; 0)

⋃
(0; 1),

v(−1) = v(1) = 0
v(−0) = v(+0)

v
′
(−0)− v

′
(+0) = λm̄v(0)
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and have the form
v2n−1(x) = sinπnx, n ∈ N,

v2n(x) =

{
c2n sin ρ̄2,n(1 + x), x ∈ [−1; 0]
c2n sin ρ̄2,n(1− x), x ∈ [0; 1]

, n ∈ Z+, (3.8)

with the normalized numbers c2n satisfying

c2n = 1 +O

(
1

n2

)
. (3.9)

Moreover there exists a constant a > 0 independent of p and n ∈ Z+ such that

|< û, v̂n >| ≤ a ∥û∥Lp⊕C .

Let us show that {v̂n}n∈Z+
is a biorthogonally conjugate system to {ûn}n∈Z+

in Gp)(−1; 1) ⊕ C , defined by
the formula

< û, v̂n >=

∫ 1

−1

u(x)vn(x)dx+ αmvn(0), û =< u,α > .

In fact, for every fixed ε ∈ (0; p− 1) we have

|< û, v̂n >| ≤ a ∥û∥Lp−ε⊕C ≤ a1 ∥û∥Gp)⊕C . (3.10)

Thus, the system {ûn}n∈Z+
is minimal in Gp)(−1; 1)⊕ C .

It remains to show the uniform boundedness of the sequence of projectors

Sn(f̂) =

n∑
k=0

< f̂, v̂n > ûn, f̂ ∈ Gp)(−1; 1)⊕ C,

in Gp)(−1; 1)⊕ C . For fixed f̂ ∈ Gp)(−1; 1)⊕ C , f̂ = (f, β) , consider the equation

Lû− λû = f̂ . (3.11)

The equation (3.11) can be rewritten in the form of the following problem:

 u
′′
(x)− λu(x) = f(x)

u
′
(−0)− u

′
(+0)− λmu(0) = β

Ui(u) = 0, i = 1, 2, 3

. (3.12)

The problem (3.12) has a solution [Lemma4,[1]]

u(x, ρ) =
β sin ρ(1 + x)

ρ(2 cos ρ− ρm sin ρ)
− 1

ρ

∫ x

−1

f(ξ) sin ρ(x− ξ)dξ+

+
1

ρ

∫ 0

x

f(ξ) sin ρ(x− ξ)dξ +
1

∆(ρ)

∫ 0

−
f(ξ) sin ρ(1 + x) sin ρ(1 + ξ)dξ−
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− 1

ρ sin ρ

∫ x

−1

f(ξ) sin ρ(1 + x) sin ρξdξ − 1

ρ sin ρ

∫ 0

x

f(ξ) sin ρx sin ρ(1 + ξ)dξ+

+
1

∆(ρ)

∫ 1

0

f(ξ) sin ρ(1 + x) sin ρ(1− ξ)dξ, x ∈ [−1; 0]; (3.13)

u(x, ρ) =
β sin ρ(1− x)

ρ(2 cos ρ− ρm sin ρ)
− 1

ρ

∫ x

0

f(ξ) sin ρ(x− ξ)dξ+

+
1

ρ

∫ 1

x

f(ξ) sin ρ(x− ξ)dξ +
1

∆(ρ)

∫ 1

0

f(ξ) sin ρ(1− x) sin ρ(1− ξ)dξ+

+
1

ρ sin ρ

∫ x

0

f(ξ) sin ρx sin ρ(1− ξ)dξ +
1

ρ sin ρ

∫ 1

x

f(ξ) sin ρ(1− x) sin ρξdξ+

+
1

∆(ρ)

∫ 0

−1

f(ξ) sin ρ(1− x) sin ρ(1 + ξ)dξ, x ∈ [0; 1], (3.14)

where λ = ρ2 belongs to the resolvent set of the operator L . Consequently,

u(0, ρ) =
1

ρ(2 cos ρ− ρm sin ρ)
×

×
[
β sin ρ+

∫ 0

−1

f(ξ) sin ρ(1 + ξ)dξ +

∫ 1

0

f(ξ) sin ρ(1− ξ)dξ

]
. (3.15)

Let

Γ2n−1 =

{
ρ : |ρ− ρ1,n| =

1

2πmn

}
, n ∈ N ;

Γ2n =

{
ρ : |ρ− ρ2,n| =

1

2πmn

}
, n ∈ Z+;

Cn =

{
ρ : |ρ| = π(n+

1

2
), 0 ≤ arg ρ ≤ π

}
, n ∈ Z+

and Γ′
2n−1 , Γ′

2n and C ′
n be the corresponding images in the mapping λ = ρ2 . Then, using the resolvent R(λ)

of the operator L , we can rewrite the operator Sn as follows:

Sn(f̂) =

n∑
k=0

Ek(f̂),

where the sequence of projectors {En}n∈Z+
is defined by the formulas

E2n−1f̂ =
1

2πi

∫
Γ′
2n−1

R(λ)f̂dλ =
1

πi

∫
Γ2n−1

ρR(ρ2)f̂dρ, n ∈ N ;

E2nf̂ =
1

2πi

∫
Γ′
2n

R(λ)f̂dλ =
1

πi

∫
Γ2n

ρR(ρ2)f̂dρ, n ∈ Z+.
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In view of R(ρ2)f̂ = û(x, ρ) = (u(x, ρ);mu(0, ρ)) , we obtain

S2n−1f̂(x) =
1

2πi

∫
C′

n

R(λ)f̂(x)dλ =
1

πi

∫
Cn

ρR(ρ2)f̂(x)dρ =
1

πi

∫
C′

n

ρû(x, ρ)dρ =

=
1

πi

(∫
Cn

ρu(x, ρ)dρ;

∫
Cn

mρu(0, ρ)dρ

)
=

1

πi
(Jn(x),mJn(0)), n ∈ Z+.

It is known (see [24]) that

|sin ρ| ≤ M0e
|ρ| sinφ, ρ = |ρ| sinφ, 0 ≤ φ ≤ π.

Furthermore, for sufficiently large values of |ρ| outside the circles of some radius δ centered at the zeros of
∆1(ρ) = 2 cos ρ−mρ sin ρ , we have the following inequality:

|∆1(ρ)| ≥ M1 |ρ| e|ρ| sinφ.

From these inequalities it follows that for ρ = |ρ| sinφ , 0 ≤ φ ≤ π , and sufficiently great |ρ| outside the circles
of some radius δ centered at the zeros of ∆1(ρ) , the following relation holds:

∣∣∣∣ sin ρ(1 + x)

∆1(ρ)

∣∣∣∣ ≤ M0e
|ρ|x sinφ

M1 |ρ|
≤ M2

|ρ|
,∀x ∈ [−1; 0]. (3.16)

By the equality (3.13), we have

Jn(0) = β

∫
Cn

sin ρ

ρ∆1(ρ)
dρ+

∫
Cn

(∫ 0

−1

f(ξ)
sin ρ(1 + ξ)

ρ∆1(ρ)
dξ

)
dρ+

+

∫
Cn

(∫ 1

0

f(ξ)
sin ρ(1− ξ)

ρ∆1(ρ)
dξ

)
dρ =

= β

∫
Cn

sin ρ

ρ∆1(ρ)
dρ+

∫
Cn

(∫ 0

−1

f(ξ)
sin ρ(1 + ξ)

ρ∆1(ρ)
dξ

)
dρ+

∫
Cn

(∫ 0

−1

f(−ξ)
sin ρ(1 + ξ)

ρ∆1(ρ)
dξ

)
dρ.

Hence, using (3.16) and Hölder’s inequality with the index p− ε , ε ∈ (0; p− 1) , we obtain

|Jn(0)| ≤ |β|
∫
Cn

∣∣∣∣ sin ρ

ρ∆1(ρ)

∣∣∣∣ |dρ|+ ∫
Cn

(∫ 0

−1

|f(ξ)|
∣∣∣∣ sin ρ(1 + ξ)

ρ∆1(ρ)

∣∣∣∣ dξ) |dρ|+

+

∫
Cn

(∫ 0

−1

|f(−ξ)|
∣∣∣∣ sin ρ(1 + ξ)

ρ∆1(ρ)

∣∣∣∣ dξ) |dρ| ≤

≤ M2

∫
Cn

1

|ρ|
|dρ|

(
|β|+

∫ 0

−1

|f(ξ)| dξ +
∫ 1

0

|f(ξ)| dξ
)

≤

≤ πM2

|β|+
(∫ 0

−1

|f(ξ)|p−ε
dξ

) 1
p−ε

+

(∫ 1

0

|f(ξ)|p−ε
dξ

) 1
p−ε

 ≤
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≤ 2πM2

(
|β|+ ∥f∥Lp−ε(−1;1)

)
≤ 2πM2

(
|β|+

(ε
2

)− 1
p−ε ∥f∥Gp)(−1;1)

)
≤

≤ M3

(
|β|+ ∥f∥Gp)(−1;1)

)
. (3.17)

Also, from the results obtained in [17] it follows, by (3.15), that there exists a constant M4 > 0 independent of
f and p such that for sufficiently large values of n the relation

|Jn(x)| ≤ M4

∫ 0

−1

|f(ξ)|
−x− ξ

dξ = M4H (g) (−x),∀x ∈ [−1; 0], (3.18)

holds, where g(x) = |f(−x)| . As the Hilbert transform H is bounded in grand-Lebesgue space Lp)(0; 1) (see
[31]), there exists a positive constant M5 > 0 such that

∥H (g)∥Gp)(0;1)
≤ M5 ∥g∥Gp)(0;1)

= M5 ∥f∥Gp)(−1;0) . (3.19)

Thus, from (3.18) and (3.19) we obtain

∥Jn∥Gp)(−1;0) ≤ M4 ∥H(g)∥Gp)(0;1)
≤ M6 ∥f∥Gp)(−1;0) , (3.20)

where M6 = M4M5 . By a similar argument, we can demonstrate that there exists a constant M7 > 0

independent of f and p such that
∥Jn∥Gp)(0;1)

≤ M7 ∥f∥Gp)(0;1)
. (3.21)

Then, taking into account (3.20) and (3.21), we obtain

∥Jn∥Gp)(−1;1) ≤ ∥Jn∥Gp)(−1;0) + ∥Jn∥Gp)(0;1)
≤

≤ M6 ∥f∥Gp)(−1;0) +M7 ∥f∥Gp)(0;1)
≤ M8 ∥f∥Gp)(−1;1) , (3.22)

where M8 = M6 +M7 .

We now find a bound for the norm
∥∥∥S2n−1(f̂)

∥∥∥
Gp)⊕C

. Using the relations (3.17) and (3.22), we obtain

∥∥∥S2n−1(f̂)
∥∥∥
Gp)(−1;1)⊕C

=
1

π

(
∥Jn∥Gp)(−1;1) + |mJn(0)|

)
≤

≤ 1

π

(
M8 ∥f∥Gp)(−1;1) + |m|M3

(
|β|+ ∥f∥Gp)(−1;1)

))
≤ M

∥∥∥f̂∥∥∥
Gp)⊕C

, (3.23)

where M = 2(M8+|m|M4)
π . It remains to estimate

∥∥∥S2n(f̂)
∥∥∥
Gp)⊕C

. Let us rewrite S2nf̂ in the form

S2nf̂ = S2n−1f̂+ < f̂, v̂2n > û2n.

Obviously, a0 = sup
n

∥ûn∥Gp)(−1;1)⊕C < +∞ . Consequently, using (3.10) and (3.23), by triangle inequality we

obtain ∥∥∥S2n(f̂)
∥∥∥
Gp)(−1;1)⊕C

≤
∥∥∥S2n−1(f̂)

∥∥∥
Gp)(−1;1)⊕C

+
∣∣∣< f̂, vn >

∣∣∣ ∥û2n∥Gp)(−1;1)⊕C ≤
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≤ (M + a0a1)
∥∥∥f̂∥∥∥

Gp)(−1;1)⊕C
= K

∥∥∥f̂∥∥∥
Gp)(−1;1)⊕C

. (3.24)

From (3.23) and (3.24) it follows that the sequence {Sn}n∈Z+
is uniformly bounded. Thus, the system {ûn}n∈Z+

forms a basis for the space Gp)(−1; 1)⊕ C . The theorem is proved. 2

The theorem implies that the system {un}n∈Z+
of eigenvectors of the problem (1.1)–(1.2) is complete in

the space Gp)(−1; 1) , 1 < p < +∞ . In fact, if otherwise, then there exists nonzero linear continuous functional
v in Gp)(−1; 1) such that

< un, v >= 0,∀n ∈ Z+.

Denote by v̂ a functional in Gp)(−1; 1)⊕ C defined by the formula

< û, v̂ >=< u, v > .

Obviously, v̂ is a nonzero linear continuous functional in Gp)(−1; 1)⊕ C and

< ûn, v̂ >= 0,∀n ∈ Z+.

This contradicts the completeness of the system {ûn}n∈Z+
in the space Gp)(−1; 1) ⊕ C . Let us consider the

basicity of the system {un}n∈Z+
in the space Gp)(−1; 1) .

We prove the following theorem.

Theorem 3.4 For every k0 ∈ Z+ , the system {un}n∈Z+,n̸=2k0
forms a basis for Gp)(−1; 1) , 1 < p < +∞ .

Proof Consider an arbitrary f ∈ Gp)(−1; 1) . From (3.9) it follows that for the system {vn}n∈Z+
, biorthogonal

to {un}n∈Z+
, the relation

v2n(0) = c2n sin ρ̄2,n ̸= 0, n ∈ Z+,

holds. Decomposing the vector f̂ = (f ;β) , β = −<f,v2k0
>

mv2k0
(0)

, into the basis {ûn}n∈Z+
, we obtain

f̂ =

+∞∑
n=0

< f̂, v̂n > ûn =

+∞∑
n=0

(< f, vn > +βmvn(0))ûn =

=

+∞∑
n=0

(< f, vn > −< f, v2k0
>

mv2k0
(0)

mvn(0))ûn =

+∞∑
n=0,n̸=2k0

(< f, vn > −< f, v2k0
>

v2k0
(0)

vn(0))ûn =

=

+∞∑
n=0,n̸=2k0

(< f, vn > −< f, v2k0
>

v2k0
(0)

vn(0))ûn =

+∞∑
n=0,n̸=2k0

(< f, vn − vn(0)

v2k0(0)
v2k0

> ûn.

Hence it follows

f =

+∞∑
n=0,n̸=2k0

< f, vn − vn(0)

v2k0
(0)

v2k0
> un =

+∞∑
n=0,n̸=2k0

< f, v∗n > un, (3.25)
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where v∗n = vn − vn(0)
v2k0

(0)v2k0
, n ̸= 2k0 . On the other hand, the systems {v∗n}n∈Z+,n̸=2k0

and {un}n∈Z+,n̸=2k0

are biorthogonal. In fact,

< uk, v
∗
n >=< uk, vn > − vn(0)

v2k0
(0)

< uk, v2k0
>=< uk, vn >= δnk, n, k ∈ Z+\ {2k0} .

Therefore, f ∈ Gp)(−1; 1) has a unique decomposition (3.25) with respect to the system {un}n∈Z+,n̸=2k0
.

Consequently, the system {un}n∈Z+,n̸=2k0
forms a basis for Gp)(−1; 1) . The theorem is proved. 2
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