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Abstract: This scientific investigation deals with introducing certain basic information relating to the error functions in
z−plane, establishing extensive relations between various series expansions of the complex error functions and presenting
a number of their implications.
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1. Introduction, definitions, notations and motivation

As is well known, equations and inequalities basically have important roles both in nearly all sciences and
engineering. Specially, if there are some requirements between equations (or inequalities), naturally, certain
relations between them can also arise. Of course, similar relations also have a different importance for mathe-
matical science and these appear in the literature as various propositions. The basic content of this scientific
research relates to certain applications of various propositions which will be determined by various relationships
between certain series, which are stated by the error functions in the complex plane and generally used in many
fields of science and technology. In other words, to determine some novel-nonlinear relations between some
series specified by the error functions and certain inequalities in the complex plane and then to emphasize some
possible implications of their possible propositions. Now, before presenting the relevant propositions, let us
begin to introduce some basic information and definitions about the well-known error functions in the complex
plane.

In the literature, as we know, the well-known error functions are basically encountered in two forms. The
first is the error function with real (or complex) variable (or parameter) and the second is the complementary
error function with real (or complex) variable (or parameter). These functions, covered by special functions
in mathematics, were (are) frequently used in science and technology. We note that they are one of the basic
subjects in theoretical physics and especially in the theory of statistics and probability. For example, see the
studies in [5, 12–14, 18, 28, 29] for primary resources, and see also the earlier results relating to both those and
other sciences in [1–3, 6, 8, 10, 11, 16, 17, 19, 22, 23, 25, 26, 30, 32, 35, 36, 38] in the references.

For our main results, there is a need to introduce (or remind) a number of notations and notions which
will be related to our investigation. For those, firstly, the usual notations C, R, N , and U refer to the well-
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known set of the set of all complex numbers, the set of all real numbers, the set of all integers and open unit
disk (in the complex plane C), respectively.

Next, there is a need to introduce certain complex functions and complex series expansions, which
are analytic and uniform convergence in C, respectively. Fore more information, see the results given in
[4, 7, 10, 11, 15, 21, 23, 24, 26, 34, 37]. Some of those can be also given by the following notations and notions,
which are below.

The error function with complex variable z (or the complex error function) is denoted by erf(z) and
defined by

erf(z) =
2√
π

∫ z

0

exp
(
− η2

)
dη (1.1)

for an arbitrary integration path (from the point ξ = 0 to any point ξ = z ) in any domain of the complex plane
C.

By taking into account the Taylor–Maclaurin series expansion of the following form:

exp
(
− ξ2

)
= 1− η2

2!
+

η4

4!
− · · · +

η2n

(2n)!
+ · · ·

and also by using term-by-term integration of any function series which is uniformly convergent on any interval
of the set R, the following series expansion of the complex error function erf(z) in the form:

erf(z) =
2√
π

(
z − z3

3
+

z5

10
− z7

42
+ · · ·+ (−1)nz2n+1

n!(2n+ 1)
+ · · ·

)

=
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
(1.2)

can be easily derived, where z ∈ C. This definition is also known as the second definition of the complex error
function, i.e. erf(z), in the literature.

In view of the error function with complex variable z , defined by (1.1), the complementary error function
with complex variable z (or the complementary complex error function) is denoted by erfc(z) and is defined
by

erfc(z) =
2√
π

∫ ∞

z

exp
(
− η2

)
dη

(
z ∈ C

)
. (1.3)

Through the instrumentality of the familiar result∫ ∞

0

exp
(
− η2

)
dη =

√
π

2

and the property ∫ ∞

0

exp
(
− η2

)
dη =

∫ z

0

exp
(
− η2

)
dη +

∫ ∞

z

exp
(
− η2

)
dη ,

the basic relation between these complex functions (erf(z) and erfc(z)), which is given by

erf(z) =
2√
π

∫ z

0

exp
(
− η2

)
dη
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=
2√
π

(∫ ∞

0

exp
(
− η2

)
dη −

∫ ∞

z

exp
(
− η2

)
dξ

)
(1.4)

= 1− erfc(z) ,

can be easily seen, where z ∈ C.
Moreover, by means of the series expansion of the complex error function erf(z), given by (1.1), the

second definition of the complementary complex error function, i.e. erfc(z), given by the following-complex-
series expansion:

erfc(z) = 1− 2√
π

(
z − z3

3
+

z5

10
− z7

42
+ · · ·+ (−1)nz2n+1

n!(2n+ 1)
+ · · ·

)

= 1− 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
(1.5)

can be also determined, where z ∈ C .
With a simple observation, it is easily seen that both the complex series, given in (1.2) and (1.5), are

uniformly convergent on any region of the set C.
As we have indicated before, this investigation includes various novel results consisting of certain series

and inequalities in related with the error functions in the complex plane. We note here that certain special
results derived by the complex error functions and also their implications may be an interesting investigation
for some researchers whose scientific fields are relevant. Specially, by means of an unusual proof’s technique
and also by making use of the well-known assertion given by [27], which is the main lemma (Lemma 1.1 below),
various unusual results (consisting of certain special inequalities) specified by some relationships between the
series expansions of the complex error functions are given by (1.2) and (1.5). In addition, see the earlier results,
which were used for proving, given in [19–21] as examples.

Lemma 1.1 [27] Let a function p(z) be in the form:

p(z) = 1 + anz
n + an+1z

n+1 + · · ·
(
an ∈ C; n ∈ N

)
. (1.6)

Then, if there exists a point z0 in U such that

ℜe
(
p(z)

)
> 0

(
|z| < |z0|

)
, ℜe

(
p(z0)

)
= 0 and p(z0) ̸= 0, (1.7)

then

p(z0) = ir and zp′(z)
∣∣∣
z=z0

= i
s

2

(
r +

1

r

)
p(z)

∣∣∣
z=z0

, (1.8)

where s ≥ 1 and r ∈ R∗ := R− {0}.

2. The main results and related implications
We now begin by setting and then by proving our main results associating with the complex error functions
defined by (1.1) and (1.3) (or, given by (1.2) and (1.5)). The first is Theorem 1 (below), which can be easily
proven by considering the complex series of the error function erf(z) given by (1.2).
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Theorem 2.1 Let z be in the disk U. Then, the following implication:

∞∑
n=0

(
(−1)n

n!
ℜe

{
z2n

})
> Θ(τ) ⇒

∞∑
n=0

(
(−1)n

n!(2n+ 1)
ℜe

{
z2n

})
> Ξ̂(τ) (2.1)

holds true, where

0 ≤ τ <
2√
π

, Ξ̂(τ) :=

√
π

2
τ and Θ(τ) :=

1

2

(3√π

2
τ − 1

)
. (2.2)

Proof For the proof of Theorem 2.1, it is sufficient to use Lemma 1 and consider the complex error function,
i.e. the function erf(z) defined by (1.2). For this, with the help of the series expansion of the related complex
function, define an implicit function p(z) as in the form:

erf(z)

z
= τ +

( 2√
π
− τ

)
p(z)

(
z ∈ U; 0 ≤ τ <

2√
π

)
. (2.3)

With focusing on the function p(z) defined by (2.3), it is easy to see that p(z) has the series form given
by (1.6) of Lemma 1.1 and it is an analytic function in the open disk U. In consideration of Lemma 1.1, it
follows from (2.3) that

d

dz

(
erf(z)

z

)
=

z d
dz

[
erf(z)

]
− erf(z)

z2

=
( 2√

π
− τ

) d

dz

[
p(z)

]
=

( 2√
π
− τ

)
p′(z) ,

and, by a simple computation, the statement (just above) along with (2.3) also gives us

erf ′(z) =
erf(z)

z
+

(
2√
π
− τ

)
zp′(z)

= τ +
( 2√

π
− τ

)
p(z) +

(
2√
π
− τ

)
zp′(z) , (2.4)

where z ∈ U and 0 ≤ τ < 2/
√
π .

We now assume that there exists a point z0 ∈ U satisfying the conditions given by (1.7) of Lemma1.1.
By taking cognizance of the assertions given by (1.8) of Lemma 1.1, viz, the following assertions:

p(z0) = ir and zp′(z)
∣∣∣
z=z0

= i
s

2

(
r +

1

r

)
p(z)

∣∣∣
z=z0

,

for the equation obtained by (2.4), the following result:

erf ′(z)
∣∣∣
z:=z0

= τ +
( 2√

π
− τ

)
p(z) +

(
2√
π
− τ

)
zp′(z)

∣∣∣
z:=z0
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= τ − s

2

(
1 + r2

)( 2√
π
− τ

)
+ i

( 2√
π
− τ

)
(2.5)

is then determined, where s ≥ 1, r ∈ R∗ and z0 ∈ U.
By considering the values of the parameters s and r in Lemma 1.1, the real part of (??) gives us the

following inequality:

ℜe
(
erf ′(z0)) ≤ 3

2
τ − 1√

π
,

or, equivalently,

2√
π

∞∑
n=0

(
(−1)n

n!
ℜe

{
z2n

})
≤ 3

2
τ − 1√

π
, (2.6)

where τ is given by (10). However, the inequality given by (2.6) is a contradiction with the hypothesis of
Theorem 2.1 given by (2.1). Thus, the statement, given by (2.3), immediately requires the inequality:

ℜe
(
erf(z)

z

)
> τ ,

or, equivalently,
∞∑

n=0

(
(−1)n

n!(2n+ 1)
ℜe

{
z2n

})
> Ξ̂(τ) ,

which is the provision of Theorem 2.1 given by (2.1), where z ∈ U, τ is given by (2.2) and also Ξ̂(τ) is defined
by (2.2). Thereby, this completes the proof of Theorem 2.1. 2

The second is Theorem 2.2, which is below and in relation with (the series of) the complex error function
erf(z) given by (1.2).

Theorem 2.2 Let z ∈ U. Then, the following implication:

∞∑
n=0

(
(−1)n

n!
ℑm

{
z2n

})
= 0 ⇒

∞∑
n=0

(
(−1)n

n!(2n+ 1)
ℜe

{
z2n

})
> Ξ̂(τ)

holds true, where τ is given by (2.2) and Ξ̂(τ) is defined by (2.2).

Proof Through the instrument of the statement determined by (2.5), the desired proof of Theorem 2.2 can
be easily achieved by the the proof of Theorem 2.1. Its detail is omitted here. 2

The third is the following theorem (Theorem 2.1 below), which also relates to (the series of) the complex
error function erf(z) given by (1.2).

Theorem 2.3 Let z ∈ U. Then, the following implication:

∞∑
n=1

(
(−1)n

(n− 1)!
ℜe

{
z2n−1

})
> ∆(τ) ⇒

∞∑
n=0

(
(−1)n

n!
ℜe

{
z2n

})
> Ξ̂(τ)
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holds true, where

0 ≤ τ <
2√
π

, Ξ̂(τ) :=

√
π

2
τ and ∆(τ) :=

1

4

(√π

2
τ − 1

)
. (2.7)

Proof For the proof of Theorem 2.3, it is sufficient to use Lemma 1.1 and consider the complex error function
erf(z) defined by (1.2). For this, by the help of the series expansion of the complex function erf(z), if one
defines a function p(z) in the form:

p(z) =

d
dz

(
erf(z)

)
− τ

2√
π
− τ

(
z ∈ U; 0 ≤ τ <

2√
π

)
, (2.8)

it is easily seen that the function p(z) above both has the series form given by (1.6) of Lemma 1.1 and is an
analytic function in U. By differentiating both sides of (2.8) with respect to the complex variable, the following
statement:

z
d2

dz2
[
erf(z)

]
=

( 2√
π
− τ

)
zp′(z)

is then obtained. By using the similar steps used in the proof of Theorem 2.1 for the result just above, the
desired proof of Theorem 2.2 can be easily constituted. For this reason, its detail is omitted here. 2

The fourth is Theorem 2.4 (below). Its proof can be also presented by considering (the series of) the
complex error function erf(z) together with the Proof of Theorem 2.3. It is omitted here again.

Theorem 2.4 Let z be in U. Then, the following implication:

∞∑
n=1

(
(−1)n

(n− 1)!
ℑm

{
z2n−1

})
̸= 0 ⇒

∞∑
n=0

(
(−1)n

n!
ℜe

{
z2n

})
> Ξ̂(τ)

holds true, where Ξ̂(τ) is defined by (2.7).

As certain implications and recommendations, in the first two sections, firstly, certain fundamental
information appertaining to the series expansions of the complex error functions has been presented and then
several statements in relation with those complex series have been proven. In addition, we also need extra
information directly associated with the complex error functions. For those, it is time to recall certain relations
between them. Clearly, these complex functions are differentiable functions in the whole complex plane C
and also have various connections relating to certain special functions with complex variable. First of all, for
convenience, let

Ξ(z) := erf(z) and Ξc(z) := erfc(z)
(
z ∈ C

)
.

Then, for the scope of this investigation, there is a need to remind only some of them, which can be presented
by the following forms:

Ξ(−z) = −Ξ(z) , (2.9)

Ξc(−z) = −Ξc(z) , (2.10)

Ξ(z) = Ξ(z) , (2.11)
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Ξc(z) = Ξc(z) , (2.12)

Ξ(z) = 1− Ξc(z) , (2.13)

Ξc(z) = 1− Ξ(z) , (2.14)

d

dz

(
Ξ(z)

)
=

2√
π
z exp

(
− z2

)
, (2.15)

d

dz

(
Ξc(z)

)
= − 2√

π
z exp

(
− z2

)
, (2.16)

∫
Ξ(z)dz = z Ξ(z) +

1√
π

exp
(
− z2

)
, (2.17)

Ξ(z) =
2z√
π

1F1

(
1/2; 3/2;−z2

)
, (2.18)

Ξc(z) = 1− 2z√
π

1F1

(
1/2; 3/2;−z2

)
, (2.19)

Ξ(z) =
1√
π
Γ
(
1/2, z2

) (
ℜe(z) > 0

)
, (2.20)

Ξc(z) = 1− 1√
π
Γ
(
1/2, z2

)) (
ℜe(z) > 0

)
, (2.21)

Ξ(z) =
2√
π
z2e−z2

1F1

(
1; 3/2; z2

)
(2.22)

and

Ξc(z) = 1− 2√
π
z2e−z2

1F1

(
1; 3/2; z2

)
, (2.23)

an so on, where the special functions:

1F1

(
a; b; z

)
and Γ

(
a, z

)
are known as the confluent hypergeometric function of the first kind and incomplete gamma function, re-
spectively. For more properties and also some of their applications, one may refer to the studies given by
[3, 7–9, 13, 14, 17, 18, 21, 25, 28, 30, 37] in the references.

In the light of the information in the first section, the main results in the second section and also the
properties given by (2.9)-(2.23), various extensive results (together with suitable examples) can be exposed. It
is impossible to present all of them. Nevertheless, we want to specify only one of them and bring other special
results to the attentions of the interested researchers.

As a simple example, by reevaluating the properties given by (2.13), (2.15), and (2.16) in the results
given by Theorem 2.1, the following proposition, which is directly related to the complex error functions erf(z)

and erfc(z), can be easily constituted by the basic form:
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Proposition 2.5 Let z ∈ U. Then, the following implication:

ℜe
(

d

dz

(
erfc(z)

))
<

2√
π
Θ(τ) ⇒ ℜe

(
1− erfc(z)

z

)
> τ ,

or, equivalently,
∞∑

n=0

(
(−1)n

n!
ℜe

{
z2n

})
< −Θ(τ)

⇒
∞∑

n=0

(
(−1)n

n!(2n+ 1)
ℜe

{
z2n

})
> Ξ̂(τ)

is true, where τ is given by (2.2), and Ξ̂(τ) and Θ(τ) are defined by (2.2).
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