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Abstract: The purpose of this paper is to present some examples of positive-definite integral nondiagonal quaternary
quadratic forms whose representation numbers can be determined explicitly using the theory of modular forms. Very few
such examples appear in the literature. The seven forms presented were selected because they each belong to a genus
containing exactly two form classes for which the single genus mate is a diagonal form whose representation number has

been determined recently.
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1. Introduction

The number of representations of a positive integer n by a positive-definite integral diagonal quaternary
quadratic form az? + by? + cz? + dt?> has been determined explicitly for many such forms, see for example

[5, 6, 8, 10, 11]. However, for positive-definite integral nondiagonal quaternary quadratic forms

az? + by? + ¢2® + dt* + exy + fxz + grt + hyz + jyt + kzt

very few have been determined explicitly. The reader can find some in [12]. Even rarer are explicit representation
numbers for such forms belonging to a genus containing two or more form classes. In this paper, we determine
explicitly the representation numbers of the seven positive-definite integral nondiagonal quaternary quadratic

forms:

22422 + 222+ 22 1 2yt, 2+ oy 4 227 4% + 22,
222 + 2y 4 222 + 3t% 4 2zy + 2x2 + 2ut, 222 + 2y 4 222 + 3t2 4+ 22y + 2z 2,
22+ 2% + 222 + 42 2yt 4+ 22t,  x® +y? + 227 + 82 4 2z,
2% 4+ 2y% + 227 + 512 + 2yt + 2zt
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These forms were chosen as each of them has a single genus mate whose representation number has recently

been determined explicitly. The genus mates are respectively

2 4 9% + 2% + 6t, 22 4% 4 2%+ Tt
P24+ 22492, 2?4y 4224122
22?4322+ 462, 2?4y + 322+ 582,
2? +y? + 2% 41662
Before stating our results we give some notation as well as stating some results that we need. We let N
denote the set of positive integers, Z the set of all integers, and No = NU{0}. We denote the field of complex
numbers by C and the Poincaré upper half-plane {z € C | Im(z) > 0} by H. For z € H we define ¢ = *™** so

that |q| < 1. If f:= f(x1,...,2) is a positive-definite integral quadratic form in k variables the representation

number of f is the nonnegative integer defined for all n € Ny by
N(f(x1,...,2x) =n) = card{(z1,...,2) € ZF | f(x1,..., ) = n}.

As f is positive-definite we have N(f(z1,...,2;) =0) = 1. The theta function of f is defined by

(o)
07(z) == Z gf @ z’“):1—|—2:N(f(an1,...,3:k)zn)q", z e H. (1.1)
(z1,...,w ) EZF n=1
The Dedekind eta function 7(z) is defined by
n(z) =" [ (1 =€), zeH. (1.2)

m=1
An eta quotient f(z) is a function of the form
F(z) = (my2) o) (mg2), 2 € H,

where 7 € N, my,...,m, € N satisfy m; < --- <m,, and a(mq),...,a(m,) are nonzero integers. Sometimes

we write f(z) in the form

fz) =T n"dz),

d|N
where N € N is a multiple of my,...,m,, d runs through the positive integers dividing N and

; fd=m;, j=1,...
r<d>:{a(m]) ifd=m;j, j e, T,

0 otherwise.

Ramanujan’s theta functions ¢(g) and 9(q) are defined by

plg):= > 4" Plg) =Y "2 (1.3)
n=0

n=—oo
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The modular group SLo(Z) is the group

SLy(Z) ;:{(‘; Z) la,b,c.d € Z, ad—bc:l}.

For a positive integer N, the Hecke congruence subgroup I'g(NV) of SLy(Z) is defined by

To(N) = {( “ ! ) €SLy(Z) | ¢=0 (mod N)}.

The index of T'g(N) in SLo(Z) is

[SL2(Z) : To(N)] = N [] (1 + 1),
pIN p

where p runs through the primes dividing N, see [15, Proposition 2.12]. The space of modular forms of weight
k for T'o(N) with character x is denoted by My (T'o(NN), x) and the space of cusp forms of weight & for T'g(NV)
with character x is denoted by Sik(T'o(IN), x). If x is the trivial character we write M (I'o(NN)) for the former
space and Si(I'o(IV)) for the latter space.

For n € N the sum of divisors function o(n) is defined by
o(n) = Z d.
d|n
Further, for nonzero integers r and s with r,s =0 or 1 (mod 4), it is convenient to define the arithmetic sum

o= 3 (5) ()

where (g) is the Legendre-Jacobi-Kronecker symbol. Clearly A;1(n) =o(n).

In this paper we give explicit formulas for the representation numbers of the seven positive-definite
primitive integral quaternary quadratic forms listed at the beginning of this introduction. Each of these forms
belongs to a genus consisting of only two form classes. We now state our main results, which we prove in

Sections 3—9. Preliminary results that we need are stated in Section 2.

Theorem 1.1 Let n € N. Then
2 2 2 2 1 4 4
N(z= +2y* 4+ 22° 4 2t° + 2yt = n) = 441 24(n) — §A2471(n) — §A_37_8(n) +A_5_3(n)— gal(n),

where the integers ai1(n) (n € N) are given by

n*(22)n(32)n?(82)n(122) P
n(2)n?(42)n(62) - Z 1(n)q".

n=1
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Theorem 1.2 Let n € N. Then

7 1
N(SL’2 + y2 + 222 + 442 + 2zt = n) = 5141’28(71) — ZAQg’l(n) +

where the integers az(n) (n € N) are given by

Theorem 1.3 Let n € N. Then

20(n) — 2a3(n) if n =1 (mod 6),
120(n) — 240 (n/2) if n = 2 (mod 6),
N (222 + 2% + 222 + 3t> + 22y + 222 + 2yt = n) = Bo(n/3) #n = 3(mod 6),
6o(n) —120(n/2) if n = 4 (mod 6),
4o(n) if n =5 (mod 6),
240(n/3) — 48c(n/6) if n = 0(mod 6),
where
n*(62) = Z az(n)q" and as(n) = % Z (=1)%z.
n=1

(z,y) € Z°
n=a?+ 3zy + 3y2
z =2 (mod 3)
y=1 (mod 2)

Theorem 1.4 Let n € N. Then

N (222 + 2y* + 227 + 312 + 22y + 222 = n)

3 1 :
3A1,12(n) — A_g _a(n) + §A,4,,3(n) - §A1271(n) —3a4(n) if n=1(mod 2),

9 3
= 5141,12(71) - 514—3,—4(71)
3 1
o ALa2(n) = 5 A3 —a(n) + 344 —3(n) — A12.1(n)

where

2(42)n3(62 = "
n (77()2772)( ) = Z as(n)q" and a4(n) = Z
n=1 (i,7) € N2
i=j=1 (mod 2)
4dn = % 4 352
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Theorem 1.5 Let n € N. Then

N (22 + 2y + 222 + 4t + 2yt + 22t = n)

3 1 .
3141’12(”) — A,3)74(n) + §A,47,3(n) — 51412)1(71) — a5(n) ’Lfn =1 (mod 2),
3 3 .
= §A1712(n) - §A_37_4(n) if n =2 (mod 4),
9 3 .
5141712(71) — §A_37_4(n) + SA_47_3(71) — A1271(7’L) Zf?’L =0 (IHOd 4),
where
3(22)n?%(122) .
TR S e wnd = Y )
n(6 L 2
(i,4) EN
i=j= 1 (mod 2)
4n = 42 +d]

Theorem 1.6 Let n € N. Then

1
N(x2 4 y2 + 222 + 8t2 + 2zt = ’n,) = E(?)OALGO(TL) — AGO,l(n) — 6A5,12(n) + 5A12,5(n) — 3A,207,3(n)

+1OA,3,,20(n) — 2A,151,4(n) + 15A,47,15(n)) + ag(n),

where

n%(2 )(152 (60z)
n*(2)n(42)n(30z) Z%

Theorem 1.7 Let n € N. Then

30(n) — az(n) if n =1 (mod 4),
20(n) — az(n) if n = 2 (mod 8),
20(n) if n=3,6(mod 8),
N(2? +2y% + 222 + 5% + 2yt + 22t = n) = go(n/4) in - iimoj ;?)’
if n = 7(mod 8),
4o(n/4) if n = 8(mod 16),
20(n/4) if n = 12 (mod 16),
8a(n/16) — 320(n/64) if n =0(mod 16),

where
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and

> (—=1)r=1/2p if n=1(mod 4),
(r,s) ENXZ
r=1 (mod 2)
n=r? + 452

2
ar(n) = _1)(r=1)/2 =
7(n) z(n/2) ( )ng (~1) r o ifn=2(mod 8),
r=1 (mod 2)
n/2:r2+452

0 ifn=0,3,4,6,7(mod 8).

2. Preliminary results

We use the bound given in Theorem 2.1 to show the equality of two modular forms in the same modular space,
see [15, Section 3.3] for a proof of this result. This bound goes back to Hecke and is called either the Hecke

bound or the Sturm bound in the literature.

Theorem 2.1 Let N € N. If

f=2"ang" € My(To(N), x)

n=0
and
g = Z bnqn S Mk(FO(N)7X)
n=0
and
k 1
an = b, forn=0,1,2,..., [ENH(l—i—;)}
p|N
then f=g.

We use the following theorem to determine if a given eta quotient f(z) is in a certain modular space, see
[15, Theorem 5.7] and [16, Corollary 2.3].

Theorem 2.2 Let N € N. Let

f2) =¥ (dz)

AN

be an eta quotient, where d runs through the positive divisors of N and r(d) € Z for each d | N. Suppose that

If f(2) satisfies the following conditions
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(i) Y d-r(d)=0(mod 24),

(i) Y % -7(d) = 0 (mod 24),

>0 for each positive integer e dividing N,

then

f(z) € My(To(N), x),

M
where x is the Dirichlet character (T) and M is the integer defined by

M = (—=1)F [T "

AN

If f(z) satisfies (i), (ii) and

(iv > 0 for each positive integer e dividing N ,

cd(d, e)? - r(d)
) g
2
then

f(2) € Sk(To(N), x)-

The next theorem identifies the modular space to which the theta function of a positive-definite integral

quadratic form belongs, see [18, Theorem 10.1].

Theorem 2.3 Let f:= f(x1,...,2x) be a positive-definite integral quadratic form in k variables and let A(f)
be the matriz of f(x1,...,zk). Let N be the level of f(x1,...,xk), that is, the least positive integer such that

NA(f)f1 s an integral matriz with even diagonal entries. Then
0r(2) € Myy2(Lo(IN), X),

where the character x is given by

(Qd%A(f)) if k is odd ,
) (—(_1)k/2 detA(f)) if k is even.

The following theorem identifies a difference of theta functions as a cusp form, see [18, p. 365].

Theorem 2.4 Let f := f(x1,...,2) and g := g(x1,...,xk) be two positive-definite integral quadratic forms in
k variables which belong to the same genus. Let 0(z) and 8,(z) be the theta functions of f and g respectively.
Then 05(z) — 04(2) is a cusp form.
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In two of our proofs we make use of properties of Ramanujan’s theta functions ¢(q) and v(q) defined in

(1.3). Basic properties of these functions include

0(a) + ¢(=a) = 20(q"), »(q) — p(—q) = 4q0(¢®), (2.1)
_ B¢ E%(q)
@(Q) T B2 (q)E2 (q4) ) (_Q) - E(q2) ) (22)
_ E*dY) . _ E@E("
where
Elg) = [[0-a"). (2.4
n=1
Proofs of these results can be found in Berndt’s book [14]. It follows from (1.2) and (2.4) that
n(z) = ¢ E(g). (2:5)
3. Proof of Theorem 1.1
Let
Q1 :=Q1(x,y,2,t) = 2% + 9> + 22 + 612 (3.1)
and
Q2 = Qa(x,y, 2, 1) = 2% + 2y% + 222 + 2% + 2yt. (3-2)

The classes of the forms in (3.1) and (3.2) belong to the same genus of discriminant 96 and this genus contains

no other classes [17].
The matrix A(Q) of @y is diag(2,2,2,12) so det A(Q1) = 96 and A(Q1)~! = diag(1/2,1/2,1/2,1/12).
Thus 24A4(Q;)~! = diag(12,12,12,2) showing that the level of @1 is 24. The character associated with Q; is

(@ () (2

Hence by Theorem 2.3 we have

0, (2) € My(T(24), (%)). (3.3)
The matrix A(Q2) of Q2 is
2 0 00
@)= o 4 o
0 2 0 4
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so det A(Q2) = 96 and

24A(Q2) " =

O O oW

= O o O

o oo O
o

Hence the level of Q2 is 24 and the character associated with Qs is

()= (D)= (%)
Thus by Theorem 2.3 we have

B0, (=) € My(To(24), (%))

From (3.3), (3.4) and Theorem 2.4 we deduce
24
00, (2) — 0. (2) € $2(To(24), (=)):

24
The bound of Theorem 2.1 for Ms(I'y(24), (?>) is

Il
—
=~

| wo
|
hii
Il
oo

e )]

pl24

The first nine terms of 6, (2) and 6g,(z) are

00, (2) = 1+ 6q + 12¢* + 8¢® + 6¢* + 244¢° + 26¢° + 124" + 36¢° + - - -

and

00, (2) = 14 2q +8¢% + 16¢° + 14¢* + 24¢° + 22¢° + 12¢" + 44¢° + - --

so that the first nine terms of fg, (2) — Qg,(z) are
0, (2) — 0q,(2) = 4q +4¢* — 8¢° — 8¢" +4¢° — 8¢° + - --

By Theorem 2.2 we have

o n4(2z)n(3z)172(8z)77(122) %
Ai(z) = PG © So(To(24), ( . )),

_n(z)n(42)n* (62)n*(242) 24
Ci(2) = n(22)n(32)n%(122) € 52(To(24), ( * >)’

_ n*(2)n*(42)n(62)n(242) 24
Co(2) = o samze) 224, (S

(3.4)

(3.9)

(3.10)
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We define a1(n), ci1(n) and ca(n) for n € N by

Ai(2) = ar(n)g", Ci(z) =Y _cri(n)g", Ca(z) = > ca(n)q™
n=1 n=1 n=1
The first nine terms of each of A;(z), C1(z) and Cs(z) are
A(2) =g+ —-2¢° - 20" +¢°* — 245+ -, (3.11)
Ci(2)=¢*—¢’ —¢® —2¢° + -~ (3.12)
Co(2) =q—2¢> +¢* —2¢* +4¢° +4¢5 —--- . (3.13)

Appealing to (3.6), (3.7) and (3.11)—(3.13), we see that 0¢g,(z) — 0g,(2) and 44;(z), as well as A;(z) and
3C1(2) + C2(z), agree up to the Hecke bound. Hence, by (3.5), (3.8)—(3.10) and Theorem 2.1, we see that

00, (2) — b, (2) = 4A1(2) (3.14)
and
A1(z) = 3C1(2) + Ca(2). (3.15)
Equating coefficients of ¢" (n € N) in (3.14) and (3.15) we obtain
N(z? + 9%+ 22 +6t2 = n) — N(2? + 2y% + 222 + 2t> + 2yt = n) = 4a1(n) (3.16)
and
ai(n) = 3c1(n) + ca(n). (3.17)

Alaca, Alaca and Aygin [3, Theorem 4.1(xii)] have recently evaluated N (z? + y? + 22 + 6t = n). They proved
that

1 4 8
N(ZC2 + y2 + 22 + 6t2 = TL) = 4A1,24(n) - §A2471(n) — gA_37_8(TL) + A_&_g(n) + 881 (TL) + gCQ(n). (318)
The formula for N (22 + 2y? + 222 + 2t2 + 2yt = n) now follows from (3.16)—(3.18). d

4. Proof of Theorem 1.2
Let

Q1= Q1(2,y,2,t) = 2 +y* + 2 + 7t (4.1)
and
Q2 := Qa(z,y, 2,t) = 2 +y? + 222 + 41> + 22t. (4.2)

The classes of the forms in (4.1) and (4.2) belong to the same genus of discriminant 112 and this genus contains

no other classes [17].
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The matrix A(Q1) of @y is diag(2,2,2,14) so det A(Q1) = 112 and A(Q;)~! = diag(1/2,1/2,1/2,1/14).
Thus 284(Q;)~! = diag(14, 14, 14,2). Hence the level of @Q; is 28. The character associated with Q; is

(@) (1) (23

Therefore by Theorem 2.3 we have

28
00, (=) € Ma(To(28), (=)): (4.3)
The matrix A(Q2) of Q2 is
2 0 00
0 2 00
0 0 2 8
so det A(Q2) = 112 and
14 0 0 0
_ 0 14 0 0
284(Q2)7" = 0 0 8 -2
0 0 -2 4

Hence the level of @) is 28 and the character associated with Qs is

(@) _ 2y _ ()
Thus by Theorem 2.3 we have
0. (2) € Ma(To(28). (2)). (4.4)

From (4.3), (4.4) and Theorem 2.4, we deduce

B0, (2) — 8o, (2) € Sa(To(28), (?)) (45)
The bound of Theorem 2.1 for Ma(To(28), (?) ) is

SR r
Define

At = oo = ST, @)
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Applying Theorem 2.2 to the eta quotient in (4.7), we deduce that

Aa(z) € Su(To25). ().

The first nine terms of 6, (), 0g,(2), 0o, (z) — 0g,(2) and As(z) are

00, (2) = 1+6q+12¢> +8¢° +6¢" +24¢° +24¢° +2¢" +24¢° + - - -,

00,(2) = 1+4q+6q%+8¢° +16¢* + 24¢° + 24¢° + 16¢7 + 26¢° + - - -,
00,(2) —0q,(2) = 2q+6¢> —10¢" —14¢" —2¢% —- -+,

Ax(z) = q+3¢—5¢"~7¢ —¢*— -,

so that by (4.6) we see that 0, (2) — 0¢g,(z) and 2A2(z) agree up to the Hecke bound. Hence, by (4.5), (4.8)

and Theorem 2.1, we have

00, (2) = 0q,(2) = 242(2).

By Theorem 2.2 or [10, Theorem 3.2(b)] we have

P (82)n(282)

7(562) € 52(T'o(56), (2*8))’

< W P(42)n (562) 28
Ba(z) i= ;bg(n)q =€ Sa(To(56), ( . )),
> 3(2)n%(142 28
Bue) = Yo = T € satvfon, ()

By Theorem 2.2 we also have

A5(2) € Sa(r0(56). ().

2
The bound of Theorem 2.1 for M5(I'y(56), ( f)) is

The first 17 terms of Az(z), B2(z), B3(z) and By(z) are

As(2) = q+3¢* = 5¢" = 7¢" — ¢® = 3¢° + 14g™ + 7¢"* +11¢"° — 9¢"* —
By(z) =q—3¢"+ -,

Bs(z)=q" —2¢" + -,

By(2) = ¢ —3¢* + 5¢* — 7¢" + ¢® — 3¢° + 14¢" — 7¢** — 114" + - -

Thus the first 17 terms of 2By(z) — 14B3(z) — By(2) are

2By(z) — 14B3(2) — By(2) = ¢+ 3¢*> — 5¢* — 7" — ¢® — 3¢° + 14¢" + 7¢"* + 114" —
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Hence by (4.14) we see that 2Bs(z) — 14B3(z) — B4(z) and As(z) agree up to the Hecke bound. Then, by

(4.10)—(4.13) and Theorem 2.1, we deduce
2B5(2) — 14B5(z) — By(2) = Aa(2).
Equating coefficients of ¢" (n € N) in (4.9) and (4.15), we obtain
N(2? 4+ y* + 22 + T2 = n) — N(z® + 2y* + 227 + 4% + 22t = n) = 2a2(n)
and
2bs(n) — 14b3(n) — by(n) = as(n).
Recently A. Alaca and J. Alanazi [10, Theorem 2.2(a)] established for n € N that

7 1 7 1
ZV(J}2 + y2 + 22 + T2 = n) = 5141,28(77/) — 11428,1(77/) + 11474’,7(’”) — 514777,4(71)

The formula for N (2?2 + 2y? + 222 4 4t2 + 22t = n) now follows from (4.16)—(4.18).

5. Proof of Theorem 1.3
Let

Ql = Ql(xvyaz7t) = {E2 +y2 + 22 +9t2
and

Q2 := Qa(z,y, 2,t) = 207 + 2y% + 227 + 312 + 22y + 222 + 2yt.

(4.15)

(4.16)

(4.17)

(4.18)

(5.1)

(5.2)

The classes of the forms in (5.1) and (5.2) belong to the same genus of discriminant 144 and this genus contains

no other classes [17].

The matrix A(Q1) of Q1 is diag(2,2,2,18) so det A(Q1) = 144 and A(Q1)~! = diag(1/2,1/2,1/2,1/18).
Thus 36A(Qq)~! = diag(18,18,18,2). Hence the level of 1 is 36. The character associated with @Q; is the

trivial character modulo 6 as det A(Q;) = 2% - 32 is a perfect square. Therefore by Theorem 2.3 we have

0, (2) € M2(I'o(36)).

The matrix A(Q2) of Q2 is

4 2 2 0
2 4 0 2
0 2 0 6
so det A(Q2) = 144 and
20 —12 -—10 4
364(Q2)" = 12 18 6 -6

-10 6 14 -2
4 -6 =2 8

(5.3)
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Hence the level of @2 is 36 and the character associated with @9 is the trivial character modulo 6 as

det A(Qz) = 2* - 3% is a perfect square. Thus by Theorem 2.3 we have
Bau(2) € Ma(To(36)). (5.4)
From (5.3), (5.4) and Theorem 2.4, we deduce
00,(z) —0g,(2) € S2(T'h(36)). (5.5)

The bound of Theorem 2.1 for M5(T'x(36)) is

[ﬁn(ul)}:[ﬁ;-ﬂ:m. (5.6)

1222
The first 13 terms of 0¢, (¢) and 0¢,(z) are
00, (2) = 1+ 6q + 12¢% + 8¢° + 6¢* + 24¢° + 24¢° + 12¢® + 32¢° + 36¢'° + 48¢"* + 24¢'% + - -
and
00,(2) = 14+12¢ + 8¢ + 6¢* + 24¢° + 24¢° + 24¢" + 12¢® + 32¢° + 36¢'° + 48¢" +24¢"2 + - --

so that the first 13 terms of 6¢, (z) — 0g,(z) are

0, (2) — 0q,(2) = 6g —24¢" +--- . (5.7)
Now by Theorem 2.2 we have
1*(62) € S2(T'o(36)). (5.8)
The first 13 terms of n*(6z) are
7'(62) =q—4q" +--- . (5.9)

From (5.6), (5.7) and (5.9) we see that g, (2) — 0g,(2) and 6n*(6z) agree up to the Hecke bound. Hence, by
(5.5), (5.8) and Theorem 2.1, we have

0. (2) = 0q,(2) = 61" (62). (5.10)
Equating coefficients of ¢" (n € N) in (5.10), we deduce
Nz + %+ 22 + 9t = n) — N(22? + 2% 4 22% + 3t + 22y + 222 + 2yt = n) = 6az(n). (5.11)

A. Alaca [1, Theorem 1.4] has shown for n € N that

20(n) + 4as(n) if n =1 (mod 6),
120(n) — 240(n/2) if n = 2(mod 6),
N 442+ 2 492 =) = 8a(n/3) if n = 3 (mod 6), (5.12)
6o(n) —120(n/2) if n =4 (mod 6),
4o(n) if n = 5(mod 6),
240(n/3) — 480 (n/6) if n =0 (mod 6)
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From the definition of as(n) we have az(n) =0 if n # 1 (mod 6). The formula for N (222 + 2y + 222 + 3t% +
2xy + 2zz + 2yt = n) now follows from (5.11) and (5.12). The origins of the classical formula for az(n) stated
in the theorem are given in [1, pp. 152, 153]. O

6. Proof of Theorem 1.4
Let

Q1= Qi(w,y, 2, t) = 2 +y* + 2% + 12¢° (6.1)
and
Qo = Qa2(z,y, 2,t) = 2% + 2y* + 22° + 3t + 22y + 2722. (6.2)

The classes of the forms in (6.1) and (6.2) belong to the same genus of discriminant 192 and this genus contains

no other classes [17].
The matrix A(Q1) of Q1 is diag(2,2,2,24) so det A(Q1) = 192 and A(Q1)~! = diag(1/2,1/2,1/2,1/24).
Thus 48A(Q;)~! = diag(24,24,24,2). Hence the level of Q; is 48. The character associated with Q; is

(g) = (E) . Therefore by Theorem 2.3 we have

* *
12
00, () € Ma(To(48), (=), (6.3)
The matrix A(Q2) of Q2 is
4.2 20
2 4 0 0
AQ)I=15 o 4 o
000 6
so det A(Q2) = 192 and
24 —12 —12 0
_ -12 18 6 0
BAQ)T = 5 5 18 0
0O 0 0 8

192 12
Hence the level of @2 is 48. The character associated with Qs is (%) = (?) . By Theorem 2.3 we have

0. (2) € Ma(To(18). (2)). (6.4)

Thus, by (6.3), (6.4) and Theorem 2.4, we have

0o, (=)~ B,(2) € Sa(To(48), (1) (6.5)
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12
The bound of Theorem 2.1 for My (T((48), (?)) is

S (U IR T ©o

pl48
The first 17 terms of 6, (2) and 6g,(z) are
0g,(2) = 14 6q+12¢% +8¢> + 6¢* + 24¢° + 244¢° + 12¢® + 30¢° + 244¢*°
+24¢"" +10¢'% + 36¢" + 72¢"* +16¢"° + 18¢"° + - --
and

00,(2) = 14 12¢% 4+ 2¢° + 6¢* + 24¢° + 24¢° + 12" +12¢° + 48¢° + 24¢"°
+24¢* + 10¢'? + 48¢" + 72¢M + 1645 +18¢*C + - -

so that the first 17 terms of 6¢, () — 0g,(z) are

00, (2) — 0g,(2) = 6q + 6¢> — 12¢" — 18¢° — 12¢™ +-- - . (6.7)
By Theorem 2.2 we have
i (42)n* (62) € So(Tp(48) (E)) (6.8)
T](?Z) 2 0 ) % . .
2 4 3
The first 17 terms of w are
n(2z2)
2(42)n3(6
n(2z)

42)n3(62)

2
Thus, by (6.6), (6.7) and (6.9), 6g,(z) — 0g,(z) and 62 ( (22) agree up to the Hecke bound. Hence, by
n(2z

(6.5), (6.8) and Theorem 2.1, we have

2 3
n°(42)n°(62)
0 -0 =6——F——= 6.10
0.(2) = b () =0T (6.10)
Equating coefficients of ¢" (n € N) in (6.10), we obtain
N(z? +y? 4+ 22 + 12t = n) — N(222 + 2y* + 222 + 3t> + 22y + 222 = n) = 6ay(n). (6.11)

As in [7, pp. 32, 33] we define
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and

From [6, pp. 541, 542] or [13, pp. 48, 49] we have
P (@)p(—4") = (1 +p)*/*(1 = p)/* (1 + 2p)° k2

)9/4(1 + 2p)1/4k_2

and
P (—a)e(d®) = (1 +p)**(
so that
P (@e(=a*) = " (=0)p(a”) = 3p(1 + p)*/* (1 = p)/* (1 + 2p) /4 (2 + p)k°.
By [6, Theorem 2.3(b), Proposition 2.8] we have

oo - N 1
> ( > (DU = (P @e(—a") = ¢ (—a)e(a) (6.12)
n=1 (4,4) e N?

zzjzlz(mogm 1

dn =% + 3j — 1p(1_~_p)3/4(1 )1/4(1+2p)1/4(2—|—p)k )

From [9, p. 92] or [13, pp. 48, 49] we have
H(l L —1/129-1/31/12(1 4 V11201 p) VA1 4 2p) /42 4 p) AR/

)1/8(1 + 2p)1/8(2 +p)1/2k1/2

n=1
H(l _ q4n) — q71/6272/3p1/6(1 +p)1/24(
n=1
H(1 qﬁn) —1/42 1/3 1/4(1 +p>1/4< )1/12(1+2p)1/12(2+p)1/12k1/2
n=1
so that
N n (4z r ") (1 — ™)’
;M(n)q =l 1;[ 1 — (6.13)
1
:zp(1+p)3/‘*( )AL+ 2p) 1 (2 + p)R®.
Equating coefficients of ¢" (n € N) in (6.12) and (6.13), we deduce
as(n) = > (-1)=D/25 (6.14)
(i,7) € N?
i=j=1 (mod 2)
4n = i% 4 352
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which is the formula for a4(n) stated in the theorem. From the definition of a4(n) or (6.14) we see that

as(n) =0 for n =0 (mod 2). Finally, from [6, Theorem 7.2(a), p. 571], we have for n € N

3A112(n) — A_s _a(n) + 3A74773(n) - %Am,l(n)
+3a4(n) if n =1 (mod 2),
N+ +22+12t2 =n) = gz‘h,m(n) 3 gA_g,_4(n) if 1= 2 (mod 4),
gAl,lz(n) — %A,g’%(n) +3A4_4_3(n) — A121(n) if n=0(mod 4),
and the formula for N (222 + 2y? + 222 + 3t? + 22y + 222 = n) follows from this formula and (6.11). O

7. Proof of Theorem 1.5

The proof follows in a similar fashion to that of Theorem 1.4. Let
Q1= Qi(z,y,2,t) = 2° + y? + 32° + 41 (7.1)
and
Q2 := Qo(x,y, 2,t) = 2% + 2y + 22% + 41% 4 2yt + 22t. (7.2)

In this case the classes of the forms in (7.1) and (7.2) belong to the same genus of discriminant 192 and this

genus contains no other classes [17]. As in Section 6 we can show that

3 2
n°(22)n"(12z)
0 — 0. =2—— " 7.3
0.(2) — B, () =2 (73
Equating coefficients of ¢" (n € N) in (7.3) we obtain
N(z? 4% + 322 + 42 = n) — N (2% + 2y% 4 222 4 4% + 2yt + 22t = n) = 2a5(n). (7.4)
From [9, p. 92] or [13, pp. 48, 49] we have
[ee]
H(l _ q12n) _ q—1/22—2/3p1/2(1 _|_p)1/8(1 _p)1/24(1 + 2p)1/24(2 +p)1/6k‘1/2.
n=1
Appealing to this formula and the formulas for H (1—¢*") and H (1 —¢°") given in Section 6, we obtain
n=1 n=1
S g = T2 Fp a0 ) 15)
n=1 e - 77(62) N qn:l 1- q6” .

1
= (1 + )41 = p)¥ A1+ 2p) 4 (2 + p)k2.
From [6, pp. 541, 542] we have
0(@)¢*(—¢*) = (1+p)?*(1 — p)¥/*(1 + 2p)*/*k?
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and

p(=0)¢*(¢%) = (L+p)V (1= p)* (1 + 2p)* 182,

Thus
0(@)¢* (%) — o(—=a)*(¢*) = p(1 + )/ (1 — p)*/*(1 + 2p)*/*(2 + p)k. (7.6)

Hence, by [6, Theorem 2.3(a), Proposition 2.8], (7.6) and (7.5), we deduce

SO ) = @) - o))

n=1 4 (i,j% G(de )
P=7= mo
an=i* 4557 = p(L+ )1 = p)P (L + 2p) (2 4+ p)k? (7.7)
= > as(n)g
n=1

Equating coefficients of ¢ (n € N) in (7.7), we obtain
as(n) = > (—1)t=b/%, (7.8)

(4,4) € N?

i=j=1 (mod 2)
4an = % + 352

which is the formula for as(n) stated in the theorem. From the definition of as(n) or (7.8) we see that az(n) =0
for n = 0(mod 2). Finally from [6, Theorem 7.2(b)] we have for n € N

3
3A112(n) — A3 —a(n) + 514—4,—3(”) - §A12,1(ﬂ)
+as(n) if n =1 (mod 2),
N 2 + 2 =+ 3 2 4 4t2 — —
(@ +y" +32 ") gAng(n) - %A,37,4(n) it n = 2 (mod 4),
9 3 :
§A1712(n) - §A_37_4(n) + 3A_47_3(’ﬂ) — A1271(ﬂ) ifn=0 (IIlOd 4),

and the formula for N (22 + 2y? + 222 + 4t2 + 2yt + 2zt = n) follows from this formula and (7.4). O

8. Proof of Theorem 1.6
Let

Q1= Qu(z,y, 2,t) = 2® +y* + 327 + 5¢° (8.1)
and
Q2 = Qa(x,y, 2, 1) = 2% + y* + 227 + 82 + 22t (8.2)

The classes of the forms in (8.1) and (8.2) belong to the same genus of discriminant 240 and this genus contains

no other classes [17].
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The matrix A(Q1) of Q1 is diag(2,2,6,10) so det A(Q1) = 240 and A(Q1)~! = diag(1/2,1/2,1/6,1/10).
Thus 60A4(Q;)~! = diag(30, 30, 10,6) showing that the level of @1 is 60. The character associated with Q; is

(M) _ (@) _ (@),

* * *

Hence by Theorem 2.3 we have

0, (2) € My(T'o(60), (?)) (8.3)
The matrix A(Q2) of Q2 is
2 00 O
AQ)=|g oy s
0 0 2 16

so det A(Q2) = 240 and

30 0 0 0
0 30 0 O
0 0 16 -2
0o 0 -2 4

60A(Q2) " =

Hence the level of Q5 is 60 and the character associated with Qs is

() = ()= (%)
Thus by Theorem 2.3 we have
0, (2) € Ma(To(60), (). (8.4)

From (8.3), (8.4) and Theorem 2.4, we deduce

b, (2) ~ . (2) € S>(To(60), () (85)
60y, |
The bound of Theorem 2.1 for M>(I'y(60), (?>) is
260 1 3 46
[127)1_6[0(”79)}‘[10'2‘3'5}‘24' (8.6)

The first 26 terms of 6¢, (z) and 0¢g,(z) are

0g,(2) = 144q+4¢* +2¢° + 12¢* + 18¢° + 8¢° + 16¢" + 24¢® + 28¢° + 40¢"°
+8¢M +26¢'2 + 72¢" 4 16¢M 4 16¢"° + 44¢'° + 44¢'7 + 6848
+244¢" + 34¢%° + 80¢%" + 72¢% + 28¢%3 + 40¢%* + 124¢% + - --
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and

0q,(2) = 1+4q+6¢° + 8¢ + 12¢* + 8¢° + 8¢° + 16" + 10¢® + 28¢° + 40¢™°
+8q11 +44q12 + 72q13 + 16q14 + 16q15 +44q16 +64q17 + 62q18
+24¢" + 44¢%° + 80¢> + 72¢% + 16¢* 4 40¢** + 124¢% + - --

so that the first 26 terms of 6g, () — 0g,(2) are
00,(2) — 0g,(2) = —2¢* — 6¢° + 10¢° + 14¢® — 18¢"? — 20¢"" + 6¢'® — 10¢%° + 12¢*> + - - . (8.7)

From Theorem 2.2 we deduce that

9
n?(22)n(152)n(60z2) 60
€ 55(T'g(60), [ —)). 8.8
n3(z)n3(42)n(30z) 2(I'o(60) ( * >) (8:8)
9(22)n(1
The first 26 terms of — 3( 2)773( 52)n(60z)
n*(2)n? (42)n(30z)
9
n°(2z)n(152)n(602) 2 3 5 8 12 17 18 20 23
=q°+3¢°—5¢° —7¢° +9¢“+10¢" " —3¢° +5q"" —6¢=° +---. (8.9)
m*(2)n°(42)n(302)
9
n”(22)n(152)1(602)
By (8.6), (8.7) and (8.9) 6 — 0. d -2 to the Hecke bound. H b
y (8.6), (8.7) and (8.9) g, (z) — 0¢g,(2) an 7 (2) (@2)0(302) agree up to the Hecke boun ence, by
(8.5), (8.8) and Theorem 2.1, we have
9
n”(22)n(152)1(602)
0 — 0 = -2 . 8.10
01(2) b, (2) = —2 LI (810)
Equating the coefficients of ¢" (n € N) in (8.10) we obtain
N(z? +y* + 322 +5t2 =n) — N(2? +y* + 222 + 8% + 22t = n) = —2a6(n). (8.11)
A. Alaca [2] has shown that
1
]\/v(JL‘2 + y2 + 32’2 + 5t2 = TL) = ﬁ (30141760(’”) — A6071(n) - 6A5712(n) + 5A1275(n) (812)

—3A,20’,3(ﬂ) + 10A,3,,20(n) — 2A,15,,4(n) + 15A,4,,15(n)> — ag(n).

The formula for N (2?2 + y? + 222 + 8t2 4 22t = n) now follows from (8.11) and (8.12). O

9. Proof of Theorem 1.7
Let

Q1 := Qi(x,y, 2,t) = 2 + y* + 2% + 16t (9.1)
and

Q2 := Qo(x,y, 2,t) = 2% + 2y + 22% 4 5t% 4 2yt + 22t. (9.2)
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The classes of the forms in (9.1) and (9.2) belong to the same genus of discriminant 256 and this genus contains
no other classes [17].

The matrix A(Q1) of Q1 is diag(2,2,2,32) so det A(Q1) = 256 and A(Q1)~! = diag(1/2,1/2,1/2,1/32).
Thus 64A4(Q;)~! = diag(32, 32, 32,2) showing that the level of @1 is 64. The character associated with Q; is

the trivial character modulo 2 as det A(Q;) = 28 is a perfect square. Therefore by Theorem 2.3 we have

0, (2) € Ma(To(64). (93
The matrix A(Q2) of Q2 is
200 O
AQ)=|g o4
0 2 2 10
so det A(Q2) = 256 and
32 0 0 0
- | 3
0 -4 -4 8

Hence the level of @3 is 64. The character associated with @5 is the trivial character modulo 2 as det A(Q2) =

28 is a perfect square. Thus by Theorem 2.3 we have
0, (%) € Ma(T'o(64)). (9.4)
From (9.3), (9.4) and Theorem 2.4, we deduce
00,(z) — 0g,(2) € S2(T(64)). (9.5)

The bound of Theorem 2.1 for M3(I'g(64)) is
2-64 1
I 0+2)] =16 9.6)

The first 18 terms of 6¢, (2) and 6g,(z) are
00,(2) = 14 6q+12¢% +8¢% + 6¢* + 24¢° + 2445 + 12¢® + 30¢° + 24¢*°
+24q11 4 8q12 4 24q13 +48q14 4 8(]16 4 60q17 e
and

00,(2) = 14 2q+4¢* +8¢> + 6¢* + 16¢° + 24¢° + 12¢° + 42¢° + 40¢"°
—|-24q11 —|—8q12 +48q13 —|—48q14 +8q16 +52q17 +...

so that the first 18 terms of 6g, (z) — 0g,(z) are

00,(2) —0g,(2) = 4q+8¢* +8¢° — 12¢° — 16¢™° — 24¢™® +8¢*" +-- - . (9.7
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From Theorem 2.2 we deduce that

5 3

n°(22)n°(8z)

—_— I'p(64)). .
5 3
n°(22)n°(82)

The first 18 terms of ———~——> are

n*(2)n?(42)
1°(22)n°(82) — g+ 27 +2¢° —3¢° —4¢'° —6¢13 42417 4 .- | (9.9)
n?(2)n?(4z)

°(22)n°(82)

From (9.6), (9.7) and (9.9) we see that 8¢, (2) —6g,(z) and 4" 2(2) 2(48 ) agree up to the Hecke bound. Hence,
n={z)n"\2z

by (9.5), (9.8) and Theorem 2.1, we have

1’ (22)7°(82)
0 — 0 =4——"—". 9.10
0.(2) b, (2) = 4TI (9.10)
Equating the coefficients of ¢” (n € N) in (9.10), we obtain
N(z? 4% + 22 + 1612 = n) — N (2% + 2y% 4 22% 4 5t + 2yt + 22t = n) = 4ay(n). (9.11)
In [5, Theorem 4.10] it was shown that for n € N we have
3o(n) + 3K3(n) if n =1 (mod 4),
20(n) if n =3 (mod 8),
0 if n =7 (mod 8),
2 .
20(n) + G(n—ﬂ)Kg(n/Q) if n =2 (mod 8),
N(a? +y? + 22 +161° = n) = 20(n) if n =6 (mod 8), (9.12)
6o(n/4) if n =4 (mod 16),
20(n/4) if n =12 (mod 16),
120(n/8) if n = 8 (mod 16),
8a(n/16) — 320(n/64) if n =0 (mod 16),
where
Ky(n) = > (=" n=1 (mod 2). (9.13)
(r,s) e NXZ
r =1 (mod 2)

It is clear from (9.13) that K3(n) =0 for n =3 (mod 4).
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From (9.11) and (9.12) we have

N (2% 4+ 2y? + 222 4 5t% + 2yt + 22t = n)

3o(n) + 3K2(n) — 4az(n) if n =1 (mod 4),

20(n) — 4az(n) if n =3 (mod 8),

—4az(n) if n =17 (mod 8),

20(n) + 6 32)1(2(71/2) dag(n) ifn=2 (mod8),

=4 20(n) — 4az(n) if n =6 (mod 8), (9.14)

60(n/4) — dar(n) if n =4 (mod 16),

20(n/4) — 4az(n) if n =12 (mod 16),

120(n/8) — 4a7(n) if n =8 (mod 16),

8a(n/16) — 320(n/64) — 4az(n) if n =0 (mod 16).

Comparing the evaluation of N(z2 + 2y? + 222 + 52 + 2yt + 22t = n) in (9.14) with that stated in Theorem

1.7, we see that it remains to prove the following relationships between az(n) and Ka(n)
a7(n) = Ka(n) if n=1 (mod 4),
ar(2n) = 2(%)1@@) ifn=1 (mod 4),
az(n)=0 ifn=0,3,4,6,7 (mod 8).

First we prove that az(n) = Ka(n) for n = 1 (mod 4). Using (2.5) in the sum of the series defining

ar(n), we obtain

- E>(¢*)E®(¢%)
a7(n)q" = ¢———=-—-. 9.15
2 " = 4 gy (949)
Hence by (2.2) we have
> ar(n)g” = qe(q) B (¢%). (9-16)
Thus for a € {0,1,2,3} we have
> ar(n)(iq)" = i"qp(i°q) E*(*).
n=1
Hence
oo 0o 3 3 0o
43 ar(n)g" = > ar(n)g" Y i =" " ar(n)(i%g)
n=1 n=1 a=0 a=0 n=1
n =1 (mod 4)

3

= Z “iqp(iq) E*(¢°) = 4B (¢%) Y o(i%0) = 44E*(¢*)p(q"),

a=0
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by (2.1), so

o0

> ar(n)q" = qp(q*) B (¢%).
n=1
n =1 (mod 4)

On the other hand, from [5, Theorem 2.3], we have appealing to (2.1)

1

> Ky(n)g" = 1(0(@) = 2(=0)e(a)e* (=%) = av(a")¢*(=a")eld") = ¢ ) B )

n=1
n =1 (mod 4)

SO
> Ks(n)q" = qp(q*) E*(¢%)
n=1
n =1 (mod 4)
Thus from (9.17) and (9.18) we obtain
Yoar(m)g" = Y Ka(n)g",
n=1 n=1
n =1 (mod 4) n =1 (mod 4)

E?(¢"%) E*(¢®)

and, on equating the coefficients of ¢, we obtain a7(n) = Kz(n) for n =1 (mod 4).

o(q"),

(9.17)

(9.18)

2
Next we prove that a7(2n) = 2(7>K2(n) for n =1 (mod 4). Let w be a primitive 8th root of unity.
n

From (9.15) we obtain for b € {0,1,2,3,4,5,6,7}
Y ar(n)(wq)" = wbqp(wq) B (¢°).
n=1

Hence

n=1
n =2 (mod 8)

7

-

oo oo 7 7 0o
8 Z a7z(n)q" = Z a7(n)q" Zwb("72) = wazb Z a7(n)(wb
n=1 b=0 b=0 n=1

w’q)"

=Y W Plgp(w ) EX(¢*) = ¢E*(¢°) Y _w "p(w’q)

b=0 b=0

I
_
=
w
=
=
(]~
S
&

00 7
n2 2 2_
> W) =B (¢%) Y g Y W
b=0

b=0 n=-—oo n=-—oo
=8¢E%¢%) Y. ¢ =8B Y. ¢
n? ;1:(;1?11 8) n ETL;(;EZ 2)

= 44E°*(¢*)(p(q) — o(—q)) = 16¢*E*(¢®)v(¢®),
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by (2.1), so

oo

> ar(2n)¢® = 2¢°E*(¢*)v(q®),
n=1
n =1 (mod 4)

and thus replacing ¢? by g we obtain
> ar(2n)g" = 2qE°(¢")w(q?).

=1
(mod 4)

=3

n =

2
On the other hand, as Ka(n) =0 for n = 3 (mod 4) and (ﬁ) =0 for n =0 (mod 2), we have appealing to
[5, Theorem 2.4(iv)] and (2.1)—(2.3)

2. (%)KQ(”)QH ) (%)Kz(”)qn = 2 (p(a) = ¢(=a)p(=a")¢* (—¢°)
n=1 n=1
n =1 (mod 4)

Thus

n=1 n=1
1 (mod 4) n =1 (mod 4)

and equating the coefficients of ¢ we obtain the asserted result.
Finally we prove that a7(n) =0 for n =0,3,4,6,7 (mod 8). We have by (9.16)

S ar(n+ 1) = g 3 ar(n)g" = E-2() E*(¢2) E2(¢") E* (). (9.19)
n=0 n=1

Applying [4, Theorem 1.2(ii)(iii) (v) (vi)(vii)] to (9.19), we deduce
a7(8k +3) = a7(8k +4) = a7(8k +6) = a7 (8k +7) = a7z (8k +8) =0

for all k£ € Ny, which is the asserted result. (I
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