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Abstract: An asymptotic theory is developed for a class of third-order differential equations. We identify a critical case
to obtain the asymptotic form of three linearly independent solutions for large x .
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1. Introduction
In this paper, we consider the asymptotic form of three linearly independent solutions of the third-order
differential equation

(q(qy′)′)′ + py′ + ry = 0, (1.1)

as x→ ∞ , where the coefficients q , p and r are nowhere zero in some interval [a,∞) .
x is the independent variable and the prime is d/dx . We do not need to restrict ourselves to real valued
coefficients. We shall consider the case where r and q are small compared to p to identify the critical case
which is given by:

p′

r
→ σ as x→ ∞, (1.2)

where σ is a nonzero constant.
If p = Bxα1 and r = Cxα2 , then (1.2) is given by

α1 − α2 = 1, (1.3)

as we shall see in Section 5. The critical case (1.2) is given in Section 4. Pfeiffer [9] considered (1.1) with
q = 1 , subject to the condition r′ = o(r4/3) as x → ∞ . Similar third-order equations to (1.1) have been also
investigated by Al-Hammadi [1–3] and Unsworth [10] . Eastham [4] considered a critical case for a fourth-order
differential equation and showed that this case represents a borderline between situations where all solutions
have a certain exponential character as x→ ∞ and where only two solutions have this character.
In this paper we use the asymptotic theorem of Eastham (see Section 2 of [5] and Theorem 1.6.1 in [6]) to
obtain the solutions of (1.1).
The general features of our method are given in Sections 2 and 3, the main theorem for the differential equation
(1.1) is stated and proved in Section 4. Finally, in Section 5, we give some examples.
For the convenience of the reader we state here the aforementioned asymptotic theorem of Eastham.
∗Correspondence: profmaths_alhammadi@hotmail.com
2010 AMS Mathematics Subject Classification: 34E05

This work is licensed under a Creative Commons Attribution 4.0 International License.
2147

https://orcid.org/0000-0001-9456-6790


AL-HAMMADI/Turk J Math

Theorem 1.1 (Eastham 1985, [5]) In the system

Y ′(x) = {Λ(x) +R(x)}Y (x), (1.4)

let Λ(x) be an n× n diagonal matrix,

Λ(x) = diag (λ1(x), ..., λn(x)) ,

in which λ(x) − λj(x) is nowhere zero in some interval [0,∞) for each pair of unequal integers i and j in
[1, n] . Let the n× n matrix R(x) satisfy

(i) {λ(x)− λj(x)}−1R(x) → 0 as x→ ∞ ;

(ii)
(
{λ(x)− λj(x)}−1R(x)

)′ ∈ L(a,∞),

for each unequal i and j in [1, n] . Also for 1 ≤ k ≤ n , let the eigenvalues µk(x) of Λ(x) + R(x) satisfy the
condition (L) in [5].
Then, as x→ ∞ , (1.4) has solution Yk(x) with the asymptotic form

Yk(x) = {ek + 0(1)}exp
(∫ x

a

µk(t)dt

)
,

where ek is the coordinate vector whose k th component is unity and other components are zero.

We note that in section 2 of [5] it is shown that the above theorem also applies to the more general system

Y ′(x) = {Λ(x) +R(x) + S(x)}Y (x),

where S is L(a,∞) and then we need only Λ and R to satisfy the above theorem.

2. The general method

We write (1.1) in a standard way [8] as a first-order system.

Y ′ = A(x)Y, (2.1)

where the vector Y and the matrix A(x) are given by

Y =

 y
qy′

q(qy′)′

 and A(x) =

 0 q−1 0
0 0 q−1

−r −pq−1 0

 (2.2)

As in [1], we express A in its diagonal form

T−1AT = Λ, (2.3)

where
Λ = dg(λ1, λ2, λ3). (2.4)
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We therefore require the eigenvalues λj and eigenvectors νj of A , where(1 ≤ j ≤ 3) . Writing

q2 = s, (2.5)

then the characteristic equation of A is given by

sλ3 + pλ+ r = 0. (2.6)

The eigenvector uj that corresponds to λj is

uj =
(
1 s1/2λj sλ2j

)t (2.7)

where the superscript t denotes the transpose, and at this stage we assume that λj are distinct. Thus the
matrix T in (2.3) is given by

T =
(
u1 u2 u3

)
(2.8)

Now by (2.7) and (2.8),

T−1 = {s(λ2 − λ1)(λ3 − λ1)(λ3 − λ2)}−1

 sλ2λ3(λ3 − λ2) s1/2(λ22 − λ23) λ3 − λ2
sλ1λ3(λ1 − λ3) s1/2(λ23 − λ21) λ1 − λ3
sλ1λ2(λ2 − λ1) s1/2(λ21 − λ22) λ2 − λ1

 (2.9)

By (2.3) , the transformation
Y = TZ, (2.10)

takes (2.1) into
Z ′ = (Λ− T−1T ′)Z. (2.11)

From (2.7)–(2.9), we obtain T−1T ′ = (tik) , where

t1k =
(s1/2λk)

′(2λk − λ2 − λ3)

s1/2(λ2 − λ1)(λ3 − λ1)
, (1 ≤ k ≤ 3) (2.12)

t2k =
(s1/2λk)

′(λ3 + λ1 − 2λ2)

s1/2(λ2 − λ1)(λ3 − λ2)
, (1 ≤ k ≤ 3) (2.13)

t3k =
(s1/2λk)

′(2λk − λ1 − λ2)

s1/2(λ3 − λ1)(λ3 − λ2)
. (1 ≤ k ≤ 3) (2.14)

Now we need to work out (2.12)–(2.14) in some detail in terms of r, p and s in order to determine the form of
the system (2.11) and then make progress towards (1.1).

3. The matrices (Λ) and (T−1T ′)

In our analysis, we impose the following conditions in the coefficients r, s and p as follows:
(I) p, r and s are nowhere zero in the interval [a,∞) , and

rs1/2 = o(p3/2) (x→ ∞). (3.1)
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Then we write
rs1/2

p3/2
= δ = o(1) (x→ ∞). (3.2)

(II) Let
p′

p
δ,

s′

s
δ,

r′

r
δ are all L(a,∞) (3.3)

As in [1], we can solve (2.6) subject to (3.1) to obtain

λj = ωj(p/s)
1/2(1 + δj), (j = 1, 2) and ω1 = i = ω2 (3.4)

λ3 = −r
p
(1 + δ3) (3.5)

where
δj = O(δ) (j = 1, 2) (3.6)

and
δ3 = O(δ2). (3.7)

Hence , by (3.2)
λ3 = o(λ2−j), (j = 0, 1) (x→ ∞) (3.8)

Note that in [2] we considered the case where

λ1 ∼ (const.)λ2 ∼ (const.)λ3 (x→ ∞) (3.9)

Thus
λ1
λ2

→ const.,
λ2
λ3

→ const.,
λ1
λ3

→ const., (x→ ∞).

Also, by substituting (3.4) and (3.5) into (2.6) and differentiating, we obtain:

δ′j = O(δ′), (j = 1, 2) (3.10)

and
δ′3 = O(δδ′), (3.11)

where

δ′ = O(
p′

p
δ) +O(

s′

s
δ) +O(

r′

r
δ) (3.12)

Hence, by (3.10)–(3.12), and (3.3)

δ′, δ′j and δ′3 are L(a,∞) (j = 1, 2) (3.13)

Now by (3.4)

(s1/2λk)
′ =

1

2
ωk
p′

p
p1/2(1 + δk) + ωkp

1/2δ′k (k = 1, 2) (3.14)
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and by (3.5)

(s1/2λ3)
′ =

[
p′

p
− 1

2

s′

s

]
rs1/2

p
(1 + δ3)−

r′s1/2

p
(1 + δ3) (3.15)

We can now substitute the estimates (3.4)–(3.7) and (3.14)–(3.15) into (2.12)–(2.14), the calculations are similar
to those in [1, 2], and we obtain the following expressions for tjk :

t11 =
3

4

p′

p
(1 +O(δ)) +O(δ′1),

t12 =
1

4

p′

p
(1 +O(δ)) +O(δ′2),

t13 = O

(
p′

p
δ

)
+O

(
r′

r
δ

)
+O

(
s′δ

s

)
+O (δδ′3) (3.16)

t21 =
1

4

p′

p
(1 +O(δ)) +O(δ′1),

t22 = −1

4

p′

p
(1 +O(δ)) +O(δ′2),

t23 = O(

(
p′

p
δ

)
+O

(
r′

r
δ

)
+O

(
s′δ

s

)
+O(δδ′3). (3.17)

t31 = −p
′

p
(1 +O(δ)) +O(δ′1),

t32 = −p
′

p
(1 +O(δ)) +O(δ′2),

t33 = O

(
p′

p
δ2
)
+O

(
r′

r
δ2
)
+O

(
s′

s
δ2
)
+O(δδ′3). (3.18)

Now by (3.3), (3.13) and (3.16)–(3.18), we can write the system (2.11) as

Z ′ = (Λ +R+ S)Z (3.19)

where

R =

 −3ϱ −ϱ 0
−ϱ ϱ 0
4ϱ 4ϱ 0

 (3.20)

with

ϱ =
1

4

p′

p
(3.21)

and S is L(a,∞)
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4. The asymptotic form of solutions

Theorem 4.1 Let the coefficients r, p and s in (1.1) nowhere zero in [a,∞) with p to be C(2)[a,∞) while r

and s are C(1)[a,∞) . Let (3.1) and (3.3) hold. Let

ϱ(x) = σ(r/p)(1 + ψ) (4.1)

where σ nonzero constant and ψ(x) → 0 as x→ ∞ . Also let(
p′

r

)′

is L(a,∞) (4.2)

Let Re(νi − νj) have one sign in [a,∞) for each unequal pair (i, j) where

ν1 = λ1 − 3ϱ, ν2 = λ2 + ϱ, ν3 = λ3 (4.3)

then (1.1) has the asymptotic form of solutions

y1(x) ∼ p−3/4(x) exp

(∫ x

a

λ1(t)dt

)
(4.4)

y2(x) ∼ p1/4(x) exp

(∫ x

a

λ2(t)dt

)
(4.5)

y3(x) ∼ exp

(∫ x

a

λ3(t)dt

)
(4.6)

Proof As in [1] we apply Eastham theorem ([5], Section 2) to the system (3.19) provided only that Λ and R

satisfy the conditions and we shall use (3.20),(3.21), (4.1), and (4.2). We first require that

ϱ = o{(λi − λj)} (1 ≤ i, j ≤ 3, i ̸= j) (4.7)

this being Eq. 2.1 of [5] for our system. Now

λi − λj ∼ const(p/s)1/2 (x→ ∞) for (1 ≤ i, j ≤ 3, i ̸= j)

thus (4.7) true by (3.1) and (4.1). Second we need{
ϱ(λi − λj)

−1
}′ are L(a,∞) for (1 ≤ i, j ≤ 3, i ̸= j) (4.8)

this being Eq. 2.1 of [5] for our system. This requirement is implied by (3.3), (3.13), and (4.2). We also note
that by (1.6.36) from [6] the eigenvalue µj(1 ≤ j ≤ 3) of

∧
+R are given by

µj = νj +O(max
j ̸=l

|R|2|λl − λj |−1) (1 ≤ j ≤ 3) (4.9)

Hence the simplifying condition (2.13) from [5] is satisfied by (??), (4.3), and (2.13).
Since (3.19) satisfies all the conditions for the asymptotic theorem in Section 2 of [5], it follows that, as x→ ∞
(3.19) has three linearly independent solutions Zk(x) such that

Zk(x) = {ek + o(1)} exp(
∫ x

a

νk(t)dt) (4.10)
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where νk are given by (4.3). Now we transform back to Y by means of (2.10), (2.7), and (2.8). By taking the
first component on each side of (4.10), and carrying out the integration of

−3

4

p′

p
and 1

4

p′

p

we obtain (4.4)–(4.6) after an adjustment of a constant multiple in y1 and y2 . 2

5. Discussion
(i) In the familiar case the coefficients which are covered by theorem 4.1 are

p(x) = c1x
α1 , r(x) = c2x

α2 and s(x) = c3x
α3 ,

with real constants ci and αi (1 ≤ i ≤ 3) , such that ci are not equal to zero.
Then (3.1) and (3.2) hold if

−α3 + 3α1 − 2α2 > 0 (5.1)

The critical case (4.1) is given by
α1 − α2 = 1 (5.2)

The nonzero σ in (4.1) is given by

σ =
c1α1

4c2
(α1 ̸= 0) (5.3)

where ψ(x) = 0 in (4.1).
(ii) More general coefficients are

p(x) = c1x
α1 exp(2xb), r(x) = c2x

α2exp(2xb) and s(x) = c3x
α3exp(2xa),

with real constants ci , αi , a and b > a ≥ 0 , such that ci are not equal to zero.
Conditions (3.1) and (3.2) are all satisfied.
The critical case (4.1) is given by

α2 − α1 = b− 1 (5.4)

and the nonzero σ in (4.1) is given by

σ =
c1b

2c2
(5.5)

where

ψ(x) =
α1

2b
x−b (5.6)

Then ψ(x) → 0 as x→ ∞ and ψ′(x) ϵ L(a,∞) which implies that (4.2) holds.
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