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Abstract: By applying Laplace differential operator to harmonic conjugate components of the analytic functions and
using Wirtinger derivatives, some identities and relations including Bernoulli and Euler polynomials and numbers are
obtained. Next, using the Legendre identity, trigonometric functions and the Dirichlet kernel, some formulas and relations
involving Bernoulli and Euler numbers, cosine-type Bernoulli and Euler polynomials, and sine-type Bernoulli and Euler
polynomials are driven. Then, by using the generating functions method and the well-known Euler identity, many new
identities, formulas, and combinatorial sums among the Fibonacci numbers and polynomials, the Lucas numbers and
polynomials, the Chebyshev polynomials, and Bernoulli and Euler type polynomials are given. Finally, some infinite
series representations for these special numbers and polynomials and their numerical examples are presented.

Key words: Bernoulli and Euler type numbers and polynomials, Chebyshev polynomials, Fibonacci and Lucas
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1. Introduction
There are various kinds of useful applications for Laplace differential operator, Wirtinger derivatives, Legendre
identity, trigonometric functions and the Dirichlet kernel, such as in the theory of complex analysis, harmonic
analysis, differential equations, partial differential equations, mathematical physics and variety fields of engi-
neering. In this article, we use the Laplace differential operator to harmonic functions related to the generating
functions, which resulted new relations and formulas related to Bernoulli and Euler polynomials and numbers.
We then apply the Wirtinger derivatives to the Bernoulli and Euler polynomials. Also, by using generating
functions for special numbers and polynomials including the Fibonacci numbers, Bernoulli and Euler numbers
and polynomials, the Lucas numbers, the Chebyshev polynomials and other special polynomials such as the
cosine-Bernoulli polynomials, the cosine-Euler polynomials, the sine-Bernoulli polynomials and the sine-Euler
polynomials, many new formulas, relations and combinatorial sums are obtained. Lastly, we present remarks
and observations for inequalities of special numbers and polynomials.

Let us briefly give the following definitions and notations.
Let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .} . Let R and C denote the set of real and complex numbers,

respectively. For x, y ∈ R , set z = x+ iy ∈ C , z = x− iy ∈ C and i2 = −1 .
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The Bernoulli polynomials Bv(x) are defined by

HB(x, t) =
text

et − 1
=

∞∑
v=0

Bv(x)t
v

v!
, (1.1)

where |t| < 2π (cf. [2–36] ; and references therein).
Substituting x = 0 into (1.1), Bernoulli numbers: Bv = Bv(0) are derived (cf. [2–36] ; and references

therein). By using (1.1), we have
∞∑
v=0

Bv(x)t
v

v!
= ext

∞∑
v=0

Bvt
v

v!
.

As a result of the product of the two series on the right side of the above equation, the following formula is very
easily achieved:

Bv(x) =

v∑
j=0

(
v

j

)
Bjx

v−j , (1.2)

where B0 = 1 and for v ≥ 2 , we have

(
v

v − 1

)
Bv−1 = −

v−2∑
j=0

(
v

j

)
Bj

and finally for v > 0

B2v+1 = 0

(see for detail [2–36]).
The Euler polynomials Ev(x) are defined by

2ext

et + 1
=

∞∑
v=0

Ev(x)t
v

v!
, (1.3)

where |t| < π (cf. [2–36]; and references therein).
Substituting x = 0 into (1.3), Euler numbers Ev = Ev(0) are derived (cf. [2–36] ; and references therein).

By using (1.3), we have
∞∑
v=0

Ev(x)t
v

v!
= ext

∞∑
v=0

Evt
v

v!
.

Once again, as a result of the product of the two series on the right side of the above equation, the following
formula is given:

Ev(x) =

v∑
j=0

(
v

j

)
xjEv−j , (1.4)

where E0 = 1 and for v ≥ 1 , we have

2Ev = −
v−1∑
j=0

(
v

j

)
Ej
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and finally for v ≥ 1

E2v = 0

(cf. [2–36] ; and references therein).
The Fibonacci polynomials Fd (x) are defined by

t

1− xt− t2
=

∞∑
d=0

Fd (x) t
d, (1.5)

where |t| < 1 (cf. [4, 5, 16, 17]).
Substituting x = 1 into (1.5), Fibonacci numbers Fd = Fd (1) are derived. These numbers are computed

by the following recursive formula:
Fd = Fd−1 + Fd−2,

where F0 = 0 and F1 = 1 (cf. [4, 5, 16, 17, 38]).
The Lucas polynomials Lk (x) are defined by

2− xt

1− xt− t2
=

∞∑
k=0

Lk (x) t
k, (1.6)

(cf. [4, 5, 16, 17]).
Substituting x = 1 into (1.6), Lucas numbers Lk = Lk (1) are derived. These numbers are computed by

the following recursive formula:
Lk = Lk−1 + Lk−2,

where L0 = 2 and L1 = 1 (cf. [4, 5, 16, 17, 38]).
The first kind of Chebyshev polynomials Tl (x) are defined by

1− xt

1− 2xt+ t2
=

∞∑
l=0

Tl (x) t
l, (1.7)

while the second kind of Chebyshev polynomials Ul (x) are defined by

1

1− 2xt+ t2
=

∞∑
l=0

Ul (x) t
l, (1.8)

see [1–3, 7, 16, 18].
Combining (1.5) and (1.6) with (1.8) and (1.7), respectively, we have the following well-known relations:

Ul

(
i

2

)
= ilFl+1, (1.9)

and

Tl

(
i

2

)
=
il

2
Ll, (1.10)

see [16, 17, 38].
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The Fibonacci-type polynomials in two variables Gv (x, y; k,m, n) are defined by

1

1− xkt− ymtm+n
=

∞∑
v=0

Gv (x, y; k,m, n) t
v, (1.11)

where k,m, n ∈ N0 [26]. Using (1.11), we have

Gv (x, y; k,m, n) =

[ v
m+n ]∑
j=0

(
v − j (m+ n− 1)

j

)
ymjxvk−mjk−njk, (1.12)

where [α] is the largest integer ≤ α [26, 27].
Substituting x = y = 1 and m = n = 1 into (1.11) and (1.12) and using (1.5), we get the following

well-known Lucas formula, which was found by Lucas in 1876, for the Fibonacci numbers:

Fv = Gv−1 (1, 1; 1, 1, 1) =

[ v−1
2 ]∑

j=0

(
v − j − 1

j

)
,

where v ∈ N (cf. [16, 17, 26, 32]).
The polynomials Cl(x, y) and Sl(x, y) are given, respectively, as follows:

ext cos (yt) =

∞∑
l=0

Cl(x, y)
tl

l!
, (1.13)

and

ext sin (yt) =

∞∑
l=0

Sl(x, y)
tl

l!
, (1.14)

(cf. [10–14, 20, 21, 35, 36] ).
Using (1.13) and (1.14), we directly obtain

Cl(x, y) =

[ l
2 ]∑

j=0

(−1)
j

(
l

2j

)
xl−2jy2j , (1.15)

and

Sl(x, y) =

[ l−1
2 ]∑

j=0

(−1)
j

(
l

2j + 1

)
xl−2j−1y2j+1, (1.16)

(cf. for detail, see [10–14, 20, 21, 35, 36] ).
By using (1.7), (1.8), (1.13) and (1.14), the following relations are derived [12, 13]

Tl (x) = Cl

(
x,
√
1− x2

)
(l ∈ N0), (1.17)
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and

Ul−1 (x) =
Sl

(
x,

√
1− x2

)
√
1− x2

(l ∈ N). (1.18)

Substituting y = −1 , k = m = n = 1 into (1.11) and replacing x by 2x , we obtain the following
identities for the polynomials Cl(x, y) and Sl(x, y) and the Fibonacci-type polynomials [14]:

Cl

(
x,
√
1− x2

)
= Gl (2x,−1; 1, 1, 1)− xGl−1 (2x,−1; 1, 1, 1) (l ∈ N), (1.19)

and
Sl+1

(
x,
√
1− x2

)
=
√

1− x2Gl (2x,−1; 1, 1, 1) (l ∈ N0). (1.20)

The cosine-Bernoulli polynomials B(C)
v (x, y) and the sine-Bernoulli polynomials B(S)

v (x, y) are defined
as follows:

text cos (yt)

et − 1
=

∞∑
v=0

B(C)
v (x, y)

tv

v!
, (1.21)

and
text sin (yt)

et − 1
=

∞∑
v=0

B(S)
v (x, y)

tv

v!
, (1.22)

for detail, see [22].
By using (1.13), (1.14), (1.21) and (1.22), we have the following well-known identities:

B(C)
v (x, y) =

v∑
m=0

(
v

m

)
Bv−mCm(x, y),

and

B(S)
v (x, y) =

v∑
m=0

(
v

m

)
Bv−mSm(x, y),

for detail, see [22].
By using (1.13), (1.14), (1.21) and (1.22), we also have the following well-known identities: for v ∈ N ,

B
(C)
v (x+ 1, y)−B

(C)
v (x, y)

v
= Cv−1(x, y), (1.23)

and
B

(S)
v (x+ 1, y)−B

(S)
v (x, y)

v
= Sv−1(x, y), (1.24)

see [22].
By combining (1.21) and (1.22) with (1.2), we get [14]:

B(C)
v (x, y) + iB(S)

v (x, y) =

v∑
j=0

j∑
d=0

(
v

j

)(
j

d

)
Bv−jx

d(iy)j−d, (1.25)
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and

B(C)
v (x, y)− iB(S)

v (x, y) =

v∑
j=0

j∑
d=0

(−1)j−d

(
v

j

)(
j

d

)
Bv−jx

d(iy)j−d. (1.26)

The cosine-Euler polynomials E(C)
v (x, y) and the sine-Euler polynomials E(S)

v (x, y) are defined as follows
[21]:

2ext cos (yt)

et + 1
=

∞∑
v=0

E(C)
v (x, y)

tv

v!
, (1.27)

and
2ext sin (yt)

et + 1
=

∞∑
v=0

E(S)
v (x, y)

tv

v!
. (1.28)

By using (1.13), (1.14), (1.27) and (1.28), we have the following well-known identities [21]:

E(C)
v (x, y) =

v∑
m=0

(
v

m

)
Ev−mCm(x, y),

and

E(S)
v (x, y) =

v∑
m=0

(
v

m

)
Ev−mSm(x, y).

By using (1.13), (1.14), (1.27) and (1.28), we also have the following well-known identities [21]:

E
(C)
v (x+ 1, y) + E

(C)
v (x, y)

2
= Cv(x, y), (1.29)

and
E

(S)
v (x+ 1, y) + E

(S)
v (x, y)

2
= Sv(x, y). (1.30)

By combining (1.27) and (1.28) with (1.4), we have [14]:

E(C)
v (x, y) + iE(S)

v (x, y) =

v∑
j=0

j∑
d=0

(
v

j

)(
j

d

)
Ev−jx

d(iy)j−d, (1.31)

and

E(C)
v (x, y)− iE(S)

v (x, y) =

v∑
j=0

j∑
d=0

(−1)j−d

(
v

j

)(
j

d

)
Ev−jx

d(iy)j−d. (1.32)

The results of this paper are summarized as follows:
In Section 2, by applying the Laplace differential operator to the analytic and harmonic functions

including generating functions for special polynomials, we give many identities for Bernoulli numbers and
polynomials and for Euler numbers and polynomials. Applying partial derivative operators to the generating
functions for Bernoulli and Euler polynomials, we also give derivative formulas for these polynomials.
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In Section 3, by using the Legendre identity and trigonometric functions, and the Dirichlet kernel, we
present many new formulas, identities and relations including the Bernoulli numbers, the cosine-Bernoulli
polynomials, the sine-Bernoulli polynomials, the cosine-Euler polynomials and the sine-Euler polynomials.
Moreover, by using Umbral calculus methods, we obtain some combinatorial identities involving the Bernoulli
and Euler numbers and polynomials.

In Section 4, we give some new identities and relations among the Fibonacci numbers, the Lucas numbers,
the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials, the cosine-Euler polynomials and the sine-
Euler polynomials.

In Section 5, with the help of series representations for Fibonacci-type polynomials, we give some infinite
series representations for the cosine-Euler polynomials, the cosine-Bernoulli polynomials and the sine-Bernoulli
polynomials.

Finally, in Section 6, we give some remarks and observations on inequalities for special polynomials and
numbers.

2. Identities for Bernoulli and Euler polynomials

In this section, by applying the Laplace differential operator to the special functions, we give some identities and
formulas for Bernoulli and Euler numbers and polynomials. Moreover, by using the Cauchy–Riemann equations,
we obtain some relations including the cosine- and sine-Bernoulli polynomials and the cosine- and sine-Euler
polynomials.

Theorem 2.1 Assume that

U(x, y |t ) = text

et − 1
cos (yt) , (2.1)

is analytic in the open domain R ⊆R2 and |t| < 2π . Then a harmonic conjugate of this function is given by

V (x, y |t ) = text

et − 1
sin (yt) .

Proof Let
HB(z, t) = U(x, y |t ) + iV (x, y |t ).

The function HB(z, t) is to be analytic on an open subset R ⊆ C . By applying the well-known Cauchy–Riemann
equations to the functions U(x, y |t ) and V (x, y |t ) , we get

∂

∂x
U(x, y |t ) = ∂

∂y
V (x, y |t ), (2.2)

and
∂

∂y
U(x, y |t ) = − ∂

∂x
V (x, y |t ). (2.3)

We now show that U(x, y |t ) is a harmonic function. By applying the following Laplace differential operator

∆ =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
,
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to Equation (2.1), we obtain

∆(U(x, y |t )) = ∂2

∂x2
U(x, y |t ) + ∂2

∂y2
U(x, y |t ) = 0.

Hence U(x, y |t ) is harmonic. In order to find a harmonic conjugate of the function U(x, y |t ) , using Cauchy–
Riemann equations, we should solve the following differential equation:

V (x, y |t ) =

∫ {
− ∂

∂y
U(x, y |t )dx+

∂

∂x
U(x, y |t )dy

}

=
text

et − 1
sin (yt) + c,

where c is an arbitrary constant. Since c is arbitrary, it can be ignored and therefore, we obtain components
of the analytic function HB(z, t) as follows:

HB(z, t) = U(x, y |t ) + iV (x, y |t ) (2.4)

=
text

et − 1
cos (yt) + i

text

et − 1
sin (yt) .

2

By combining (2.4) with (1.21), (1.22) and (2.1), we have the following results:
The functions U(x, y |t ) and V (x, y |t ) are harmonic conjugate to eachother in the open domain R ⊆R2 :

U(x, y |t ) = text

et − 1
cos (yt) =

∞∑
n=0

B(C)
n (x, y)

tn

n!
,

and

V (x, y |t ) = text

et − 1
sin (yt) =

∞∑
n=0

B(S)
n (x, y)

tn

n!
,

where x, y ∈ R and |t| < 2π .
The functions U(x, y |t ) and V (x, y |t ) are also C2 -functions in the open domain R ⊆R2 and |t| < 2π .
With the help of the Euler’s formula, we have

HB(z, t) =
tezt

et − 1
=

∞∑
n=0

Bn (z)
tn

n!
,

where z ∈ C and |t| < 2π .
Similar to the above method, the following functions are harmonic conjugate to eachother in the open

domain R ⊆R2 :

ψ(x, y |t ) = 2ext

et + 1
cos (yt) =

∞∑
n=0

E(C)
n (x, y)

tn

n!
,

and

φ(x, y |t ) = 2ext

et + 1
sin (yt) =

∞∑
n=0

E(S)
n (x, y)

tn

n!
,
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where |t| < π . Thus, with the help of the above harmonic conjugate components, the analytic function

GE(z, t) = ψ(x, y |t ) + iφ(x, y |t )

is given by the generating function of the Euler polynomials En (z) as

GE(z, t) =
2ezt

et + 1
=

∞∑
n=0

En (z)
tn

n!
,

where z ∈ C and |t| < π .

Theorem 2.2 Let ∆ be the Laplace differential operator. Assume that

HB(z, t) =
t

et − 1
ezt,

is analytic with respect to the variable z in the open domain R ⊆C with |t| < 2π . For any z = x+ iy ∈ R , we
have

∆
(
|HB(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)

n−2∑
j=0

(
n− 2

j

)
Bj(x)Bn−j−2(x)

tn

n!
. (2.5)

Proof Applying the Laplace differential operator to the following equation

|HB(z, t)|2 =

∣∣∣∣ textet − 1
(cos(yt) + i sin(yt))

∣∣∣∣2
= |U(x, y |t ) + iV (x, y |t )|2

first yields

∆
(
|HB(z, t)|2

)
= ∆

(
U2(x, y |t ) + V 2(x, y |t )

)
=

∂2

∂x2
{
U2(x, y |t ) + V 2(x, y |t )

}
+

∂2

∂y2
{
U2(x, y |t ) + V 2(x, y |t )

}
.

Since

∂2

∂x2
{
U2(x, y |t ) + V 2(x, y |t )

}
= 2

∂

∂x

{
U(x, y |t ) ∂

∂x
U(x, y |t ) + V (x, y |t ) ∂

∂x
V (x, y |t )

}
and

∂2

∂y2
{
U2(x, y |t ) + V 2(x, y |t )

}
= 2

∂

∂y

{
U(x, y |t ) ∂

∂y
U(x, y |t ) + V (x, y |t ) ∂

∂y
V (x, y |t )

}
,

after some calculations, we obtain

∆
(
|HB(z, t)|2

)
= 4t2H2

B(x, t)
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or

∆
(
|HB(z, t)|2

)
= 4t2HB(2x, t)HB(0, t)

where
H2

B(x, t) = HB(x, t)HB(x, t).

Combining the above equation with (1.1), we arrive at the desired result. 2

Corollary 2.3 Under the restrictions of Theorem 2.2, we have

∆
(
|HB(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)B
(2)
n−2(2x)

tn

n!
. (2.6)

Corollary 2.4 Under the restrictions of Theorem 2.2, we have

∆
(
|HB(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)

n−2∑
j=0

(
n− 2

j

)
BjBn−j−2(2x)

tn

n!
. (2.7)

Combining (2.5) with (2.6), we have the following well-known relations:

B(2)
n (2x) =

n∑
j=0

(
n

j

)
Bj(x)Bn−j(x)

=

n∑
j=0

(
n

j

)
BjBn−j(2x).

Combining the above relation with (2.7), we arrive at the following corollary:

Corollary 2.5 Under the restrictions of Theorem 2.2, we have

∞∑
n=2

n(n− 1)B
(2)
n−2(x)

tn

n!
=

∣∣∣∣ ddzHB(z, t)

∣∣∣∣2 . (2.8)

Theorem 2.6 Let ∆ be the Laplace differential operator. Assume that

GE(z, t) =
2

et + 1
ezt,

is analytic with respect to the variable z in the open domain R ⊆C with |t| < π . For any z = x+ iy ∈ R , we
have

∆
(
|GE(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)

n−2∑
j=0

(
n− 2

j

)
Ej(x)En−j−2(x)

tn

n!
. (2.9)

The proof is the same as that of Theorem 2.2, and so we omit it.
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Corollary 2.7 Under the restrictions of Theorem 2.6, we have

∆
(
|GE(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)

n−2∑
j=0

(
n− 2

j

)
EjEn−j−2(2x)

tn

n!
. (2.10)

Corollary 2.8 Under the restrictions of Theorem 2.6, we have

∆
(
|GE(z, t)|2

)
= 4

∞∑
n=2

n(n− 1)E
(2)
n−2(2x)

tn

n!
. (2.11)

Combining (2.11) with (2.9) and (2.10), we have the following well-known relations:

E(2)
n (2x) =

n∑
j=0

(
n

j

)
EjEn−j(2x)

=

n∑
j=0

(
n

j

)
Ej(x)En−j(x).

Remark 2.9 In the work of Mejlbro [25], we see that if h(z) is any analytic function for z = x+ iy ∈ R , then
the following result holds true

∆
(
|h(z)|2

)
= 4

∣∣∣∣ ddz h(z)
∣∣∣∣2 . (2.12)

Theorem 2.10 Let ∆ be the Laplace differential operator. Assume that

HB(z, t) =
t

et − 1
ezt

is analytic with respect to the variable z in the open domain R ⊆C with |t| < 2π . For any z = x+ iy ∈ R , we
have

∆
(
U2(x, y |t )

)
= 2

∞∑
n=2

n(n− 1)

n−2∑
j=0

(
n− 2

j

)
Bj (x)Bn−j−2(x)

tn

n!
.

Proof By applying the chain rule in partial derivatives to the function U(x, y |t )V (x, y |t ) , we first have

∂

∂x
{U(x, y |t )V (x, y |t )} = V (x, y |t ) ∂

∂x
U(x, y |t ) + U(x, y |t ) ∂

∂x
V (x, y |t ),

and

∂2

∂x2
{U(x, y |t )V (x, y |t )} = V (x, y |t ) ∂

2

∂x2
U(x, y |t )

+U(x, y |t ) ∂
2

∂x2
V (x, y |t ) + 2

∂

∂x
U(x, y |t ) ∂

∂x
V (x, y |t ).

So, by applying the above formulas to the harmonic C2 -function in R ⊆R2 :

U(x, y |t ) = t

et − 1
ext cos(yt),
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after some elementary calculations, we obtain

∆
(
U2(x, y |t )

)
= 2

(
∂

∂x
U(x, y |t )

)2

+ 2

(
∂

∂y
U(x, y |t )

)2

= 2t2H2
B(x, t).

Combining the above equation with (1.1), we arrive at the desired result. 2

Corollary 2.11 Under the restrictions of Theorem 2.10, we have

∆
(
U2(x, y |t )

)
= 2

∞∑
n=2

n(n− 1)B
(2)
n−2(2x)

tn

n!
.

Corollary 2.12 Under the restrictions of Theorem 2.10, we have

|grad U(x, y |t )|2 =

∞∑
n=2

n(n− 1)B
(2)
n−2(2x)

tn

n!
,

where

grad HB(z, t) =
∂

∂x
U(x, y |t )− ∂

∂y
V (x, y |t ) + i

(
∂

∂y
U(x, y |t ) + ∂

∂x
V (x, y |t )

)
.

Theorem 2.13 Let ∆ be the Laplace differential operator. Assume that

GE(z, t) =
2

et + 1
ezt,

is analytic with respect to the variable z in the open domain R ⊆C with |t| < π . For any z = x+ iy ∈ R , we
have

∆
(
ψ2(x, y |t )

)
= 2

∞∑
n=2

n(n− 1)E
(2)
n−2(2x)

tn

n!
.

The proof is the same as that of Theorem 2.10, and so we omit it.

Remark 2.14 Since
HB(z, t) = U(x, y |t ) + iV (x, y |t )

is an analytic function for z = x+ iy ∈ R ⊆C , the functions U(x, y |t )V (x, y |t ) and U2(x, y |t ) are harmonic
in R ⊆R2 . Therefore, we have [25]

∆
(
U2(x, y |t )

)
= 2 |grad U(x, y |t )|2 .

The derivative formulas for Bernoulli and Euler polynomials can be represented by the derivative of their
generating functions, which belong to the family of Appell polynomials. However, with the help of the following
partial derivative operators

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
, (2.13)
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and
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, (2.14)

we provide a proof for these derivative formulas as follows:
Here we add that the operators (2.13) and (2.14) are also known as the Wirtinger derivatives (cf. [33–37]).
By combining (1.25) with (1.2) and applying the operator ∂

∂z to the final Bernoulli polynomials equation,
we get

∂

∂z
Bn (z) =

1

2

n∑
j=0

(
n

j

)
Bn−j

(
∂

∂x
(x+ iy)j − i

∂

∂y
(x+ iy)j

)
.

After some elementary calculations for the above equation, we obtain

∂

∂z
Bn (z) =

n∑
j=0

(
n

j

)
jzj−1Bn−j .

Thus, we have the following result:

Corollary 2.15 Let n ∈ N . Then
∂

∂z
Bn (z) = nBn−1 (z) .

By combining (1.26) with (1.2) and applying the operator ∂
∂z to the final Bernoulli polynomials equation,

we have
∂

∂z
Bn (z) =

1

2

n∑
j=0

(
n

j

)
Bn−j

(
∂

∂x
(x− iy)j + i

∂

∂y
(x− iy)j

)
.

After some elementary calculations for the above equation, we obtain

∂

∂z
Bn (z) =

n∑
j=0

(
n

j

)
j(z)j−1Bn−j .

Thus, we have the following result:

Corollary 2.16 Let n ∈ N . Then
∂

∂z
Bn (z) = nBn−1 (z) .

By combining (1.31) with (1.4) and applying the operator ∂
∂z to the final Euler polynomials equation,

we have
∂

∂z
En (z) =

1

2

n∑
j=0

(
n

j

)
En−j

(
∂

∂x
(x+ iy)j − i

∂

∂y
(x+ iy)j

)
.

After some elementary calculations for the above equation, we obtain

∂

∂z
En (z) =

n∑
j=0

(
n

j

)
jzj−1En−j .
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Thus, we have the following result:

Corollary 2.17 Let n ∈ N . Then we have

∂

∂z
En (z) = nEn−1 (z) .

Finally, by combining (1.32) with (1.4) and applying the operator ∂
∂z to the final Euler polynomials

equation, we have

∂

∂z
En (z) =

1

2

n∑
j=0

(
n

j

)
En−j

(
∂

∂x
(x− iy)j + i

∂

∂y
(x− iy)j

)
.

After some elementary calculations for the above equation, we obtain

∂

∂z
En (z) =

n∑
j=0

(
n

j

)
j(z)j−1En−j .

Thus, we have the following result:

Corollary 2.18 Let n ∈ N . Then we have

∂

∂z
En (z) = nEn−1 (z) .

3. Another kind of identities for Bernoulli and Euler numbers and polynomials

In this section, by using the Legendre identity and some trigonometric functions including the Dirichlet kernel,
and also using the Umbral calculus methods, we give some new formulas, identities and relations including the
Bernoulli and Euler numbers and Bernoulli and Euler type polynomials.

3.1. Identities for Bernoulli numbers, cosine- and sine-Bernoulli polynomials and cosine- and
sine-Euler polynomials

With the help of the following Legendre identity and trigonometric functions associated with the Dirichlet
kernel, some new formulas and relations will be proved. We have first

sin

(
t

(
n+

1

2

))
= sin

(
t

2

)
+ 2 sin

(
t

2

) n∑
k=1

cos(kt), (3.1)

as the Dirichlet kernel and

cos

(
t

(
n+

1

2

))
= cos

(
t

2

)
− 2 sin

(
t

2

) n∑
k=1

sin(kt), (3.2)

(cf. [9, p. 129], [28, p. 342]).
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Theorem 3.1 Let n, v ∈ N . Then we have

B(C)
v

(
x,

1

2
+ n

)
=

2

v + 1
B

(S)
v+1

(
x,

1

2

)

+

[ v−1
2 ]∑

j=0

(−1)j+1

(
v

2j + 1

)
1

j + 1
B2j+2B

(S)
v−1−2j

(
x,

1

2

)

−2

n∑
k=1

[ v−1
2 ]∑

j=0

(−1)j
(

v

2j + 1

)
2−1−2jB

(S)
v−1−2j (x, k) .

Proof Let us modify (3.2) as follows:

cos

(
t

(
n+

1

2

))
= sin

(
t

2

)
cot

(
t

2

)
− 2 sin

(
t

2

) n∑
k=1

sin(kt). (3.3)

After multiplying the function text

et−1 on both sides of Equation (3.3), combining the resulting equation with
Equations (1.21)–(1.22) and the following well-known equation

cot(t)− 1

t
=

∞∑
l=1

(−1)l
4lB2l

(2l)!
t2l−1,

where |t| < π (cf. [9, p. 44], [34]), we reach the following equation:

∞∑
v=0

B(C)
v

(
x,

1

2
+ n

)
tv

v!

=
2

t

∞∑
v=0

B(S)
v

(
x,

1

2

)
tv

v!
+

∞∑
v=0

B(S)
v

(
x,

1

2

)
tv

v!

∞∑
v=0

(−1)v+1 4
v+1B2v+2

(2v + 2)!

(
t

2

)2v+1

−2

n∑
k=1

∞∑
v=0

B(S)
v (x, k)

tv

v!

∞∑
v=0

(−1)v

(2v + 1)!

(
t

2

)2v+1

.

Therefore

∞∑
v=0

B(C)
v

(
x,

1

2
+ n

)
tv

v!
=

∞∑
v=0

2

v + 1
B

(S)
v+1

(
x,

1

2

)
tv

v!

+

∞∑
v=0

[ v−1
2 ]∑

j=0

(−1)j+1

(
v

2j + 1

)
4j+1

22j+1(2j + 2)
B2j+2B

(S)
v−1−2j

(
x,

1

2

)
tv

v!

−2

n∑
k=1

∞∑
v=0

[ v−1
2 ]∑

j=0

(−1)j
(

v

2j + 1

)
2−1−2jB

(S)
v−1−2j (x, k)

tv

v!
.

Comparing the coefficients of tv

v! on both sides of the above equation, we arrive at the desired result. 2
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Theorem 3.2 Let n ∈ N and v ∈ N0 . Then we have

B(S)
v

(
x,

1

2
+ n

)
= B(S)

v

(
x,

1

2

)
+ 2

n∑
k=1

[ v2 ]∑
j=0

(−1)j
(
v

2j

)
k2jB

(S)
v−2j

(
x,

1

2

)
.

Proof After multiplying the function text

et−1 on both sides of Equation (3.1), combining the resulting equation
with Equation (1.22), we reach the following equation:

∞∑
v=0

B(S)
v

(
x,

1

2
+ n

)
tv

v!
=

∞∑
v=0

B(S)
v

(
x,

1

2

)
tv

v!
+ 2

n∑
k=1

∞∑
v=0

B(S)
v

(
x,

1

2

)
tv

v!

∞∑
v=0

(−1)vk2v
t2v

(2v)!
.

Therefore

∞∑
v=0

B(S)
v

(
x,

1

2
+ n

)
tv

v!
=

∞∑
v=0

B(S)
v

(
x,

1

2

)
tv

v!
+ 2

n∑
k=1

∞∑
v=0

[ v2 ]∑
j=0

(−1)j
(
v

2j

)
k2jB

(S)
v−2j

(
x,

1

2

)
tv

v!
.

Comparing the coefficients of tv

v! on both sides of the above equation, we arrive at the desired result. 2

Similarly, after multiplying the function 2ext

et+1 on both sides of Equations (3.3) and (3.1), combining the
resulting equations with Equations (1.27) and (1.28), and after some necessary operations as the same form as
in Theorem 3.1 and Theorem 3.2, we arrive at the following theorems:

Theorem 3.3 Let n ∈ N and v ∈ N0 . Then we have

E(S)
v

(
x,

1

2
+ n

)
= E(S)

v

(
x,

1

2

)
+ 2

n∑
k=1

[ v2 ]∑
j=0

(−1)j
(
v

2j

)
k2jE

(S)
v−2j

(
x,

1

2

)
.

Theorem 3.4 Let n, v ∈ N . Then we have

E(C)
v

(
x,

1

2
+ n

)
=

2

v + 1
E

(S)
v+1

(
x,

1

2

)

+

[ v−1
2 ]∑

j=0

(−1)j+1

(
v

2j + 1

)
1

j + 1
B2j+2E

(S)
v−1−2j

(
x,

1

2

)

−2

n∑
k=1

[ v−1
2 ]∑

j=0

(−1)j
(

v

2j + 1

)
2−1−2jE

(S)
v−1−2j (x, k) .

Theorem 3.5 Let v ∈ N0 . Then we have

B
(S)
v+1 (x, 2) = 2

[ v2 ]∑
j=0

(−1)
j

(
v + 1

2j + 1

)
B

(C)
v−2j (x, 1) .
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Proof Substituting y = 2 into (1.22), we get

2text cos(t)

et − 1
sin (t) =

∞∑
v=0

B(S)
v (x, 2)

tv

v!
. (3.4)

From the above equation, we get

2

∞∑
v=0

(−1)
v t2v+1

(2v + 1)!

∞∑
v=0

B(C)
v (x, 1)

tv

v!
=

∞∑
v=0

B(S)
v (x, 2)

tv

v!
.

Therefore

2

∞∑
v=0

[ v2 ]∑
j=0

(−1)
j B

(C)
v−2j (x, 1)

(2j + 1)!(v − 2j)!
tv =

∞∑
v=0

B
(S)
v+1 (x, 2)

tv

(v + 1)!
.

Comparing the coefficients of tv on both sides of the above equation, we arrive at the desired result. 2

Theorem 3.6 Let v ∈ N0 . Then we have

B(S)
v (x, 2) = 2

[ v2 ]∑
j=0

(−1)
j

(
v

2j

)
B

(S)
v−2j (x, 1) .

Proof Using (3.4), we also get

2

∞∑
v=0

(−1)
v t2v

(2v)!

∞∑
v=0

B(S)
v (x, 1)

tv

v!
=

∞∑
v=0

B(S)
v (x, 2)

tv

v!
.

Therefore

2

∞∑
v=0

[ v2 ]∑
j=0

(−1)
j

(2j)!

B
(S)
v−2j (x, 1)

(v − 2j)!
tv =

∞∑
v=0

B(S)
v (x, 2)

tv

v!
.

Comparing the coefficients of tv on both sides of the above equation, we arrive at the desired result. 2

3.2. Identities for Bernoulli and Euler polynomials

Here, we give some identities and formulas for the Euler and Bernoulli numbers and polynomials.

Theorem 3.7 Let n ∈ N0 . Then we have

(√
2e

πi
4 x+B

)n
=

n∑
j=0

[ j2 ]∑
k=0

(−1)k
(
n

j

)(
j

2k

)
xjBn−j − i

n∑
j=0

[ j+1
2 ]∑

k=1

(−1)k
(
n

j

)(
j

2k − 1

)
xjBn−j ,

where we use the usual Umbral calculus convention of symbolically replacing (B)n by Bn .
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Proof Combining (1.25) with (1.2), we have

Bn (x+ iy) =

n∑
j=0

(
n

j

)
(x+ iy)jBn−j . (3.5)

By substituting x = y into (3.5), we get

Bn (x+ ix) =

n∑
j=0

(
n

j

)
xj(1 + i)jBn−j . (3.6)

Therefore, by combining the above equation with the well-known identity ∗ Eq. (2.24):

(1 + i)
n
=

[n2 ]∑
k=0

(−1)k
(
n

2k

)
− i

[n+1
2 ]∑

k=1

(−1)k
(

n

2k − 1

)
(3.7)

and
1 + i =

√
2e

πi
4 ,

we eventually arrive at the desired result. 2

Theorem 3.8 Let n ∈ N0 . Then we have

(√
2e

7πi
4 x+B

)n
=

n∑
j=0

[ j2 ]∑
k=0

(−1)k
(
n

j

)(
j

2k

)
xjBn−j + i

n∑
j=0

[ j+1
2 ]∑

k=1

(−1)k
(
n

j

)(
j

2k − 1

)
xjBn−j ,

where we use the usual considered as convention of symbolically replacing (B)n by Bn .

The proof can be the same method as we used for Theorem 3.8. However, let us briefly summarize it.
Combining (1.26) with (1.2), we have

Bn (x− iy) =

n∑
j=0

(
n

j

)
(x− iy)jBn−j . (3.8)

By substituting x = y into (3.8), we get

Bn (x− ix) =

n∑
j=0

(
n

j

)
xj(1− i)jBn−j . (3.9)

Therefore, by combining the above equation with the well-known identity * Eq. (2.25):

(1− i)
n
=

[n2 ]∑
k=0

(−1)k
(
n

2k

)
+ i

[n+1
2 ]∑

k=1

(−1)k
(

n

2k − 1

)
(3.10)

∗Gould HW (2011). Table for Fundamentals of Series: Part I: Basic properties of series and products, Vol. 1 [online]. Website
https://math.wvu.edu/~hgould/Vol.1.PDF [accessed 00 Month Year].
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and
1− i =

√
2e

7πi
4 ,

we eventually arrive at the desired result.
Combining (1.31) and (1.32) with (1.4), we also have

En (x+ iy) =

n∑
j=0

(
n

j

)
(x+ iy)jEn−j (3.11)

and

En (x− iy) =

n∑
j=0

(
n

j

)
(x− iy)jEn−j . (3.12)

By replacing x = y in (3.11) and (3.12) and combining the final equations with (3.7) and (3.10), we arrive at
the following theorems:

Theorem 3.9 Let n ∈ N0 . Then we have

(√
2e

πi
4 x+ E

)n
=

n∑
j=0

[ j2 ]∑
k=0

(−1)k
(
n

j

)(
j

2k

)
xjEn−j − i

n∑
j=0

[ j+1
2 ]∑

k=1

(−1)k
(
n

j

)(
j

2k − 1

)
xjEn−j ,

where we use the usual convention of symbolically replacing (E)n by En .

Theorem 3.10 Let n ∈ N0 . Then we have

(√
2e

7πi
4 x+ E

)n
=

n∑
j=0

[ j2 ]∑
k=0

(−1)k
(
n

j

)(
j

2k

)
xjEn−j + i

n∑
j=0

[ j+1
2 ]∑

k=1

(−1)k
(
n

j

)(
j

2k − 1

)
xjEn−j .

4. Relations among Fibonacci numbers, Lucas numbers and some special polynomials
In this section, we present some novel identities and relations including Fibonacci numbers, Lucas numbers, the
cosine and sine Bernoulli polynomials and the cosine and sine Euler polynomials.

By combining (1.17) with (1.10), we obtain the following relationship between the Lucas numbers and
polynomials Cn (x, y) :

Ln =
2

in
Cn

(
i

2
,

√
5

2

)
. (4.1)

By combining (1.18) with (1.9), we also obtain the following relationship between the Fibonacci numbers and
polynomials Sn (x, y) :

Fn =
2
√
5

5in−1
Sn

(
i

2
,

√
5

2

)
. (4.2)

Therefore, by using (4.1) and (4.2), we obtain

Cn

(
i

2
,

√
5

2

)
+ Sn

(
i

2
,

√
5

2

)
=
in

2

(
Ln − i

√
5Fn

)
.
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Combining (4.1) with (1.23), we can also get the following theorems:

Theorem 4.1 Let n ∈ N0 . Then

Ln =
2B

(C)
n+1

(
i+2
2 ,

√
5
2

)
− 2B

(C)
n+1

(
i
2 ,

√
5
2

)
in (n+ 1)

.

Combining (4.2) with (1.24), we have

Theorem 4.2 Let n ∈ N0 . Then

Fn =
2B

(S)
n+1

(
i+2
2 ,

√
5
2

)
− 2B

(S)
n+1

(
i
2 ,

√
5
2

)
√
5 (n+ 1) in−1

.

Combining (4.1) with (1.29), we have

Theorem 4.3 Let n ∈ N0 . Then

Ln = i−n

(
E(C)

n

(
i+ 2

2
,

√
5

2

)
+ E(C)

n

(
i

2
,

√
5

2

))
.

Combining (4.2) with (1.30), we have

Theorem 4.4 Let n ∈ N0 . Then

Fn =
E

(S)
n

(
i+2
2 ,

√
5
2

)
+ E

(S)
n

(
i
2 ,

√
5
2

)
in−1

√
5

.

5. Infinite series representations for some special polynomials
In this section, by using series representations for the Fibonacci-type polynomials, we present some interest-
ing infinite series representations including the cosine-Euler polynomials and the cosine- and sine-Bernoulli
polynomials. Some numerical examples for each of these series representations are also given.

For q > 1 , Ozdemir and Simsek [26] gave the following infinite series representation for the polynomials
Gj (x, y; k,m, n) :

∞∑
j=0

Wj (x, y; k,m, n)

qj
=

qm

qm+n − xkqn+m−1 − ym
, (5.1)

where
Wj (x, y; k,m, n) = Gj−n (x, y; k,m, n) ,

where j ≥ n . In light of the previous equation, we modify Equation (5.1) as follows:

∞∑
j=0

Gj (x, y; k,m, n)

qj
=

qn+m

qn+m − xkqn+m−1 − ym
, (5.2)

2236



KILAR and SIMSEK/Turk J Math

where q > 1 (cf. [14, 26]).
If we substitute x = 2α , y = −1 , k = m = n = 1 into (5.2), then we get

∞∑
j=0

Gj (2α,−1; 1, 1, 1)

qj
=

q2

q2 − 2αq + 1
. (5.3)

By using (1.19), (1.23) and (5.3) and after some elementary calculations, we obtain:

∞∑
j=1

Gj (2α,−1; 1, 1, 1)− αGj−1 (2α,−1; 1, 1, 1)

qj

=

∞∑
j=1

B
(C)
j+1

(
α+ 1,

√
1− α2

)
−B

(C)
j+1

(
α,

√
1− α2

)
(j + 1) qj

.

From the above equation, the following theorem is concluded.

Theorem 5.1 Let |α| < 1 and q > 1 . If q |α| ̸= 1 , then

∞∑
j=1

B
(C)
j+1

(
α+ 1,

√
1− α2

)
−B

(C)
j+1

(
α,

√
1− α2

)
(j + 1) qj

=
αq − 1

q2 − 2αq + 1
. (5.4)

Let us consider a particular example for the series representation (5.4). Substituting q = 5 and α = 1
10

into (5.4) gives
∞∑
j=1

B
(C)
j+1

(
11
10 ,

3
√
11

10

)
−B

(C)
j+1

(
1
10 ,

3
√
11

10

)
(j + 1) 5j−2

=
−1

2
.

By using (1.20), (1.24) and (5.3), the following infinite series is concluded

∞∑
j=0

Gj (2α,−1; 1, 1, 1)

qj
=

∞∑
j=0

B
(S)
j+2

(
α+ 1,

√
1− α2

)
−B

(S)
j+2

(
α,

√
1− α2

)
(j + 2) qj

√
1− α2

.

Therefore:

Theorem 5.2 Let |α| < 1 and q > 1 . If q |α| ̸= 1 , then

∞∑
j=0

B
(S)
j+2

(
α+ 1,

√
1− α2

)
−B

(S)
j+2

(
α,

√
1− α2

)
(j + 2) qj

=
q2
√
1− α2

q2 − 2αq + 1
. (5.5)

For example, substituting q = 5 and α = 1
10 into (5.5) gives

∞∑
j=0

B
(S)
j+2

(
11
10 ,

3
√
11

10

)
−B

(S)
j+2

(
1
10 ,

3
√
11

10

)
(j + 2) 5j−1

=
3
√
11

2
.
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By using (1.19), (1.29) and (5.3) and after some elementary calculations, we can obtain another infinite
series:

∞∑
j=1

Gj (2α,−1; 1, 1, 1)− αGj−1 (2α,−1; 1, 1, 1)

qj

=

∞∑
j=1

E
(C)
j

(
α+ 1,

√
1− α2

)
+ E

(C)
j

(
α,

√
1− α2

)
2qj

.

Therefore:

Theorem 5.3 Let |α| < 1 and q > 1 . If q |α| ̸= 1 , then

∞∑
j=1

E
(C)
j

(
α+ 1,

√
1− α2

)
+ E

(C)
j

(
α,

√
1− α2

)
qj

=
2αq − 2

q2 − 2αq + 1
. (5.6)

For example, substituting q = 5 and α = 1
10 into (5.6) gives

∞∑
j=1

E
(C)
j

(
11
10 ,

3
√
11

10

)
+ E

(C)
j

(
1
10 ,

3
√
11

10

)
5j−2

= −1.

6. Remarks on inequalities for special polynomials and numbers
Polynomials are frequently used in various branches of mathematics and many applied sciences due to their
straightfoward usage. One of most commonly used polynomials is known as polynomial inequalities. The
polynomial inequalities plays significant role in mathematical inequalities especially in theory of approximation
and many applied sciences since the time of Cauchy, Chebysev, Gauss, Hardy and other researchers.

In this section, we briefly study some well-known inequalities of some particular classes of polynomials.
In fact, their applications in approximation theory is not discussed in this paper, but it can be investigated in
future studies.

Lehmer [19] gave the following inequality for the Bernoulli numbers with help the Fourier expansion of
the Bernoulli polynomials:

|B2k| <
(2k)!21−2kπ−2k

1− 2−2k+1
,

where k ∈ N .
In [21], Masjed-Jamei et al. gave the following inequality for the cosine-Euler polynomials E(C)

v (x, y) :

sup
x∈[0,1]

∣∣∣E(C)
2v+1 (x, y)

∣∣∣ ≤ 2v + 1

2
max

{∣∣∣E(C)
2v (0, y)

∣∣∣ , ∣∣∣∣E(C)
2v

(
1

2
, y

)∣∣∣∣} ,
where v ∈ N and y ∈ R . They also gave many inequalities for the cosine-Bernoulli polynomials B(C)

v (x, y) , the

sine-Bernoulli polynomials B(S)
v (x, y) , the cosine-Euler polynomials E(C)

v (x, y) and the sine-Euler polynomials

E
(S)
v (x, y) (cf. [20–24]).

In [8], by using inequalities including binomial coefficients, Gun and Simsek have studied the upper bound
and the lower bound of many special polynomials and numbers.
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