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Abstract: In this article, we introduced a new power series whose coefficients are probabilities of the Pascal distribution.
We investigated new approaches between the Pascal distribution series and some subclasses of normalized analytic
functions. Also, we defined some mappings containing these functions the Alexander type integral operator. Moreover,
we obtained sufficient conditions such that these mappings belong to some subclass of univalent functions.
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1. Introduction
Let A stand for the standard class of analytic functions of the form

f (z) = z +

∞∑
k=2

akz
k, z ∈ U = {z ∈ C : |z| < 1} , (1.1)

and let S the class of functions in A which are univalent in U(see [4]).
It is well-known that a function f ∈ A starlike of order α(0 ≤ α < 1) if and only if

Re

{
zf ′(z)

f(z)

}
> α, (z ∈ U).

We denote by S∗(α) the class of all functions which are starlike of order α . Furthermore, a function
f ∈ S is convex of order α (0 ≤ α < 1) if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, (z ∈ U).

We denote the class of convex functions of order α by C(α) . We note that C(0) = C , and S∗(0) = S∗ ,
where C and S∗ denote the classes of convex and starlike functions, respectively. Furthermore, for all 0 ≤ α < 1 ,
we have C(α) ⊂ S∗(α) .

For 0 ≤ α < 1 and 0 ≤ β < 1 , Thulasiram et al. [10] introduced the class G(β, α) the subclass of
functions f ∈ A which satisfy the condition:
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Re

(
zf ′(z) + βz2f ′′(z)

f(z)

)
> α, (z ∈ U).

Furthermore, let K(β, α) the subclass of functions f ∈ A which satisfy the condition:

Re

(
(zf ′(z) + βz2f ′′(z))′

f ′(z)

)
> α, (z ∈ U).

It is easy to verify that f ∈ K(β, α) ⇔ zf ′ ∈ G(β, α) . Clearly, for β = 0 we have G (0, α) = S∗(α) and
K (0, α) = C(α) .

Although some studies in the literature stated that the class K(β, α) was studied in the article given by
[10], only the class G(β, α) has given in the article.

Recently, there have been established some power series that their coefficients were probabilities of the
elementary distributions such as Poisson, Pascal, Binomial, etc. Using these series, several researchers obtained
necessary and sufficient conditions for these distribution series on certain subclasses of univalent functions (see,
for example [1, 2, 5–9]).

A variable x is said to have the Pascal distribution if it takes the values 0, 1, 2, 3, ... with the probabilities

(1 − q)r , qr(1−q)r

1! , q2r(r+1)(1−q)r

2! , q3r(r+1)(r+2)(1−q)r

3! ,..., respectively, where q , r are called the parameters,
and thus

P (X = k) =

(
k + r − 1

r − 1

)
qk(1− q)r, k ∈ {0, 1, 2, ...}.

Very recently, El-Deeb et al. [3] introduced the following power series whose coefficients are probabilities
of the Pascal distribution and stated some sufficient conditions for the Pascal distribution series and other
related series to be in some subclasses of analytic functions.

In this work we will consider the following power series whose coefficients are probabilities of the Pascal
distribution:

Φr
q(z) =z +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− q)rzk

(z ∈ U; r ≥ 1; 0 ≤ q ≤ 1)

(1.2)

Note that, by using ratio test we deduce that the radius of convergence of Φr
q(z) is infinite. Also, we consider

the linear operator
Θr

q(z) : A → A

defined by

Θr
q(z) := Φr

q(z) ∗ f(z)

= z +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− q)rakz

k

(z ∈ U; r ≥ 1; 0 ≤ q ≤ 1).

(1.3)
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Thulasiram et al. [10] obtained following coefficient inequalities for the function class G (β, α) :
Lemma 1 [10] A function f ∈ A belongs to the class G (β, α) if

∞∑
k=2

(k + βk (k − 1)− α) |ak| ≤ 1− α.

Now, let us give the following coefficient inequalities for the function class K (β, α) :
Lemma 2 A function f ∈ A belongs to the class K (β, α) if

∞∑
k=2

k (k + βk (k − 1)− α) |ak| ≤ 1− α.

Proof From f ∈ K(β, α) ⇔ zf ′ ∈ G(β, α) , replacing ak by kak in Lemma 1, we obtain the desired result. 2

In the present paper, we established sufficient conditions for the Pascal distribution series and other
related series to be in G (β, α) and K (β, α) . Also, we studied similar properties for an integral transform
related to this series.

2. Main results
Theorem 2.1 Φr

q(z) given by (1.2) is in the class G(β, α) if

q2r(r + 1)β

(1− q)2
+

qr(1 + 2β)

1− q
≤ (1− α)(1− q)r. (2.1)

Proof To prove that Φr
q ∈ G(β, α) , according to Lemma 1, it is sufficient to show that

∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
|q|k−1|1− q|r ≤ 1− α. (2.2)

We will use the following very known relation

∞∑
k=0

(
k + r − 1

r − 1

)
qk =

1

(1− q)r
, 0 ≤ q ≤ 1.

and the corresponding ones obtained by replacing the value of r with r − 1 , r + 1 and r + 2 in our proofs.
By making calculations on the left hand side of the inequality (2.2) we obtain,

∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
qk−1(1− q)r

= (1− q)r

[ ∞∑
k=2

(
k + r − 2

r − 1

)
qk−1β(k − 1)(k − 2)

+

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(k − 1)(1 + 2β) +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− α)

]
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= (1− q)r

[
q2

∞∑
k=3

(
k + r − 2

r + 1

)
qk−3βr(r + 1) + q

∞∑
k=2

(
k + r − 2

r

)
qk−2r(1 + 2β)

+

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− α)

]

= (1− q)r

[
q2

∞∑
k=0

(
k + r + 1

r + 1

)
qkβr(r + 1) + q

∞∑
k=0

(
k + r

r

)
qkr(1 + 2β)

+

∞∑
k=0

(
k + r − 1

r − 1

)
qk(1− α)− (1− α)

]

=
q2r(r + 1)β

(1− q)2
+

qr(1 + 2β)

1− q
+ (1− α) [1− (1− q)r] .

Therefore if the inequality (2.2) holds, we obtain

q2r(r + 1)β

(1− q)2
+

qr(1 + 2β)

1− q
+ (1− α) [1− (1− q)r] ≤ (1− α),

which is equivalent to (2.1). This completes the proof. 2

Taking β = 0 , we obtain the following corollary for the class of starlike functions of order α :

Corollary 1. Φr
q(z) given by (1.2) is in the class S∗(α) if

qr

(1− q)r+1
≤ (1− α).

Theorem 2.2 Φr
q(z) given by (1.2) is in the class K(β, α) if

q3βr(r + 1)(r + 2)

(1− q)3
+

q2r(r + 1)(5β + 1)

(1− q)2
+

qr(4β + 3− α)

1− q
≤ (1− α)(1− q)r. (2.3)

Proof To prove that Φr
q ∈ K(β, α) , according to Lemma 2, it is sufficient to show that

∞∑
k=2

(
k + r − 2

r − 1

)
|q|k−1|1− q|rk [k + βk(k − 1)− α] ≤ 1− α. (2.4)

Now, using the same calculations as in the proof of Theorem 2.1, we obtain

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− q)rk [k + βk(k − 1)− α]
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= (1− q)r

[ ∞∑
k=2

(
k + r − 2

r − 1

)
qk−1β(k − 1)(k − 2)(k − 3)

+

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(5β + 1)(k − 1)(k − 2)

+

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(k − 1)(4β + 3− α) +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− α)

]

= (1− q)r

[
q3

∞∑
k=4

(
k + r − 2

r + 2

)
qk−4βr(r + 1)(r + 2)

+ q2
∞∑
k=3

(
k + r − 2

r + 1

)
qk−3(5β + 1)r(r + 1)

+q

∞∑
k=2

(
k + r − 2

r

)
qk−2(4β + 3− α)r + (1− α)

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1

]

= (1− q)r

[
q3

∞∑
k=0

(
k + r + 2

r + 2

)
qkβr(r + 1)(r + 2)

+ q2
∞∑
k=0

(
k + r + 1

r + 1

)
qk(5β + 1)r(r + 1)

+q

∞∑
k=0

(
k + r

r

)
qk(4β + 3− α)r + (1− α)

∞∑
k=1

(
k + r − 1

r − 1

)
qk

]

=
q3βr(r + 1)(r + 2)

(1− q)3
+

q2r(r + 1)(5β + 1)

(1− q)2
+

qr(4β + 3− α)

1− q
+ (1− α) [1− (1− q)r] .

The last expression is bounded above by (1 − α) if the inequality (2.3) is satisfied. This completes the
proof. 2

For β = 0 , we obtain the following corollary for the class of convex functions of order α :

Corollary 2. Φr
q(z) given by (1.2) is in the class C(α) if

q2r(r + 1)

(1− q)r+2
+

qr(3− α)

(1− q)r+1
≤ (1− α).

Theorem 2.3 (i) If the condition

q3βr(r + 1)(r + 2)

(1− q)3
+

q2r(r + 1)(5β + 1)

(1− q)2
+

qr(4β + 3− α)

1− q
≤ (1− α)(1− q)r. (2.5)
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holds, then the operator Θr
q(z) defined by (1.3) maps the class S∗ to the class G(β, α) , that is Θr

q(S∗) ⊂
G(β, α)

(ii) If the condition (2.1) is satisfied, then the operator Θr
q maps the class C to the class G(β, α) , that is

Θr
q(C) ⊂ G(β, α)

Proof According to Lemma 1, to prove that Θr
q(z) ∈ G(β, α) it is sufficient to show that

∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
|q|k−1|1− q|r|ak| ≤ (1− α). (2.6)

(i) If f has the form (1.1) is in the class S∗ , then |ak| ≤ k holds for all k ≥ 2 (see [4], p. 44). Now using
(2.5), we obtain

∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
|q|k−1|1− q|r|ak|

≤
∞∑
k=2

k [k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
qk−1(1− q)r

Then, in order to avoid repetition, we can skip a few steps of the calculations and write directly the
following inequality:

q3βr(r + 1)(r + 2)

(1− q)3
+

q2r(r + 1)(5β + 1)

(1− q)2
+

qr(4β + 3− α)

1− q
+ (1− α) [1− (1− q)r] ≤ (1− α).

That is (2.6) holds, hence Θr
q(f) ∈ G(β, α) .

(ii) If f has the form (1.1) is in the class C , then |ak| ≤ 1 holds for all k ≥ 2 (see [4], pp.45). Now, using
(2.1), we obtain

∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
|q|k−1|1− q|r|ak|

≤
∞∑
k=2

[k + βk(k − 1)− α]

(
k + r − 2

r − 1

)
qk−1(1− q)r

If we use similar techniques as in the proof of Theorem 2.1, we obtain the following inequality:

q2r(r + 1)β

(1− q)2
+

qr(1 + 2β)

1− q
+ (1− α) [1− (1− q)r] ≤ (1− α).

Hence (2.1) holds, and therefore Θr
q(f) ∈ G(β, α) .

2
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3. Integral operators

In this section, we give conditions for the integral operator defined as follows:

Hr
q (z) =

∫ z

0

Φr
q(t)

t
dt (3.1)

where Φr
q(t) is given by (1.2).

Theorem 3.1 A sufficient condition for the function Hr
q to be in the class G(β, α) is

1 +
βqr

(1− q)
− α(1− q)

q(r − 1)

[
1− (1− q)r−1

]
− (1− α)(1− q)r ≤ 1− α. (3.2)

Proof From (3.1), we can write

Hr
q (z) =

∫ z

0

Φr
q(t)

t
dt = z +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1(1− q)r

zk

k
. (3.3)

According to Lemma 1, it is enough to show that

∞∑
k=2

[k + βk(k − 1)− α]

k

(
k + r − 2

r − 1

)
|q|k−1 |1− q|r ≤ 1− α. (3.4)

Using the assumption (3.2), a simple computation shows that

∞∑
k=2

[k + βk(k − 1)− α]

k

(
k + r − 2

r − 1

)
qk−1(1− q)r

= (1− q)r

[ ∞∑
k=2

(
k + r − 2

r − 1

)
qk−1β(k − 1) +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1

−
∞∑
k=2

(
k + r − 2

r − 1

)
qk−1α

k

]

= (1− q)r

[
q

∞∑
k=2

(
k + r − 2

r

)
qk−2βr +

∞∑
k=2

(
k + r − 2

r − 1

)
qk−1

− α

q(r − 1)

∞∑
k=2

(
k + r − 2

r − 2

)
qk

]
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=(1− q)r

{
βqr

∞∑
k=0

(
k + r

r

)
qk +

( ∞∑
k=0

(
k + r − 1

r − 1

)
qk − 1

)
− α

q(r − 1)

[ ∞∑
k=0

(
k + r − 2

r − 2

)
qk − 1− q(r − 1)

]}

=
βqr

(1− q)
+ 1− (1− q)r − α

q(r − 1)
[(1− q)− (1− q)r − q(r − 1)(1− q)r]

=
βqr

(1− q)
− α(1− q)

q(r − 1)

[
1− (1− q)r−1

]
− (1− α)(1− q)r + 1.

The last expression is bounded above by 1− α by the given condition. This completes the proof. 2

Theorem 3.2 A sufficient condition for the function Hr
q to be in the class K(β, α) is

q2r(r + 1)β

(1− q)2
+

qr(1 + 2β)

1− q
≤ (1− α)(1− q)r. (3.5)

Proof The proof of this theorem is same as to proof of Theorem 2.1. Therefore we omit the details involved.
2
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