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Abstract: In this paper, we develop the basic theory of linear ¢— Hamiltonian systems. In this context, we establish an
existence and uniqueness result. Regular spectral problems are studied. Later, we introduce the corresponding maximal

and minimal operators for this system. Finally, we give a spectral resolution.
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1. Introduction

Quantum calculus has attracted a lot of attention in the recent past. Because it has numerous applications in
different mathematical areas, such as number theory, orthogonal polynomials, fractal geometry, combinatorics,
the calculus of variations, mechanics, orthogonal polynomials, statistic physics, nuclear and high energy physics,
conformal quantum mechanics, and theory of relativity (see [18]). New results in this area can be found in [1,
3-11, 13-15, 17-21, 25-27].

It is well-known that Hamiltonian systems can be described for the modeling and analysis of some physical
systems with negligible dissipation. After the pioneering work [16] the theory of continuous Hamiltonian systems
has intensively been investigated by several authors. Their results have been summarized in the book of Krall
[22]. In [24], the author established the Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian
systems over a half line. Spectral problems of discrete linear Hamiltonian systems have been studied (cf.
[2, 16, 23]). In [12], Anderson investigated nonself-adjoint Hamiltonian systems on Sturmian time scales. He
unified discrete and continuous Hamiltonian theories to dynamic equations on Sturmian time scales.

In this paper, we develop the basic theory of linear g— Hamiltonian systems defined as
Jyld(z) = \V (2) + T ()] y (z), x € (0,a), a >0, (1.1)

where

Y (2) = ( : Sy ) V(@) = ( "oy ) ) |
= (% o )re=(RE) 58
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and T (z) are 2n X 2n complex Hermitian matrix-valued functions defined on [0, a] and continuous at zero.
In the analysis that follows, we will largely follow a development of the theory in [16, 22, 28].
If we take n =1 and V () = 1 in the system (1.1), we get the g—analogue of the one dimensional Dirac

problem. In [5]-[9], the authors studied the ¢— Dirac problem defined by
Y1
Y , 1.2
() (12)

(878 )(3) 08 8)()
D, 0 Yo 0 r(z) Yo
where A is a complex parameter, p(.) and r(.) are real-valued functions defined on [0,a] and continuous at

Z€ero.
Our paper is organized as follows: Section 2 introduces fundamental concepts and basic results of the

quantum calculus. In Section 3, we present linear ¢—Hamiltonian systems. Section 4 is devoted to regular
q— Hamiltonian systems. Finally, an eigenfunction expansion theorem for regular ¢— Hamiltonian equations is

presented in Section 5.

2. Preliminaries

In this section, we recall some basic concepts and useful results about quantum calculus. We refer to [15, 18, 21]
and some references cited therein. Let ¢ be a positive number with 0 < ¢ < 1. A set A C R is called ¢—
geometric if for every « € A, gx € A. Let y be a complex-valued function on A. Then, the ¢— difference

operator D, is defined by

Dyy (z) = [y (qz) — y (2)] qx%x, for all z € A.

The g—derivative at zero is defined by

Dyy (0) = Tim [y (zq") — y (0)] 5 reA,

n—roo

if the limit exists and does not depend on z. Associated with this operator there is a nonsymmetric formula

for the g— differentiation of a product

Dylf()g(x)] = [Dy f(2)] g(x) + [Dgg(2)] f(g2).

For n € N and « € C, the g— shifted factorial is defined by

(@0 =1, (a0), = [] (0~ ag"). (@q) = J[ (1)
k=0 k=0

(see [15]).

The Jackson q— integration is given by

/jf(t)czqt:<1—q>x§jf<q”x>q" (x € A),

n=0

provided that the series converges, and

b b a
/Gf(t)dqt:/of(t)dqt—/o () dgt (a,b € A).
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A function f which is defined on A, 0 € A, is said to be ¢g—regular at zero if

lim f (zq") = f(0),

n— oo

for every x € A. Through the remainder of the paper, we deal only with ¢—regular functions at zero.

If f and g are g—regular at zero, then we have
/0 f(qt) [Dyg (1)] dqt+/0 g9 @) [Dygf ()] dgt = g (a) f(a) —g(0) f(0).

3. ¢— Hamiltonian systems

Let us consider the following linear ¢—Hamiltonian system

L(y) = Ty (2) = AV (2) + T (2)]y (), = € (0,a), (3.1)
under the following hypotheses:

. _( Vi(z) O, o Ti(z) Ty (2) o .
i) V(z)= ( 0, V(x) ) and T (z) = ( T (z) Ti, () ) are 2n x 2n complex Hermitian matrix-

valued functions defined on [0, a] and continuous at zero.
ii) I+ (¢—1)xTs (x) is invertible and V(z) is nonnegative definite.
iii) A is a complex spectral parameter, y (z) is 2n x 1 vector-valued function and

y(z) = ( lgqyl (x) )

q q—lyz (37)

where y1,y2 : (0,a) — C™.
iv)
On _In
=(% o)
where I, is the n x n identity matrix. It is clear that J* = —J = J L.

We denote by H = L2 ,((0,a); E) (E :=C?") Hilbert space of 2n— dimensional vector-valued functions
Y, 2z, generated by the inner product

(y,2) = / 2*Vydgz,
0

and norm [|y|| = \/(y,y).

Throughout this work, we assume that the following definiteness condition holds: for every nontrivial

solution y of (3.1), we have
/ y*Vydsx > 0.
0

Now, we shall investigate the fundamental solutions of the linear ¢—Hamiltonian system (3.1). Let C2((0,a); E)
be the space of all vector-valued functions y such that y and D,y are g—regular at zero. It is clear that
C’g((O,a);E) C H.
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Theorem 3.1 For ki, ke € C", the linear q— Hamiltonian system (3.1) with initial condition
Y1 (O, /\) k‘1
0,0 = =K= , AeC 3.2
y(0,7) ( y2 (0, ) ko (3.2)

has a unique solution in C2((0,a); E).

Proof If y is a solution of the system (3.1)—(3.2), then an integration yields

v N =K —q / "IV (gt N) + T (gt M)y (g, ) dyt, (3.3)

where x € (0,a). Conversely, every solution of the Eq. (3.3) is also a solution of the system (3.1)—(3.2). Define

G = ( e )

and yo(z,\) = K,
Ysr (@) = K — g / TIAV (g, A) + T (gt \)] g (g8, \) dty 1 = 0,1,2, .. (3.4)
0

where x € (0,a).
We now prove that the sequence {y, :n € N:={1,2,...}} converges to a function y uniformly on each

compact subset of (0,a). There exist positive numbers p (A) and v (A) such that
[TV (2, ) + T (2, Ml < (V) Ny (2, )]l g <v(A), @ € (0,a).
Using mathematical induction, we get

1ys1 (2, A) = g (2, Vg < (V) ™5 (V(/\)(z;(ql)n P nen

It follows from Weierstrass M-test that the sequence {y, : n € N} converges to a function y uniformly on each
compact subset of (0,a). One can prove that y and D,y are continuous at zero. It is clear that the function
y satisfies the condition (3.2). To show that the system (3.1)—(3.2) has a unique solution, assume z is another
one. Then z is continuous at zero. Therefore, there exists a positive number M such that |y — z|| < M.

Proceeding as above, we get

2w (2 (1 - g))"

z,\) —z(x, A < Mu (X ,neN
ly(z, A) = 2(z, M)l g (A g @),
Since
| s (3 (1= )"
lim Mu (A z —— 2 =,
g, MM g (9,
then y = z on [0, a. O

2244



PASAOGLU ALLAHVERDIEV and TUNA/Turk J Math

For any function y € H, y (0) can be defined as

y(0) := lim y(q"). (3.5)

n—oo

Since y is g—regular at zero, the limit in (3.5) exists and is finite.

Let us denote by D, those elements in H satisfying the following conditions:
(1) y and
(i) 1(y) = Tyl (z) =T (x)y
(i) 7(0) = (a)

D,y are g — regular at zero.
() =V (z) f (x) exists in (0,a) and f € H.
y1 (2)

=0, where y(z) = yo (¢~ )

Then we define the minimal operator Ly, on Dy, by the equality
Lminy =1 (y) .

Similarly, we denote by Dy,,x those elements in H satisfying the following conditions: y and D,y are

q—regular at zero and
L(y) = Jy(a) = T (2)y (x) = V (2) f (x)

exists in (0,a) and f € H.
We define the mazimal operator L., on Dp.c by the equality

Lmaxy =1 (y) .

Let

y(x):<y1(x) >7 Z(x)Z(Zl(x)>eH.

ya (x)
Then, the Wronskian of y (z) and z (z) is defined by
Wy, 2) =25 (a7 ') y1 (2) — 21 (2) y2 (¢ ') -

One can prove that the Wronskian of any solutions of Eq. (3.1) is independent of 2. Now, we have the following

theorem.

Theorem 3.2 (Green’s formula) Let y and z be in Dyax. Then we have
(Lmaxyu Z) - (y7 Lmaxz) = [y7 Z] (a‘) - [y’ ’Z] (O) ’ (37)

where [y, z] (z) :=2*(z)Jy(z) and x € (0,a).

Proof For y,z € Dy, there exist f,g € H such that Ly.xy = f and L.z = g. Then, the left side of the
formula (3.7) is
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= /Oa {—;Dqlzf (@) y2 () + 25 (2) Dyyn (m)} dqx

_ /Oa [{_;Dqlzé‘ (:c)} y1 (x) + Dyzt (z) ys (x)} dyz
- /0“ {ZT (@) [_%Dq*w (@)] = Dq21 () y2 (x)} dyz

+ [ @ D ) - {-2pss @) by @)
I8 (oo

Since

Dy (21 (2)y2 (¢ 'w)) = (Dg (¢7'%) 21 (z) Dy (¢~ 'x)) + Dyt (z) ya (x)

=a@§wwmu»+wmuwm@>
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Dy (23 (a7'2) y1 (2)) = (Dgz5 (47 2)) Dy (a7 2) 1 (x) + 25 (2) (Dyy1 (2))

(Dg=125 (2)) y1 () + 25 (x) (Dgy1 (2)) -

Q| =

(Lmaxya Z) - (y7LmaxZ) = ’ Dq {72:; (3]) Y2 (qilx) + Z; (qilx) Y1 (’JI)} dqx
0

The following result directly follows from Theorem 3.2.

Theorem 3.3 Let y(x,n) and z(x,£) be any solutions of the equation (3.1). Then, for all £&,n € C,

holds.

(n—¢) /OI Z (6 V (8 y(t,€)dgt = 2" (x,8) Jy (z,n) — 2 (0,£) Jy (0,7m),

Lemma 3.4 The operator Ly, is Hermitian.

Proof For y,z € Dy, there exist f,g € H such that I (y) = Vf and [(z) = Vg. From (3.6) and Theorem

3.3, we get

(Lminyv Z) - (ya Lminz) = (f7 Z) - (yvg)

2* (a) Jg (a) — 2% (0) JG (0) = 0.

The following lemma has a similar proof of Lemma 3.4.
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Lemma 3.5 The relation
(Lminya Z) = (ya Lmaxz)

holds for all y € Dy and for all z € Dyax-

Lemma 3.6 Let the null space and the range of an operator L be denoted by N (L) and R (L), respectively.

Then we have

R (Lmin) = ~/\/'(Lmax)L .

Proof Given any f € R (Lmin), there exists y € Dy, such that L,y = f. From Lemma 3.5, for each
2 € N (Limax) , We get
(fv Z) = (Lminy7 Z) = (y, Lmaxz) =0,

ie. f GN(Lmax)L.

We now show that N(Lmax)J‘ C R (Lmin) . For any given f € J\/'(LmaX)J‘, we have (f,z) =0 for all
2 € N (Lax) - Consider the following problem:

Ty (z) =T (2)y (z) =V () f (), z € (0,a)

It follows from Theorem 3.1 that the above problem has a unique solution on (0, a). Let U (z) = (1, ¥2, ..., Yan)

be the fundamental solution of the system
Jy(z) = T (z)y (z) =0, ¥(a) =J, € (0,a).

It is clear that ¥; € N (Lpax) for 1 < i < 2n. By Theorem 3.2, for 1 <14 < 2n, we get

0= (fth) = / U OV (1) dgt = / " (0)1(y) (1) dyt

/ U (0)1(y) (1) dgt — / L) 0y (1) dyt
0 0

~

= 97 (a) J§ (a) = §7 (0) JG(0) = ¥} (a) J§ (a) .
Thus, we have U* (a) Jj(a) = (a) =0, ie. f€ R (L) O

Theorem 3.7 The operator Ly, is symmetric operator and the operator Lpyay is densely defined operator.

* _
Furthermore L7 ., = Lmax.

Proof We first show that D=

min

Set Linz (x) = h(x). Let y(x) be any solution of the system

= {0} . Suppose that f € Di. . Then, for all z € Dy, we have (f,z) = 0.

min*

Jyli(a) =T (2)y (x) =V (x) f (2), = € (0,a).
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It follows from Theorem 3.2 that

- (o= [ " )V (1) dyt / LSOV ) dgt

-/ 1) (1) (1) dyt - / " (1) () dyt
0 0

= —2* (a) J§ (a) + 2% (0) JF (0) = 0.

Thus we get (y,h) = (f,2) = 0. By Lemma 3.6, we have y € R (Lyin) = N(LmaX)J‘ and consequently f = 0.
Now, we prove that the domain of the operator L* D} .. is equal to Dpyay, and LY, y = Lmnaxy for

min» min

all y € Df. . By Lemma 3.5, for any given y € Dy.x, we have

(Y, Lminz) = (Lmaxy, 2), for all z € Dpip.

Therefore the functional (y, Lmin () is continuous on Dy, and y € Df. | ie. Doy C D

min? min*
*
min»

We prove the reverse conclusion. If y € D then y and h:= L}, v are all in H. Assume that v is a

solution of the system
Juld(z) =T (z)u(x) =V (2) h(z). (3.8)

By Lemma 3.5, we deduce that
(h’ Z) = (Lmaxu7 Z) = (’U/, Lminz) .

Thus we have
(y —u, Lminz) = (y,LrninZ) - (u7 Lminz) = (L:minya Z) - (h) Z) =0,

ie. y—ueR (Lmin)L . Tt follows from Lemma 3.6 that y — u € N (Lyax) -
Using (3.8), we get

Jyld(z) = T (z)y (z) = Jullu(z) = T (z)u(z) =V (z) h(x), z € (0,a).

Since y, h € H, we have that y € Dyax and Lyaxy = h = L ; y. This completes the proof. O

4. Regular ¢— Hamiltonian boundary value problems

In this section, we introduce regular g—Hamiltonian boundary value problems.
We denote by D those elements y in H satisfying:

i) y and Dyy are g—regular at zero.
i) 1(y) = Jyld(z) = T (x)y (x) = V () f (x) exists in (0,a) and f € H.
iii) Let © and ® be m x 2n matrices such that rank (0 : ®) = m. Then set

0y (0) + Py (a) = 0.
We define the operator L by setting

Ly= [« Jyl(2) ~ T (x)y(z) = V () f (),

2249
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for all y in D.
Let T and T be (4n —m) x 2n matrices, chosen so that rank (Y : ') = 4n —m and

(% 7)

is nonsingular. Let

be chosen so that
() (20)-(75) w
We can now rewrite the formula (3.7).
Theorem 4.1 Let y and z be in Dyax. Then
(Lot 2) — (0, L) = [05(0) + 52(a)] " [05(0) + B51(a)]
+ [¥2(0) + F2(a)] [7(0) + T5(0)].

Proof From (3.7) and (4.1), we get

z*(a)Jy(a) = 27(0)J4(0)

Now, we describe the operator L*, i.e. the adjoint operator of L.

Theorem 4.2 Let D* be the domain of the operator L*. Then, it consists of those elements z in H satisfying

2250
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i) y and Dyy are g—regular at zero.

i) 1(z) = J2l9(z) — T () 2 () = V (2) g (x) exists in (0,a) and g € H.

iii) T2(0) + '2(a) = 0.
For z € D*, L*z =g if and only if Jzl4 = Vg + T=z.

Proof Since Lyyw C L C Lyax, we have Ly, C L* C Liyax. Let y € D and z € D*. From Theorem 4.1, we

have

(Ly,2) = (5, L") = [62(0) + ¥2(a) | [©7(0) + ®(a)]

+ [¥2(0) + F2(a)] [7(0) + T5(0)].

Then we get
0= [Y2(0) + T2(a)] [7(0) + T5(0)].

Since Y7 (0) + I'yj(a) is arbitrary, this forces z to satisfy Y2(0) + I'z(a) = 0.

Conversely, if z satisfies the criteria listed above then z € D*.

Now, we find parametric boundary conditions for D and D*. Recall that

0y (0) + @y (a) = 0,7y (0) + I'y(a) = F,

where F' is arbitrary. Hence, we have

Multiplying both sides of (4.3) by

we obtain
o)\ [ JY*F
yla) )\ —Jr*F )°
Similarly, we find parametric boundary conditions for D*-. Since
02(0) + ®2(a) = G, Y2(0) 4+ I'2(a) =0,

where G is arbitrary, we get

Multiplying both sides of (4.5) by

(4.2)

(4.3)
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we obtain
zZ(0) = —JO*G, z(a) = JO*G. (4.6)

Using these parametric boundary conditions, we develop a criterion under which L is self-adjoint. Then

we have the following theorem.

Theorem 4.3 The operator L is self-adjoint if and only if rank (0 : ®) = m = 2n and ©JO* = OJd*.
Proof Let L be self-adjoint operator. Then z satisfies the boundary conditions for D, i.e.
0z (0) + ®z(a) = 0.
Using (4.6), we get
0 (-JO*G)+ & (JP*G) =0
[6J0" —dJP*|G = 0.

Since G is arbitrary, we obtain
0J0" = dJjo".
Conversely, if 6J0* = ®JP*, then we have

(-0J @J)(g,f):o,

g* > for n independent solutions to the equation ( —-0J oJ )X =0.
By virtue of (4.2) and (4.4), we have

ff*
-0J &J ~ =0.
( (F)
Hence, there must be a constant, nonsingular matrix K such that
T* Ch
(F)=-(%)

That is, the boundary conditions ©% (0) + @y (a) =0 and Yy (0) + I'y(a) = 0 are equivalent. Since the forms
of L and L* are the same, L = L*. O

i.e. the columns of <

5. Eigenfunction expansions
In this section, we shall give an eigenfunction expansion using by the spectral theory of self-adjoint operators
in a Hilbert space.

Let us consider the operator L of the previous section. We set in H, Ly = f if and only if
Jyld(z) — T (x)y () = V (z) f (z), where y is constrained in part by the self-adjointness criterion ©.J0* =
®.J®*. Suppose that the matrix Y (x, \) is a fundamental matrix for Jyl?(z) = [\V () + T (z)] y (z) satisfying

~

V(0,0 =1.
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Now, we solve the equation (L — AI)y = f for y. y satisfies the nonhomogeneous equation Jyl4(z) =

AV () + T (z)]y (z)+V (x) f (z) . The method of variation of constants suggests to search the general solution

under the form y (x,A) =Y (z,X) C (2, \), where C (z,)) is 2n x 1 vector function. We get
Jyld = gy 1 gy (z) 9,
AV (2) + T (2)]y (2) = [\V (2) + T (2)] YC,

where
@ =(nii) )

Hence
V(@) f () = Jyh (@) — AV (2) + T ()] y ()
=Jylc 4+ gvcld —(\V (z) + T (2)]YC

- {JYM “\WV (@) + T (2)] Y} C+Jycl = gycld,
ie.
~ -1
ol = [JY (x)} V(@) f ().
Then, the general solution is given by

Y (@A) =Y (2, )) /OI [V 0] VO £ gt +Y (@0 M.

If we impose the boundary condition Oy (0) + @y (a) = 0, then we obtain
y(0) =M,

7(a)=Y (a,\) /0 [Jff (t)] Ty (t) f () dgt + Y (a,\) M.
These yield

v =Y @[+ @] o /Ox 7 0] v dg

¥ (2.3 [0+ 8V (a)] o7 () /x 77 )] TV @) dgt.
In the next results, we use the notation
Y (@A) = /OaG(x,t,/\)V(t)f(t) dt,
where

Clo,t2) = Y (z,\) [®+q>}7(a)_}lle[ﬂ7(t)}l7 0<t<z<a

Y (2,)) [@+<I>?(a)] Y (a) [JY (t)}_17 0<z<t<a.

2253
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Theorem 5.1 For all nonreal \, the operator R(X) = (L — M )™" ezists and is a bounded operator. It exists
also for all real X for which det[© + @y (a)] # 0 as a bounded operator. The spectrum of the operator L

consists entirely of isolated eigenvalues, zeros of det [© + @y (a)] = 0.

Proof It is clear that the operator R (A) = (L — AI) ™" exists for all real A except the zeros of det [© + &7 (a)] =
0. Since the operator L is self-adjoint operator, it follows that the operator R (X) = (L — AI)™" exists for all

nonreal A. The spectrum of the operator L consists entirely of isolated eigenvalues, zeros of det [@ + @y (a)] =

0 because det [@ + ®y(a)] is analytic in A and is not identically zero. These zeros can accumulate only at
Fo0.

To prove that the operator R () = (L — AI)~" is a bounded operator, write F (1) = V/2 () f () and
W (x,m,\) = VY2 (1) G (2,t,\) V¥/? (z) , where V1/2 is a square root of the matrix V. Then, we have

[w=an™ o] =1 = [ v @V @y e

-/ :/:G(x,n,w(n)f(n)danwm [ ety F o e

= /Oa :/Oa F* (n) W* (z,m, \) dqn] [/OGW(z,t,)\)F(t) dqt} dqz.

If we apply Schwarz’s inequality to both terms, then we obtain
—1 42 21 12
[@=xn= | <iwiisie,

where

a a n n
W2 = / / SN Wy (VI dgndye.

i=1 j=1

Theorem 5.2 Figenfunctions associated with different eigenvalues are mutually orthogonal. For each eigen-

value pj, its eigenfunctions can be made mutually orthogonal.

Proof Let y; and yo be eigenfunctions associated with p; and ps, respectively. It follows from Green’s

formula that

(1 — p2) (y1,92) = 0.
Since 1 # p2, (y1,92) = 0.
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Let y1,92, ..., ym be eigenfunctions associated with p. Let us define Ny by

k-1
Ne =y — Zuj (Y, uj)
j=1
Y
Uy = —,
[yl
Ni
up = ——, k=2,3,...,m.
[y Y
It is clear that wuy is orthogonal to y1,y2, ..., Yk —1- O

Without loss of generality, we can assume that 0 is not an eigenvalue. Then, the solution to

Ty (@) =T (2)y (z) = V (2) f (),
0y (0) + @y (a) = C,

is given by
ye) = [ GV sz,
0
where G (z,t) = G (z,t,0). In the next results, we use the following notation
y="f=L""f.
Theorem 5.3 Y is bounded and ||| = sup{‘%ﬂ‘ A €0 (L)} )

Proof Tt is clear that if Ly, = A\pxn (n € N), then YTy, = ﬁxn. O

Now, we shall order the eigenvalues of T, 7, = )\i, such that |71 > |r2| > ... > |7,| > ..., where

lim |7,| = 0. (5.1)

n—0o0
Let us define {T,} -, by

n—1
Tof=70f~- ZTiXi (fixa) -

i=1
Then we have the following theorem.
Theorem 5.4 The following results hold.
[Tnll =|mal, n €N,

and
lim Y,, =0. (5.2)

n— oo
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Proof We have

(o0, if1<j<n—1
T"Xj{rj ifn<j<oo.

Further Y, is bounded and self-adjoint. Hence, we get

[Tnll= sup [(Tox, )= sup  [(Tux,x)| = |7l
x€H, ||x||=1 x€H, [|x||=1
XFX1s++5Xn

For a finite n, we can stop this process such that Y,, = 0. Hence, for all f € H, we get
n—1
Tf= Z Tixi (f, xi) - (5.3)
i=1

If we apply L to the equality (5.3), then we obtain
n—1
i=1

which says that f is differentiable. Since there are f ’s which are not, the process cannot stop. From (5.1), we

get lim, o Y, = 0. O

Theorem 5.5 For all f € H, we have
F=Yxi(foxa), Y=Y mixi (foxa) -
i=1 i=1

For all y € D, we get

Ly = Xixi (4, Xi) -
=1

Proof Tt follows from (5.2) that

Tf= ZTin' (fsxa) - (5.4)

i=1

Applying L to the equality (5.4), we get
f= ZXi (f, xi) -
i=1
Further,

(f,xi) = (Ly, xi) = (y, Lxi) = i (Y, xi) -

Thus, we get

Ly = Z Aixi (s Xi) -
i=1
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Theorem 5.6 There exists a collection of projection operators {E (\)} satisfying
(a) limy oo E(A) =1, limy—,_oo E(X) =0,

(b) E(A\) < E(X\y) when Ay < g,

(¢c) E()N) is continuous from above,

(d) For oll f € H and y € D, we have

o0 o0 1 oo
f= [ arovrti= [ SEW S L= [ MEN
Proof Let us define
Pif =x:i (f,xi),
where P; is a projection operator. If we define
A<A
then E (M) generates a Stieltjes measure. The integrals in (d) are obtained from this series. O
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