
Turk J Math
(2020) 44: 2241 – 2258
© TÜBİTAK
doi:10.3906/mat-2007-29

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

q−Hamiltonian systems

Bilender PAŞAOĞLU ALLAHVERDİEV1, Hüseyin TUNA2,∗
1Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, İsparta, Turkey

2Department of Mathematics, Faculty of Art and Science, Burdur Mehmet Akif Ersoy University, Burdur, Turkey

Received: 08.07.2020 • Accepted/Published Online: 16.09.2020 • Final Version: 16.11.2020
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1. Introduction
Quantum calculus has attracted a lot of attention in the recent past. Because it has numerous applications in
different mathematical areas, such as number theory, orthogonal polynomials, fractal geometry, combinatorics,
the calculus of variations, mechanics, orthogonal polynomials, statistic physics, nuclear and high energy physics,
conformal quantum mechanics, and theory of relativity (see [18]). New results in this area can be found in [1,
3–11, 13–15, 17–21, 25–27].

It is well-known that Hamiltonian systems can be described for the modeling and analysis of some physical
systems with negligible dissipation. After the pioneering work [16] the theory of continuous Hamiltonian systems
has intensively been investigated by several authors. Their results have been summarized in the book of Krall
[22]. In [24], the author established the Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian
systems over a half line. Spectral problems of discrete linear Hamiltonian systems have been studied (cf.
[2, 16, 23]). In [12], Anderson investigated nonself-adjoint Hamiltonian systems on Sturmian time scales. He
unified discrete and continuous Hamiltonian theories to dynamic equations on Sturmian time scales.

In this paper, we develop the basic theory of linear q−Hamiltonian systems defined as

Jy[q](x) = [λV (x) + T (x)] y (x) , x ∈ (0, a) , a > 0, (1.1)

where

y[q](x) =

(
Dqy1 (x)

1
qDq−1y2 (x)

)
, V (x) =

(
V1 (x) On

On V2 (x)

)
,

J =

(
On −In
In On

)
, T (x) =

(
T1 (x) T ∗

2 (x)
T2 (x) T3 (x)

)
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and T (x) are 2n× 2n complex Hermitian matrix-valued functions defined on [0, a] and continuous at zero.
In the analysis that follows, we will largely follow a development of the theory in [16, 22, 28].
If we take n = 1 and V (x) = 1 in the system (1.1), we get the q−analogue of the one dimensional Dirac

problem. In [5]–[9], the authors studied the q−Dirac problem defined by(
0 − 1

qDq−1

Dq 0

)(
y1
y2

)
+

(
p (x) 0
0 r (x)

)(
y1
y2

)
= λ

(
y1
y2

)
, (1.2)

where λ is a complex parameter, p (.) and r (.) are real-valued functions defined on [0, a] and continuous at
zero.

Our paper is organized as follows: Section 2 introduces fundamental concepts and basic results of the
quantum calculus. In Section 3, we present linear q−Hamiltonian systems. Section 4 is devoted to regular
q−Hamiltonian systems. Finally, an eigenfunction expansion theorem for regular q−Hamiltonian equations is
presented in Section 5.

2. Preliminaries
In this section, we recall some basic concepts and useful results about quantum calculus. We refer to [15, 18, 21]
and some references cited therein. Let q be a positive number with 0 < q < 1. A set A ⊂ R is called q−
geometric if for every x ∈ A, qx ∈ A. Let y be a complex-valued function on A. Then, the q−difference
operator Dq is defined by

Dqy (x) = [y (qx)− y (x)]
1

qx− x
, for all x ∈ A.

The q−derivative at zero is defined by

Dqy (0) = lim
n→∞

[y (xqn)− y (0)]
1

xqn
, x ∈ A,

if the limit exists and does not depend on x. Associated with this operator there is a nonsymmetric formula
for the q−differentiation of a product

Dq[f(x)g(x)] = [Dqf(x)] g(x) + [Dqg(x)] f(qx).

For n ∈ N and α ∈ C, the q−shifted factorial is defined by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
(see [15]).

The Jackson q− integration is given by∫ x

0

f (t) dqt = (1− q)x

∞∑
n=0

f (qnx) qn (x ∈ A),

provided that the series converges, and∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f (t) dqt (a, b ∈ A).
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A function f which is defined on A, 0 ∈ A, is said to be q−regular at zero if

lim
n→∞

f (xqn) = f (0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with q−regular functions at zero.
If f and g are q−regular at zero, then we have∫ a

0

f (qt) [Dqg (t)] dqt+

∫ a

0

g (t) [Dqf (t)] dqt = g (a) f (a)− g (0) f (0) .

3. q−Hamiltonian systems
Let us consider the following linear q−Hamiltonian system

l (y) := Jy[q](x) = [λV (x) + T (x)] y (x) , x ∈ (0, a) , (3.1)

under the following hypotheses:

i) V (x) =

(
V1 (x) On

On V2 (x)

)
and T (x) =

(
T1 (x) T ∗

2 (x)
T2 (x) T3 (x)

)
are 2n×2n complex Hermitian matrix-

valued functions defined on [0, a] and continuous at zero.
ii) I + (q − 1)xT2 (x) is invertible and V (x) is nonnegative definite.
iii) λ is a complex spectral parameter, y (x) is 2n× 1 vector-valued function and

y[q](x) =

(
Dqy1 (x)

1
qDq−1y2 (x)

)
,

where y1, y2 : (0, a) → Cn.

iv)

J =

(
On −In
In On

)
,

where In is the n× n identity matrix. It is clear that J∗ = −J = J−1.

We denote by H = L2
q,V ((0, a);E) (E := C2n) Hilbert space of 2n−dimensional vector-valued functions

y, z, generated by the inner product

(y, z) =

∫ a

0

z∗V ydqx,

and norm ∥y∥ =
√

(y, y).

Throughout this work, we assume that the following definiteness condition holds: for every nontrivial
solution y of (3.1), we have ∫ a

0

y∗V ydqx > 0.

Now, we shall investigate the fundamental solutions of the linear q−Hamiltonian system (3.1). Let C2
q ((0, a);E)

be the space of all vector-valued functions y such that y and Dqy are q−regular at zero . It is clear that
C2

q ((0, a);E) ⊂ H.

2243



PAŞAOĞLU ALLAHVERDİEV and TUNA/Turk J Math

Theorem 3.1 For k1, k2 ∈ Cn, the linear q−Hamiltonian system (3.1) with initial condition

y(0, λ) =

(
y1 (0, λ)
y2 (0, λ)

)
= K =

(
k1
k2

)
, λ ∈ C (3.2)

has a unique solution in C2
q ((0, a);E).

Proof If y is a solution of the system (3.1)–(3.2), then an integration yields

y(x, λ) = K − q

∫ x

0

J [λV (qt, λ) + T (qt, λ)] y (qt, λ) dqt, (3.3)

where x ∈ (0, a). Conversely, every solution of the Eq. (3.3) is also a solution of the system (3.1)–(3.2). Define

ŷ (x) =

(
y1 (x)

y2
(
q−1x

) )

and ŷ0(x, λ) = K,

yn+1(x, λ) = K − q

∫ x

0

J [λV (qt, λ) + T (qt, λ)] yn (qt, λ) dqt, n = 0, 1, 2, ... (3.4)

where x ∈ (0, a).

We now prove that the sequence {yn : n ∈ N := {1, 2, ...}} converges to a function y uniformly on each
compact subset of (0, a). There exist positive numbers µ (λ) and ν (λ) such that

∥J [λV (x, λ) + T (x, λ)]∥E ≤ µ (λ) , ∥y1 (x, λ)∥E ≤ ν (λ) , x ∈ (0, a).

Using mathematical induction, we get

∥yn+1(x, λ)− yn(x, λ)∥E ≤ µ (λ) q
n(n+1)

2
(ν (λ)x (1− q))

n

(q; q)n
, n ∈ N.

It follows from Weierstrass M-test that the sequence {yn : n ∈ N} converges to a function y uniformly on each
compact subset of (0, a). One can prove that y and Dqy are continuous at zero. It is clear that the function
y satisfies the condition (3.2). To show that the system (3.1)–(3.2) has a unique solution, assume z is another
one. Then z is continuous at zero. Therefore, there exists a positive number M such that ∥y − z∥ ≤ M.

Proceeding as above, we get

∥y(x, λ)− z(x, λ)∥E ≤Mµ (λ) q
n(n+1)

2
(x (1− q))

n

(q; q)n
, n ∈ N

Since

lim
n→∞

Mµ (λ) q
n(n+1)

2
(x (1− q))

n

(q; q)n
= 0,

then y = z on [0, a]. 2
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For any function y ∈ H, y (0) can be defined as

y(0) := lim
n→∞

y(qn). (3.5)

Since y is q−regular at zero, the limit in (3.5) exists and is finite.
Let us denote by Dmin those elements in H satisfying the following conditions:

(i) y and Dqy are q − regular at zero.
(ii) l (y) = Jy[q](x)− T (x) y (x) = V (x) f (x) exists in (0, a) and f ∈ H.

(iii) ŷ (0) = ŷ (a) = 0, where ŷ (x) =
(

y1 (x)
y2
(
q−1x

) ) . (3.6)

Then we define the minimal operator Lmin on Dmin by the equality

Lminy = l (y) .

Similarly, we denote by Dmax those elements in H satisfying the following conditions: y and Dqy are
q−regular at zero and

l (y) = Jy[q](x)− T (x) y (x) = V (x) f (x)

exists in (0, a) and f ∈ H.

We define the maximal operator Lmax on Dmax by the equality

Lmaxy = l (y) .

Let

y (x) =

(
y1 (x)
y2 (x)

)
, z (x) =

(
z1 (x)
z2 (x)

)
∈ H.

Then, the Wronskian of y (x) and z (x) is defined by

W (y, z) = z∗2
(
q−1x

)
y1 (x)− z∗1 (x) y2

(
q−1x

)
.

One can prove that the Wronskian of any solutions of Eq. (3.1) is independent of x. Now, we have the following
theorem.

Theorem 3.2 (Green’s formula) Let y and z be in Dmax. Then we have

(Lmaxy, z)− (y, Lmaxz) = [y, z] (a)− [y, z] (0) , (3.7)

where [y, z] (x) := ẑ∗(x)Jŷ(x) and x ∈ (0, a) .

Proof For y, z ∈ Dmax, there exist f, g ∈ H such that Lmaxy = f and Lmaxz = g. Then, the left side of the
formula (3.7) is
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(Lmaxy, z)− (y, Lmaxz) = (f, z)− (y, g)

=

∫ a

0

z∗ (x)V (x) f (x) dqx

−
∫ a

0

g∗ (x) y (x)V (x) dqx−
∫ a

0

{l (z)}∗ y (x) dqx

=

∫ a

0

z∗ (x)
{
Jy[q](x)− [λV (x) + T (x)] y (x)

}
dqx

−
∫ a

0

{
Jz[q](x)− [λV (x) + T (x)] z (x)

}∗
y (x) dqx

=

∫ a

0

z∗ (x) Jy[q](x)dqx−
∫ a

0

{
Jz[q](x)

}∗
y (x) dqx

=

∫ a

0

{
−1

q
Dq−1z∗1 (x) y2 (x) + z∗2 (x)Dqy1 (x)

}
dqx

−
∫ a

0

[{
−1

q
Dq−1z∗2 (x)

}
y1 (x) +Dqz

∗
1 (x) y2 (x)

]
dqx

=

∫ a

0

{
z∗1 (x) [−

1

q
Dq−1y2 (x)]−Dqz

∗
1 (x) y2 (x)

}
dqx

+

∫ a

0

{
z∗2 (x)Dqy1 (x)−

{
−1

q
Dq−1z∗2 (x)

}
y1 (x)

}
.

Since

Dq

(
z∗1 (x) y2

(
q−1x

))
=
(
Dq

(
q−1x

)
z∗1 (x)Dqy2

(
q−1x

))
+Dqz

∗
1 (x) y2 (x)

= z∗1 (x)
1

q

(
Dq−1y2 (x)

)
+ (Dqz1 (x))

∗
y2 (x)
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and

Dq

(
z∗2
(
q−1x

)
y1 (x)

)
=
(
Dqz

∗
2

(
q−1x

))
Dq

(
q−1x

)
y1 (x) + z∗2 (x) (Dqy1 (x))

=
1

q

(
Dq−1z∗2 (x)

)
y1 (x) + z∗2 (x) (Dqy1 (x)) .

Hence we get

(Lmaxy, z)− (y, Lmaxz) =

∫ a

0

Dq

{
−z∗1 (x) y2

(
q−1x

)
+ z∗2

(
q−1x

)
y1 (x)

}
dqx

= ẑ∗(a)Jŷ(a)− ẑ∗(0)Jŷ(0)

= [y, z] (a)− [y, z] (0) .

2

The following result directly follows from Theorem 3.2.

Theorem 3.3 Let y (x, η) and z (x, ξ) be any solutions of the equation (3.1). Then, for all ξ, η ∈ C,

(
η − ξ

) ∫ x

0

z∗ (t, ξ)V (t, η) y(t, ξ)dqt = ẑ∗ (x, ξ) Jŷ (x, η)− ẑ∗ (0, ξ) Jŷ (0, η) ,

holds.

Lemma 3.4 The operator Lmin is Hermitian.

Proof For y, z ∈ Dmin, there exist f, g ∈ H such that l (y) = V f and l (z) = V g. From (3.6) and Theorem
3.3, we get

(Lminy, z)− (y, Lminz) = (f, z)− (y, g)

=

∫ a

0

z∗ (t)V f (t) dqt−
∫ a

0

g∗ (t)V y (t) dqt

=

∫ a

0

[z∗ (t) l (y)− (l (z))∗y (t)] dqt

= ẑ∗ (a) Jŷ (a)− ẑ∗ (0) Jŷ (0) = 0.

2

The following lemma has a similar proof of Lemma 3.4.
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Lemma 3.5 The relation
(Lminy, z) = (y, Lmaxz)

holds for all y ∈ Dmin and for all z ∈ Dmax.

Lemma 3.6 Let the null space and the range of an operator L be denoted by N (L) and R (L) , respectively.
Then we have

R (Lmin) = N (Lmax)
⊥
.

Proof Given any f ∈ R (Lmin) , there exists y ∈ Dmin such that Lminy = f. From Lemma 3.5, for each
z ∈ N (Lmax) , we get

(f, z) = (Lminy, z) = (y, Lmaxz) = 0,

i.e. f ∈ N (Lmax)
⊥
.

We now show that N (Lmax)
⊥ ⊂ R (Lmin) . For any given f ∈ N (Lmax)

⊥
, we have (f, z) = 0 for all

z ∈ N (Lmax) . Consider the following problem:

Jy[q](x)− T (x) y (x) = V (x) f (x) , x ∈ (0, a)

ŷ (0) = 0.

It follows from Theorem 3.1 that the above problem has a unique solution on (0, a) . Let Ψ(x) = (ψ1, ψ2, ..., ψ2n)

be the fundamental solution of the system

Jy[q](x)− T (x) y (x) = 0, Ψ̂ (a) = J, x ∈ (0, a) .

It is clear that ψi ∈ N (Lmax) for 1 ≤ i ≤ 2n. By Theorem 3.2, for 1 ≤ i ≤ 2n, we get

0 = (f, ψi) =

∫ a

0

ψ∗
i (t)V f (t) dqt =

∫ a

0

ψ∗
i (t) l (y) (t) dqt

=

∫ a

0

ψ∗
i (t) l (y) (t) dqt−

∫ a

0

l (ψi)
∗
(t) y (t) dqt

= ψ̂∗
i (a) Jŷ (a)− ψ̂∗

i (0) Jŷ (0) = ψ̂∗
i (a) Jŷ (a) .

Thus, we have Ψ̂∗ (a) Jŷ (a) = ŷ (a) = 0, i.e. f ∈ R (Lmin) . 2

Theorem 3.7 The operator Lmin is symmetric operator and the operator Lmax is densely defined operator.
Furthermore L∗

min = Lmax.

Proof We first show that D⊥
min = {0} . Suppose that f ∈ D⊥

min. Then, for all z ∈ Dmin, we have (f, z) = 0.

Set Lminz (x) = h (x) . Let y (x) be any solution of the system

Jy[q](x)− T (x) y (x) = V (x) f (x) , x ∈ (0, a) .

2248
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It follows from Theorem 3.2 that

(y, h)− (f, z) =

∫ a

0

h∗ (t)V y (t) dqt−
∫ a

0

z∗ (t)V f (t) dqt

=

∫ a

0

l (z)
∗
(t) y (t) dqt−

∫ a

0

z∗ (t) l (y) (t) dqt

= −ẑ∗ (a) Jŷ (a) + ẑ∗ (0) Jŷ (0) = 0.

Thus we get (y, h) = (f, z) = 0. By Lemma 3.6, we have y ∈ R (Lmin) = N (Lmax)
⊥ and consequently f = 0.

Now, we prove that the domain of the operator L∗
min, D

∗
min is equal to Dmax, and L∗

miny = Lmaxy for
all y ∈ D∗

min. By Lemma 3.5, for any given y ∈ Dmax, we have

(y, Lminz) = (Lmaxy, z) , for all z ∈ Dmin.

Therefore the functional (y, Lmin (.)) is continuous on Dmin and y ∈ D∗
min, i.e. Dmax ⊂ D∗

min.

We prove the reverse conclusion. If y ∈ D∗
min, then y and h := L∗

miny are all in H. Assume that u is a
solution of the system

Ju[q](x)− T (x)u (x) = V (x)h (x) . (3.8)

By Lemma 3.5, we deduce that
(h, z) = (Lmaxu, z) = (u, Lminz) .

Thus we have
(y − u, Lminz) = (y, Lminz)− (u, Lminz) = (L∗

miny, z)− (h, z) = 0,

i.e. y − u ∈ R (Lmin)
⊥
. It follows from Lemma 3.6 that y − u ∈ N (Lmax) .

Using (3.8), we get

Jy[q](x)− T (x) y (x) = Ju[q]u(x)− T (x)u (x) = V (x)h (x) , x ∈ (0, a) .

Since y, h ∈ H, we have that y ∈ Dmax and Lmaxy = h = L∗
miny. This completes the proof. 2

4. Regular q−Hamiltonian boundary value problems
In this section, we introduce regular q−Hamiltonian boundary value problems.

We denote by D those elements y in H satisfying:
i) y and Dqy are q−regular at zero.

ii) l (y) = Jy[q](x)− T (x) y (x) = V (x) f (x) exists in (0, a) and f ∈ H.

iii) Let Θ and Φ be m× 2n matrices such that rank (Θ : Φ) = m. Then set

Θŷ (0) + Φŷ (a) = 0.

We define the operator L by setting

Ly = f ⇔ Jy[q](x)− T (x) y (x) = V (x) f (x) ,

2249
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for all y in D.

Let Υ and Γ be (4n−m)× 2n matrices, chosen so that rank (Υ : Γ) = 4n−m and(
Θ Φ
Υ Γ

)
is nonsingular. Let (

Θ̃ Φ̃

Υ̃ Γ̃

)

be chosen so that (
Θ̃ Φ̃

Υ̃ Γ̃

)∗(
Θ Φ
Υ Γ

)
=

(
−J 0
0 J

)
. (4.1)

We can now rewrite the formula (3.7).

Theorem 4.1 Let y and z be in Dmax. Then

(Lmaxy, z)− (y, Lmaxz) =
[
Θ̃ẑ(0) + Φ̃ẑ(a)

]∗
[Θŷ(0) + Φŷ(a)]

+
[
Υ̃ẑ(0) + Γ̃ẑ(a)

]∗
[Υŷ (0) + Γŷ(a)] .

Proof From (3.7) and (4.1), we get

ẑ∗(a)Jŷ(a)− ẑ∗(0)Jŷ(0)

= (ẑ∗(0), ẑ∗(a))

(
−J 0
0 J

)(
ŷ(0)
ŷ(a)

)

= (ẑ∗(0), ẑ∗(a))

(
Θ̃ Φ̃

Υ̃ Γ̃

)∗(
Θ Φ
Υ Γ

)(
ŷ(0)
ŷ(a)

)

=

[(
Θ̃ Φ̃

Υ̃ Γ̃

)(
ẑ(0)
ẑ(a)

)]∗ [(
Θ Φ
Υ Γ

)(
ŷ(0)
ŷ(a)

)]

=

(
Θ̃ẑ(0) + Φ̃ẑ(a)

Υ̃ẑ(0) + Γ̃ẑ(a)

)∗(
Θŷ(0) + Ξŷ(a)
Υŷ (0) + Γŷ(a)

)
.

2

Now, we describe the operator L∗, i.e. the adjoint operator of L.

Theorem 4.2 Let D∗ be the domain of the operator L∗. Then, it consists of those elements z in H satisfying
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i) y and Dqy are q−regular at zero.

ii) l (z) = Jz[q](x)− T (x) z (x) = V (x) g (x) exists in (0, a) and g ∈ H.

iii) Υ̃ẑ(0) + Γ̃ẑ(a) = 0.

For z ∈ D∗, L∗z = ĝ if and only if Jz[q] = V g + Tz.

Proof Since Lmin ⊂ L ⊂ Lmax, we have Lmin ⊂ L∗ ⊂ Lmax. Let y ∈ D and z ∈ D∗. From Theorem 4.1, we
have

(Ly, z)− (y, L∗z) =
[
Θ̃ẑ(0) + Φ̃ẑ(a)

]∗
[Θŷ(0) + Φŷ(a)]

+
[
Υ̃ẑ(0) + Γ̃ẑ(a)

]∗
[Υŷ (0) + Γŷ(a)] .

Then we get

0 =
[
Υ̃ẑ(0) + Γ̃ẑ(a)

]∗
[Υŷ (0) + Γŷ(a)] .

Since Υŷ (0) + Γŷ(a) is arbitrary, this forces z to satisfy Υ̃ẑ(0) + Γ̃ẑ(a) = 0.

Conversely, if z satisfies the criteria listed above then z ∈ D∗. 2

Now, we find parametric boundary conditions for D and D∗. Recall that

Θŷ (0) + Φŷ (a) = 0,Υŷ (0) + Γŷ(a) = F, (4.2)

where F is arbitrary. Hence, we have (
Θ Φ
Υ Γ

)(
ŷ(0)
ŷ(a)

)
=

(
0
F

)
. (4.3)

Multiplying both sides of (4.3) by (
−J 0
0 J

)(
Θ̃ Φ̃

Υ̃ Γ̃

)∗

we obtain (
ŷ(0)
ŷ(a)

)
=

(
JΥ̃∗F

−J Γ̃∗F

)
. (4.4)

Similarly, we find parametric boundary conditions for D∗.. Since

Θ̃ẑ(0) + Φ̃ẑ(a) = G, Υ̃ẑ(0) + Γ̃ẑ(a) = 0,

where G is arbitrary, we get

(
ẑ∗(0) ẑ∗(a)

)( Θ̃ Φ̃

Υ̃ Γ̃

)∗

=
(
G∗ 0

)
. (4.5)

Multiplying both sides of (4.5) by (
Θ Φ
Υ Γ

)(
−J 0
0 J

)
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we obtain
ẑ(0) = −JΘ∗G, ẑ(a) = JΦ∗G. (4.6)

Using these parametric boundary conditions, we develop a criterion under which L is self-adjoint. Then
we have the following theorem.

Theorem 4.3 The operator L is self-adjoint if and only if rank (Θ : Φ) = m = 2n and ΘJΘ∗ = ΦJΦ∗.

Proof Let L be self-adjoint operator. Then z satisfies the boundary conditions for D, i.e.

Θẑ (0) + Φẑ (a) = 0.

Using (4.6), we get

Θ(−JΘ∗G) + Φ (JΦ∗G) = 0

[ΘJΘ∗ − ΦJΦ∗]G = 0.

Since G is arbitrary, we obtain
ΘJΘ∗ = ΦJΦ∗.

Conversely, if ΘJΘ∗ = ΦJΦ∗, then we have

(
−ΘJ ΦJ

)( Θ∗

Φ∗

)
= 0,

i.e. the columns of
(

Θ∗

Φ∗

)
for n independent solutions to the equation

(
−ΘJ ΦJ

)
X = 0.

By virtue of (4.2) and (4.4), we have

(
−ΘJ ΦJ

)( Υ̃∗

Γ̃∗

)
= 0.

Hence, there must be a constant, nonsingular matrix K such that(
Υ̃∗

Γ̃∗

)
K =

(
Θ∗

Φ∗

)
.

That is, the boundary conditions Θŷ (0) + Φŷ (a) = 0 and Υŷ (0) + Γŷ(a) = 0 are equivalent. Since the forms
of L and L∗ are the same, L = L∗. 2

5. Eigenfunction expansions
In this section, we shall give an eigenfunction expansion using by the spectral theory of self-adjoint operators
in a Hilbert space.

Let us consider the operator L of the previous section. We set in H, Ly = f if and only if
Jy[q](x) − T (x) y (x) = V (x) f (x) , where y is constrained in part by the self-adjointness criterion ΘJΘ∗ =

ΦJΦ∗. Suppose that the matrix Y (x, λ) is a fundamental matrix for Jy[q](x) = [λV (x) + T (x)] y (x) satisfying

Ŷ (0, λ) = I.
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Now, we solve the equation (L− λI) y = f for y. y satisfies the nonhomogeneous equation Jy[q](x) =

[λV (x) + T (x)] y (x)+V (x) f (x) . The method of variation of constants suggests to search the general solution
under the form y (x, λ) = Y (x, λ)C (x, λ) , where C (x, λ) is 2n× 1 vector function . We get

Jy[q] = JY [q]C + JỸ (x)C [q],

[λV (x) + T (x)] y (x) = [λV (x) + T (x)]Y C,

where

Ỹ (x) =

(
Y1 (qx)
Y2
(
q−1x

) ) .
Hence

V (x) f (x) = Jy[q](x)− [λV (x) + T (x)] y (x)

= JY [q]C + JỸ C [q] − [λV (x) + T (x)]Y C

=
{
JY [q] − [λV (x) + T (x)]Y

}
C + JỸ C [q] = JỸ C [q],

i.e.

C [q] =
[
JỸ (x)

]−1

V (x) f (x) .

Then, the general solution is given by

y (x, λ) = Y (x, λ)

∫ x

0

[
JỸ (t)

]−1

V (t) f (t) dqt+ Y (x, λ)M.

If we impose the boundary condition Θŷ (0) + Φŷ (a) = 0, then we obtain

ŷ (0) =M,

ŷ (a) = Ŷ (a, λ)

∫ a

0

[
JỸ (t)

]−1

V (t) f (t) dqt+ Ŷ (a, λ)M.

These yield

y (x, λ) = Y (x, λ)
[
Θ+ΦŶ (a)

]−1

Θ

∫ x

0

[
JỸ (t)

]−1

V (t) f (t) dqt

− Y (x, λ)
[
Θ+ΦŶ (a)

]−1

ΦŶ (a)

∫ a

x

[
JỸ (t)

]−1

V (t) f (t) dqt.

In the next results, we use the notation

y (x, λ) =

∫ a

0

G (x, t, λ)V (t) f (t) dqt,

where

G (x, t, λ) =

 Y (x, λ)
[
Θ+ΦŶ (a)

]−1

Θ
[
JỸ (t)

]−1

, 0 ≤ t ≤ x ≤ a

−Y (x, λ)
[
Θ+ΦŶ (a)

]−1

ΦŶ (a)
[
JỸ (t)

]−1

, 0 ≤ x ≤ t ≤ a.
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Theorem 5.1 For all nonreal λ, the operator R (λ) = (L− λI)
−1 exists and is a bounded operator. It exists

also for all real λ for which det [Θ + Φŷ (a)] ̸= 0 as a bounded operator. The spectrum of the operator L

consists entirely of isolated eigenvalues, zeros of det [Θ + Φŷ (a)] = 0.

Proof It is clear that the operator R (λ) = (L− λI)
−1 exists for all real λ except the zeros of det [Θ + Φŷ (a)] =

0. Since the operator L is self-adjoint operator, it follows that the operator R (λ) = (L− λI)
−1 exists for all

nonreal λ. The spectrum of the operator L consists entirely of isolated eigenvalues, zeros of det [Θ + Φŷ (a)] =

0 because det [Θ + Φŷ (a)] is analytic in λ and is not identically zero. These zeros can accumulate only at
±∞.

To prove that the operator R (λ) = (L− λI)
−1 is a bounded operator, write F (η) = V 1/2 (η) f (η) and

W (x, η, λ) = V 1/2 (η)G (x, t, λ)V 1/2 (x) , where V 1/2 is a square root of the matrix V. Then, we have

∥∥∥(L− λI)
−1
f
∥∥∥2 = ∥y∥2 =

∫ a

0

y∗ (x)V (x) y (x) dqx

=

∫ a

0

[∫ a

0

G (x, η, λ)V (η) f̂ (η) dqη

]∗
V (x)

[∫ a

0

G (x, t, λ)V (t) f̂ (t) dqt

]
dqx

=

∫ a

0

[∫ a

0

F ∗ (η)W ∗ (x, η, λ) dqη

] [∫ a

0

W (x, t, λ)F (t) dqt

]
dqx.

If we apply Schwarz’s inequality to both terms, then we obtain

∥∥∥(L− λI)
−1
f
∥∥∥2 ≤ ∥W∥2 ∥f∥2 ,

where

∥W∥2 =

∫ a

0

∫ a

0

n∑
i=1

n∑
j=1

|Wij (x, η, λ)|2 dqηdqx.

2

Theorem 5.2 Eigenfunctions associated with different eigenvalues are mutually orthogonal. For each eigen-
value µj , its eigenfunctions can be made mutually orthogonal.

Proof Let y1 and y2 be eigenfunctions associated with µ1 and µ2 , respectively. It follows from Green’s
formula that

(µ1 − µ2) (y1, y2) = 0.

Since µ1 ̸= µ2, (y1, y2) = 0 .
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Let y1, y2, ..., ym be eigenfunctions associated with µ. Let us define Nk by

Nk = yk −
k−1∑
j=1

uj (yk, uj) ,

u1 =
y1
∥y1∥

,

uk =
Nk

∥Nk∥
, k = 2, 3, ...,m.

It is clear that uk is orthogonal to y1, y2, ..., yk−1. 2

Without loss of generality, we can assume that 0 is not an eigenvalue. Then, the solution to

Jy[q](x)− T (x) y (x) = V (x) f (x) ,

Θŷ (0) + Φŷ (a) = C,

is given by

y (x) =

∫ a

0

G (x, t)V (t) f (t) dqt,

where G (x, t) = G (x, t, 0) . In the next results, we use the following notation

y = Υf = L−1f.

Theorem 5.3 Υ is bounded and ∥Υ∥ = sup
{∣∣∣ 1

λn

∣∣∣ : λn ∈ σ (L)
}
.

Proof It is clear that if Lχn = λnχn (n ∈ N) , then Υχn = 1
λn
χn. 2

Now, we shall order the eigenvalues of Υ, τn = 1
λn
, such that |τ1| ≥ |τ2| ≥ ... ≥ |τn| ≥ ..., where

lim
n→∞

|τn| = 0. (5.1)

Let us define {Υn}∞n=1 by

Υnf = Υf −
n−1∑
i=1

τiχi (f, χi) .

Then we have the following theorem.

Theorem 5.4 The following results hold.

∥Υn∥ = |τn| , n ∈ N,

and
lim

n→∞
Υn = 0. (5.2)
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Proof We have

Υnχj =

{
0, if 1 ≤ j ≤ n− 1
τj if n ≤ j <∞.

Further Υn is bounded and self-adjoint. Hence, we get

∥Υn∥ = sup
χ∈H,∥χ∥=1

|(Υnχ, χ)| = sup
χ∈H,∥χ∥=1

χ ̸=χ1,...,χn

|(Υnχ, χ)| = |τn| .

For a finite n, we can stop this process such that Υn = 0. Hence, for all f ∈ H, we get

Υf =

n−1∑
i=1

τiχi (f, χi) . (5.3)

If we apply L to the equality (5.3), then we obtain

f =

n−1∑
i=1

χi (f, χi) ,

which says that f is differentiable. Since there are f ’s which are not, the process cannot stop. From (5.1), we
get limn→∞ Υn = 0. 2

Theorem 5.5 For all f ∈ H, we have

f =

∞∑
i=1

χi (f, χi) , Υf =

∞∑
i=1

τiχi (f, χi) .

For all y ∈ D, we get

Ly =

∞∑
i=1

λiχi (y, χi) .

Proof It follows from (5.2) that

Υf =

∞∑
i=1

τiχi (f, χi) . (5.4)

Applying L to the equality (5.4), we get

f =

∞∑
i=1

χi (f, χi) .

Further,
(f, χi) = (Ly, χi) = (y, Lχi) = λi (y, χi) .

Thus, we get

Ly =

∞∑
i=1

λiχi (y, χi) .

2
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Theorem 5.6 There exists a collection of projection operators {E (λ)} satisfying
(a) limλ→∞E (λ) = I, limλ→−∞E (λ) = 0,

(b) E (λ1) ≤ E (λ2) when λ1 ≤ λ2,

(c) E (λ) is continuous from above,
(d) For all f ∈ H and y ∈ D, we have

f =

∫ ∞

−∞
dE (λ) f, Υf =

∫ ∞

−∞

1

λ
dE (λ) f, Ly =

∫ ∞

−∞
λdE (λ) y.

Proof Let us define
Pif = χi (f, χi) ,

where Pi is a projection operator. If we define

E (λ) f =
∑
λi≤λ

Pif,

then E (λ) generates a Stieltjes measure. The integrals in (d) are obtained from this series. 2
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