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Abstract: In this paper, we consider a mixed boundary value problem to a class of quasi-linear elliptic operators
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1. Introduction
Fundamental nonlinear stationary conservation law reads

 div j = f in Ω,
u = g on Γ1,
j · n = h on Γ2,

(1.1)

where j is the current density. Here Ω is a bounded domain in RN with a C0,1 -boundary Γ and Γ1 and
Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and n denotes the unit outer normal vector to the
boundary Γ . If j is of the form

j = −α(|∇u|2)∇u, (1.2)

problem (1.1) corresponds to many physical problems, for example, hydrodynamics and gas dynamics, electro-
statics, heat conduction, elasticity, and plasticity.

For an intuitive picture, let N = 3 . If we regard u(x) as the temperature of a body Ω at the point
x ∈ Ω , then j in (1.1) is the current density vector of the stationary heat flow in Ω . The function f describes
outer heat sources. The boundary conditions prescribe the temperature u on the boundary part Γ1 and heat
flow through the boundary part Γ2 . If α ≡ 1 , then the problem (1.1) becomes


−∆u = f in Ω,
u = g on Γ1,
− ∂u

∂n = h on Γ2.
(1.3)
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From the mathematical point of view, this is a mixed boundary value problem for the Poisson equation. If
α(|∇u|2) = |∇u|p−2 , the problem (1.1) corresponds to the p -Laplacian equation. In the case Γ2 = ∅ , i.e.
Dirichlet boundary condition, or in the case Γ1 = ∅ , i.e. Steklov or Neumann boundary condition, there are
many articles. For example, see Figueiredo et al. [7], Dong and Xu [8], Zhang and Wang [18], Wang [14],
Yuan and Du [15], Torné [13], Zerouali et al. [17], Nastasi [11], Colasuonno and Noris [5]. On the contrary,
for mixed boundary problem, there are only a few articles (cf. Ge and Tian [10], Arerna et al. [4]). Equation
(1.2) represents a constitutive law which depends on the specific properties of the material. If α is a positive
constant, α represents the heat conductivity and (1.2) is called heat conductivity.

In this paper, we consider the following problem.
−div [St(x, |∇u|2)∇u] = f in Ω,
u = g on Γ1,
−St(x, |∇u|2) ∂u∂n = h on Γ2,

(1.4)

where a function S(x, t) is a Carathéodory function on Ω× [0,∞) . Then

j = −St(x, |∇u|2)∇u (1.5)

corresponds to a nonlinear constitutive law, where the heat conductivity depend on x and the gradient of
temperature. The negative sign in (1.5) reflects the fact that heat flows from points with higher temperature
to points with lower temperature.

An advantage which considers such an operator is in the ability to prove that the problem (1.4) is well-
posed. For the existence of a weak solution to (1.4), we consider the following variational problem: to find a
minimizer of the functional ∫

Ω

(
S(x, |∇u|2)− fu

)
dx+

∫
Γ2

hudσ (1.6)

on the function space such that u = g on Γ1 , where dσ is the surface measure on Γ . We show the existence
of a unique weak solution to (1.5) and an estimate. Moreover, we can obtain the continuous dependence of the
solution on the data f, g and h . Furthermore, we consider the dual problem of (1.6). We show that the dual
problem also has a unique solution which is related to the unique minimizer of (1.6).

The paper is organized as follows. Section 2 consists of three subsections. In subsection 2.1, we define a
function S(x, t) having some structure conditions and its properties. In subsection 2.2, we introduce the spaces
of functions used in this paper. In subsection 2.3, we give one of the main theorem (Theorem 2.7) in the paper.
Section 3 is devoted to a proof of Theorem 2.7. In section 4, we show the continuous dependence of solution
obtained in section 3 on the given data. In section 5, we consider the duality problem for conservation laws.

2. Preliminaries
Let Ω be a bounded domain in RN (N ≥ 2) with a C0,1 -boundary Γ . Moreover, we assume that Γ1 and Γ2

are disjoint open subset of Γ such that

Γ1 ∪ Γ2 = Γ and Γ1 6= ∅. (2.1)

Throughout this paper, for 1 < p < ∞ we denote the Hölder conjugate exponent of p by p′ , i.e.
(1/p)+(1/p′) = 1 , and we only consider vector spaces over R . For any space B , we denote BN by the boldface
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character B . Hereafter, we use this character to denote vectors and vector-valued functions, and we denote
the standard inner product of vectors a = (a1, . . . , aN ) and b = (b1, . . . , bN ) in RN by a · b =

∑N
i=1 aibi and

|a| = (a · a)1/2 . Furthermore, we denote the dual space of B by B∗ and the duality bracket by 〈·, ·〉B∗,B .

2.1. Function S(x, t) satisfying some structure conditions

We assume that a function S(x, t) is a Carathéodory function in Ω × [0,∞) and for a.e. in x ∈ Ω , S(x, t) ∈
C2((0,∞)) ∩ C([0,∞)) satisfies the following structure conditions: there exist a constant 1 < p < ∞ and
positive constants 0 < λ ≤ Λ < ∞ such that for a.e. x ∈ Ω

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0. (2.2a)

λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0. (2.2b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0, (2.2c)

where St = ∂S/∂t and Stt = ∂2S/∂t2 . We note that from (2.2a), we have

2

p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0. (2.3)

We introduce two examples. When S(x, t) = ν(x)tp/2 , where ν is a measurable function in Ω satisfying
0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. in Ω , the function S(x, t) satisfies (2.2a)–(2.2c). This example corresponds
the p -Laplacian operator. As an another example, we can take

g(t) =

{
ae−1/t + a for t > 0,
a for t = 0,

where a > 0 is a constant. Then we can see that S(x, t) = ν(x)g(t)tp/2 satisfies (2.2a)–(2.2c) if p ≥ 2 , (cf.
Aramaki [2]).

We have the following strict monotonicity of St .

Lemma 2.1 There exists a constant c > 0 depending only on p and λ such that for any a, b ∈ Rd (d ≥ 1) ,

(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b) ≥

{
c|a− b|p if p ≥ 2,
c(|a|+ |b|)p−2|a− b|2 if 1 < p < 2.

In particular, (
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b) > 0 if a 6= b.

For the proof, see Aramaki [3, Lemma 3.6].

Lemma 2.2 There exists a constant C > 0 depending only on p and Λ such that for any a, b ∈ Rd ,

|St(x, |a|2)a− St(x, |b|2)b| ≤
{

C|a− b|p−1 if 1 < p < 2,
C(|a|+ |b|)p−2|a− b| if p ≥ 2.
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For the proof, see Aramaki [1].
We can see that the following strictly convexity.

Lemma 2.3 If S(x, t) satisfies (2.2a) and (2.2b), then for a.e. x ∈ Ω , a function Rd 3 a 7→ S(x, |a|2) is
strictly convex.

Proof For fixed a.e. x ∈ Ω , if we put ϕ(a) = S(x, |a|2) : Rd 7→ R , then ϕ is Gâteaux differentiable and
ϕ′(a) = St(x, |a|2)a . By Lemma 2.1, ϕ′ is strictly monotone, so ϕ is strictly convex. (cf. [2, Lemma 2.3]). 2

2.2. Spaces of functions

From now on we use the notations Lp(Ω),Wm,p(Ω) (1 < p < ∞ and m ≥ 0, integer) , W s,p(Γ) (s ∈ R) , and
so on, for the standard Lebesgue space and Sobolev spaces of real valued functions.

For 0 < s < 1 and 1 < p < ∞ , by definition, we say b ∈ W s,p(Γ) iff

∫
Γ

|b|pdσ < ∞ and
∫∫

Γ×Γ

|b(x)− b(y)|p

|x− y|N−1+ps
dσdσ < ∞,

and the norm is defined by

‖b‖W s,p(Γ) =

(∫
Γ

|b|pdσ +

∫∫
Γ×Γ

|b(x)− b(y)|p

|x− y|N−1+ps
dσdσ

)1/p

.

Then W s,p(Γ) is a real, separable and reflexive Banach space with respect to this norm.

For every i = 1, 2 , by definition, a function g : Γi → R belongs to W 1−1/p,p(Γi) iff there exists
g̃ ∈ W 1−1/p,p(Γ) such that g̃ = g on Γ1 . If we set

‖g‖W 1−1/p,p(Γi) = inf
g̃∈W 1−1/p,p(Γ),

g̃=g on Γi

‖g̃‖W 1−1/p,p(Γ),

then the space W 1−1/p,p(Γi) is a real normed space (we identify two functions whose differ on a subset of Γi of
surface measure zero). Clearly we can regard W 1−1/p,p(Γ) ⊂ W 1−1/p,p(Γi) and the inclusion mapping is linear
and continuous.

We give a key lemma which plays an important role in the later.

Lemma 2.4 For every i = 1, 2 and for any g ∈ W 1−1/p,p(Γi) , there exists g ∈ W 1,p(Ω) such that g = g on
Γi , and there exists a constant C > 0 depending only on p,Ω and Γi such that

‖g‖W 1,p(Ω) ≤ C‖g‖W 1−1/p,p(Γi). (2.4)

Proof For any g ∈ W 1−1/p,p(Γi) , by the definition, there exists g̃ ∈ W 1−1/p,p(Γ) such that g̃ = g on Γi and

‖g‖W 1−1/p,p(Γi) = inf
g̃∈W 1−1/p,p(Γ),

g̃=g on Γi

‖g̃‖W 1−1/p,p(Γ).
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It is well known that for g̃ , there exists ũ ∈ W 1,p(Ω) such that ũ = g̃ on Γ , in particular, ũ = g on Γi , and
there exists a constant C > 0 depending only on p,Ω and Γi such that

‖ũ‖W 1,p(Ω) ≤ C‖g̃‖W 1−1/p,p(Γ).

Thus we have
inf

ũ∈W 1,p(Ω),
ũ=g on Γi

‖ũ‖W 1,p(Ω) ≤ C inf
g̃∈W 1−1/p,p(Γ),

g̃=g on Γi

‖g‖W 1−1/p,p(Γ).

It suffices to note that the infimum of the left-hand side is achieved at some g ∈ W 1,p(Ω) such that g = g on
Γi . 2

We note that the inclusion mapping

W 1−1/p,p(Γi) ↪→ Lp(Γi) (2.5)

is linear and continuous.
The following lemma follows from Zeidler [16, Appendix (53c), p. 1033] (cf. Dautray and Lions [6,

Chapter IV, §7, Remark 4]).

Lemma 2.5 For 1 ≤ p < ∞ , if Γ1 6= ∅ , then for any v ∈ W 1,p(Ω) ,(∫
Ω

|∇v|pdx+

∫
Γ1

|v|pdσ
)1/p

is an equivalent norm to ‖v‖W 1,p(Ω) . In particular, if v ∈ W 1,p(Ω) satisfies that v = 0 on Γ1 , then ‖∇v‖Lp(Ω)

and ‖v‖W 1,p(Ω) are equivalent.

2.3. Main theorem
We consider problem (1.4) where f ∈ W 1,p(Ω)∗, g ∈ W 1−1/p,p(Γ1) and h ∈ W 1−1/p,p(Γ2)

∗ are given functions.
Define

Xg = {v ∈ W 1,p(Ω); v = g on Γ1} and X = {v ∈ W 1,p(Ω); v = 0 on Γ1}. (2.6)

We give the notion of a weak solution to (1.4).

Definition 2.6 We say u ∈ W 1,p(Ω) is a weak solution to (1.4) if u ∈ Xg and u satisfies∫
Ω

St(x, |∇u|2)∇u ·∇vdx = 〈f, v〉Ω − 〈h, v〉Γ2 for all v ∈ X, (2.7)

where 〈f, v〉Ω = 〈f, v〉W 1,p(Ω)∗,W 1,p(Ω) , and 〈h, v〉Γ2
= 〈h, v〉W 1−1/p,p(Γ2)∗,W 1−1/p,p(Γ2) .

We are in a position to state one of the main theorems.

Theorem 2.7 Assume that Ω is a bounded domain in RN (N ≥ 2) with a C0,1 -boundary Γ satisfying (2.1).
Let f ∈ W 1,p(Ω)∗, g ∈ W 1−1/p,p(Γ1) and h ∈ W 1−1/p,p(Γ2)

∗ . Then the mixed boundary value problem (1.4)
has a unique weak solution u ∈ W 1,p(Ω) , and there exists a constant C > 0 depending only on p, λ,Γ1,Γ2 and
Ω such that

‖u‖pW 1,p(Ω) ≤ C(‖f‖p
′

W 1,p(Ω)∗ + ‖g‖p
W 1−1/p,p(Γ1)

+ ‖h‖p
′

W 1−1/p,p(Γ2)∗
). (2.8)
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3. Proof of Theorem 2.7
In this section, we give a proof of Theorem 2.7 by the variational mathod. Assume that Ω is a bounded
domain in RN with a C0,1 boundary Γ satisfying (2.1), and that f ∈ W 1,p(Ω)∗, g ∈ W 1−1/p,p(Γ1) and
h ∈ W 1−1/p,p(Γ2)

∗ . Since the inclusion mappings W 1,p(Ω) ↪→ W 1−1/p,p(Γ) ↪→ W 1−1/p,p(Γ1) are continuous,
the set Xg defined in section 2 is a closed convex subset of W 1,p(Ω) . We define a functional on Xg by

F (v) =
1

2

∫
Ω

S(x, |∇v|2)dx− 〈f, v〉Ω + 〈h, v〉Γ2
,

and consider the following minimization problem: to find u ∈ Xg such that

F (u) = inf
v∈Xg

F (v). (3.1)

We call such a u a minimizer of F on Xg .

Proposition 3.1 The minimization problem (3.1) has a unique minimizer u ∈ Xg .

Proof First we show that F is weakly coercive on Xg , i.e., F (v) → ∞ if v ∈ Xg and ‖v‖W 1,p(Ω) → ∞ .
Indeed, from Lemma 2.5, we see that

(∫
Ω

|∇v|pdx+

∫
Γ1

|g|pdσ
)1/p

is an equivalent norm to ‖v‖W 1,p(Ω) on Xg . By (2.3), there exists constants c, C > 0 such that

F (v) ≥ λ

p

∫
Ω

|∇v|pdx− ‖f‖W 1,p(Ω)∗‖v‖W 1,p(Ω) − ‖h‖W 1−1/p,p(Γ2)∗‖v‖W 1−1/p,p(Γ2)

≥ c‖v‖pW 1,p(Ω) −
∫
Γ1

|g|pdσ − C(‖f‖W 1,p(Ω)∗ + ‖h‖W 1−1/p,p(Γ2)∗)‖v‖W 1,p(Ω).

Since 1 < p < ∞ , we can see that if v ∈ Xg and ‖v‖W 1,p(Ω) → ∞ , then F (v) → ∞ .
Next, from Lemma 2.3, the functional F is strictly convex. Here we note that if v, w ∈ Xg and v 6= w ,

then ∇v 6= ∇w since Γ1 6= ∅ .
Clearly F is proper.
Finally we show that F is lower semicontinuous on Xg . Indeed, since S(x, t) is a Carathéodory function

on Ω× [0,∞) and satisfies

S(x, |∇v|2) ≤ 2Λ

p
|∇v|p

from (2.3). Define the Nemyskii operator E by

(E(p))(x) = S(x, |p(x)|2) for p ∈ Lp(Ω).

Then it follows from [16, Proposition 26.6] that E : Lp(Ω) → L1(Ω) is continuous and bounded, that is,

‖E(p)‖L1(Ω) ≤ C‖p‖Lp(Ω),
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so we have
‖S(x, |p|2)‖L1(Ω) ≤ C‖p‖Lp(Ω).

This implies that if vj → v in Xg , then ∇vj → ∇v in Lp(Ω) , so S(x, |∇vj |2) → S(x, |∇v|2) in L1(Ω) , that
is, ∫

Ω

S(x, |∇vj |2)dx →
∫
Ω

S(x, |∇v|2)dx.

Therefore, F is continuous on Xg . Since F is convex and continuous, F is lower semi-continuous on Mg . By
the Ekeland and Témam [9, Chapter II, Proposition 1.2], the minimization problem (3.1) has a unique solution
u ∈ Xg . 2

We continue the proof of Theorem 2.7. Let u ∈ Xg be the minimizer of (3.1). For any v ∈ X and any
t ∈ R , since u+ tv ∈ Xg , we have F (u) ≤ F (u+ tv) . From the Euler-Lagrange equation,

d

dt
F (u+ tv)

∣∣∣∣
t=0

= 0 for all v ∈ X.

This means that u satisfies (2.7).
We show the uniqueness of a weak solution to (1.4). Let u1, u2 ∈ Xg be two weak solutions to (1.4).

Then for every i = 1, 2 , ∫
Ω

St(x, |∇ui|2)∇ui ·∇vdx = 〈f, v〉Ω − 〈h, v〉Γ2 for all v ∈ X. (3.2)

Since u1 − u2 ∈ X , we take v = u1 − u2 as a test function of (3.2). Thus for i = 1, 2 ,∫
Ω

St(x, |∇ui|2)∇ui ·∇(u1 − u2)dx = 〈f, u1 − u2〉Ω − 〈h, u1 − u2〉Γ2
.

Therefore, we have ∫
Ω

(
St(x, |∇u1|2)∇u1 − St(x, |∇u2|2)∇u2

)
·∇(u1 − u2)dx = 0.

By the strict monotonicity of St (Lemma 2.2), ∇u1 = ∇u2 in Ω . Hence u1 − u2 is a constant. Since
u1 = u2 = g on Γ1 , the constant is equal to zero, so we have u1 = u2 .

Lastly we show the estimate (2.8). Let u ∈ Xg be the weak solution to (1.4). From Lemma 2.4, for
g ∈ W 1−1/p,p(Γ1) , there exists g ∈ W 1,p(Ω) such that g = g on Γ1 and

‖g‖W 1,p(Ω) ≤ C‖g‖W 1−1/p,p(Γ1), (3.3)

where C > 0 is a constant depending only on p,Ω and Γ1 . Since u − g ∈ X , if we take v = u − g as a test
function of (2.7), then we have∫

Ω

St(x, |∇u|2)∇u ·∇udx =

∫
Ω

St(x, |∇u|2)∇u ·∇gdx+ 〈f, u〉Ω − 〈f, g〉Ω − 〈h, u〉Γ2
+ 〈h, g〉Γ2

. (3.4)

From (2.2a), ∫
Ω

St(x, |∇u|2)∇u ·∇udx ≥ λ

∫
Ω

|∇u|pdx.
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On the other hand, we estimate the right-hand side of (3.4) from above. By (2.2a), (3.3) and the Hölder and
Young inequalities, ∣∣∣∣∫

Ω

St(x, |∇u|2)∇u ·∇gdx

∣∣∣∣ ≤ Λ

∫
Ω

|∇u|p−1|∇g|dx

≤ Λ‖∇u‖p−1
Lp(Ω)‖∇g‖Lp(Ω)

≤ ε‖∇u‖pLp(Ω) + C(ε)‖∇g‖pLp(Ω)

≤ ε‖∇u‖pLp(Ω) + C ′(ε)‖g‖p
W 1−1/p,p(Γ1)

for any ε > 0 and some constants C(ε) and C ′(ε) . Furthermore,

|〈f, u〉Ω + 〈h, u〉Γ2 | ≤ ‖f‖W 1,p(Ω)∗‖u‖W 1,p(Ω) + ‖h‖W 1−1/p,p(Γ2)∗‖u‖W 1−1/p,p(Γ2)

≤ C(‖f‖W 1,p(Ω)∗ + ‖h‖W 1−1/p,p(Γ2)∗)‖u‖W 1,p(Ω)

≤ ε‖u‖pW 1,p(Ω) + C(ε)(‖f‖p
′

W 1,p(Ω)∗ + ‖h‖p
′

W 1−1/p,p(Γ2)∗
)

for any ε > 0 and a constant C(ε) . Similarly,

|〈f, g〉Ω + 〈h, g〉Γ2
| ≤ ‖f‖W 1,p(Ω)∗‖g‖W 1,p(Ω) + ‖h‖W 1−1/p,p(Γ2)∗‖g‖W 1−1/p,p(Γ2)

≤ C(‖f‖p
′

W 1,p(Ω)∗ + ‖h‖p
′

W 1−1/p,p(Γ2)∗
+ ‖g‖p

W 1−1/p,p(Γ1)
)

for a constant C . Since u ∈ Xg , ∫
Ω

|∇u|pdx+

∫
Γ1

|g|pdx

is equivalent to ‖u‖pW 1,p(Ω) and the inclusion mapping W 1−1/p,p(Γ1) ↪→ Lp(Γ1) is linear and continuous, we

choose ε > 0 small enough, we obtain the estimate (2.8). This completes the proof of Theorem 2.7.

4. Continuity of the weak solution on data

In this section, we derive the continuity of the weak solution to (1.4) on the given data.
We have the following theorem.

Theorem 4.1 Assume that Ω is a bounded domain in RN with a C0,1 boundary Γ satisfying (2.1). Moreover,
we assume that fj , f ∈ W 1,p(Ω)∗ , gj , g ∈ W 1−1/p,p(Γ1) , hj , h ∈ W 1−1/p,p(Γ2)

∗ and fj → f strongly in
W 1,p(Ω)∗ , gj → g strongly in W 1−1/p,p(Γ1) , hj → h strongly in W 1−1/p,p(Γ2)

∗ . Furthermore, let uj ∈ Xgj

be the weak solution to (1.4) with f = fj , g = gj , h = hj and let u ∈ Xg be the weak solution to (1.4). Then we
can show that uj → u strongly in W 1,p(Ω) as j → ∞ .

Proof The weak solution uj satisfies that∫
Ω

St(x, |∇uj |2)∇uj ·∇vdx = 〈fj , v〉Ω − 〈hj , v〉Γ2
for all v ∈ X, (4.1)
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and
‖uj‖pW 1,p(Ω) ≤ C(‖fj‖p

′

W 1,p(Ω)∗ + ‖gj‖pW 1−1/p,p(Γ1)
+ ‖hj‖p

′

W 1−1/p,p(Γ2)∗
) ≤ C0, (4.2)

where we can assume that the constant C0 is independent of j . From (4.1) and (2.7), we have∫
Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇vdx = 〈fj − f, v〉Ω − 〈hj − h, v〉Γ2

for all v ∈ X. (4.3)

Since gj − g ∈ W 1−1/p,p(Γ1) , it follows from Lemma 2.4 that there exists vj ∈ W 1,p(Ω) such that vj = gj − g

on Γ1 and
‖vj‖W 1,p(Ω) ≤ C‖gj − g‖W 1−1/p,p(Γ1),

where C is a constant depending only on p,Ω and Γ1 , but independent of j . Since uj − u− vj ∈ X , we take
v = uj − u− vj as a test function of (4.3). Then we have

∫
Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇(uj − u)dx

=

∫
Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇vjdx

+ 〈fj − f, uj − u− vj〉Ω − 〈hj − h, uj − u− vj〉Γ2
.

The case p ≥ 2 .
From Lemma 2.1,∫

Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇(uj − u)dx ≥ c

∫
Ω

|∇(uj − u)|pdx.

On the other hand, from Lemma 2.2 and (4.2),∣∣∣∣∫
Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇vjdx

∣∣∣∣
≤ C

∫
Ω

(|∇uj |+ |∇u|)p−2|∇(uj − u)||∇vj |dx

≤ C

(∫
Ω

(|∇uj |p + |∇u|p)dx
)(p−2)/p (∫

Ω

|∇(uj − u)|pdx
)1/p (∫

Ω

|∇vj |pdx
)1/p

≤ C1(2C0)
(p−2)/p‖∇(uj − u)‖Lp(Ω)‖gj − g‖W 1−1/p,p(Γ1)

≤ ε‖∇(uj − u)‖pLp(Ω) + C(ε)‖gj − g‖p
′

W 1−1/p,p(Γ1)

for any ε > 0 and a constant C(ε) . Furthermore, we have

|〈fj − f, uj − u− vj〉Ω| ≤ ‖fj − f‖W 1,p(Ω)∗(‖uj − u‖W 1,p(Ω) + ‖vj‖W 1,p(Ω))

≤ ‖fj − f‖W 1,p(Ω)∗(‖uj − u‖W 1,p(Ω) + C‖gj − g‖W 1−1/p,p(Γ1))

≤ ε‖uj − u‖pW 1,p(Ω) + C(ε)(‖fj − f‖p
′

W 1,p(Ω)∗ + ‖gj − g‖p
W 1−1/p,p(Γ1)

).
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Similarly, we have

|〈hj − h, uj − u− vj〉Γ2 | ≤ ε‖uj − u‖pW 1,p(Ω) + C(ε)(‖hj − h‖p
′

W 1−1/p,p(Γ2)∗
+ ‖gj − g‖p

W 1−1/p,p(Γ1)
).

If we choose ε > 0 small enough, we have

‖uj − u‖pW 1,p(Ω)

≤ C(‖fj − f‖p
′

W 1,p(Ω)∗ + ‖gj − g‖p
W 1−1/p,p(Γ1)

+ ‖gj − g‖p
′

W 1−1/p,p(Γ1)
+ ‖hj − h‖p

′

W 1−1/p,p(Γ2)∗
).

The case 1 < p < 2 .
In this case we use the reverse Hölder inequality (cf. Sobolev [12, p. 8]) to get(∫

Ω

|∇(uj − u)|pdx
)2/p

≤
∫
Ω

|∇(uj − u)|2(|∇uj |+ |∇u|2)p−2dx

(∫
Ω

(|∇uj |+ |∇u|)pdx
)(2−p)/2

.

From this inequality, there exists a constant c > 0 independent of j such that∫
Ω

(|∇uj |+ |∇u|)p−2|∇(uj − u)|2dx ≥ c‖∇(uj − u)‖2Lp(Ω).

On the other hand, from Lemma 2.2,∣∣∣∣∫
Ω

(
St(x, |∇uj |2)∇uj − St(x, |∇u|2)∇u

)
·∇vjdx

∣∣∣∣
≤ C

∫
Ω

|∇(uj − u)|p−1|∇vj |dx

≤ C

(∫
Ω

|∇(uj − u)|pdx
)1/p′

‖∇vj‖Lp(Ω)

= C‖∇(uj − u)‖p−1
Lp(Ω)‖∇vj‖Lp(Ω)

≤ ε‖∇(uj − u)‖2Lp(Ω) + C(ε)‖gj − g‖2/(3−p)

W 1−1/p,p(Γ1)

for any ε > 0 and a constant C(ε) . Furthermore, we have

|〈fj − f, uj − u− vj〉Ω| ≤ ‖fj − f‖W 1,p(Ω)∗(‖uj − u‖W 1,p(Ω) + C‖gj − g‖W 1−1/p,p(Γ1))

≤ ε‖uj − u‖2W 1,p(Ω) + C(ε)(‖fj − f‖2W 1,p(Ω)∗ + ‖gj − g‖2W 1−1/p,p(Γ1)
).

Similarly, we have

|〈hj − h, uj − u− vj〉Γ2
| ≤ ε‖uj − u‖2W 1,p(Ω) + C(ε)(‖hj − h‖2W 1−1/p,p(Γ2)∗

+ ‖gj − g‖2W 1−1/p,p(Γ1)
).

If we choose ε > 0 small enough, we have

‖uj − u‖2W 1,p(Ω)

≤ C(‖fj − f‖2W 1,p(Ω)∗ + ‖gj − g‖2W 1−1/p,p(Γ1)
+ ‖gj − g‖2/(3−p)

W 1−1/p,p(Γ1)
+ ‖hj − h‖2W 1−1/p,p(Γ2)∗

).

In each case, if fj → f in W 1,p(Ω)∗, gj → g in W 1−1/p,p(Γ1) and hj → h in W 1−1/p,p(Γ2)
∗ , then we have

uj → u in W 1,p(Ω) . This completes the proof of Theorem 4.1. 2
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5. Duality theory for conservation laws

In this section, we consider the duality theory for conservation law (1.1). Let S(x, t) be a Carathéodory function
on Ω× [0,∞) satisfying (2.2a)–(2.2c).

5.1. Preliminary remarks
Define

β(x, t) =
1

2
S(x, t2) for (x, t) ∈ Ω× R.

By Lemma 2.3 with d = 1 , for a.e. x ∈ Ω , β(x, t) is strictly convex and satisfies

λ

p
|t|p ≤ β(x, t) ≤ Λ

p
|t|p for all t ∈ R.

Therefore, βt(x, t) = St(x, t
2)t is a strictly monotone increasing and continuous function in R (we regard

St(x, t
2)t as zero at t = 0) and satisfies

−Λ|t|p−1 ≤ βt(x, t) ≤ Λ|t|p−1 a.e. x ∈ Ω and for all t ∈ R.

For a.e. x ∈ Ω and t∗ ∈ R∗ = R , if we define

β∗(x, t∗) = sup
t∈R

(t∗t− β(x, t)),

then it is clearly achieved at t such that t∗ = βt(x, t) , i.e. t = β−1
t (x, t∗) , where β−1

t is the inverse function of
βt(x, t) .

For a.e. x ∈ Ω and p ∈ RN , define

γ(x,p) = β(x, |p|) = 1

2
S(x, |p|2),

and for p∗ ∈ (RN )∗ = RN , define
γ∗(x,p∗) = sup

p∈RN

(p∗ · p− γ(x,p)).

Since γ(x,p) = β(x, |p|) ≥ λ
p |p|

p (p > 1) , the function RN 3 p 7→ γ(x,p) − p∗ · p is strictly convex, weakly

coercive and C1 . Thus infp∈RN (γ(x,p)− p∗ · p) is achieved at a unique point p such that

p∗ = γ′(x,p) = St(x, |p|2)p,

where γ′ denotes the Gâteaux differential with respect to p , so |p| = β−1
t (x, |p∗|) . Hence

γ∗(x,p∗) = βt(x, |p|)|p| − β(x, |p|) = β∗(x, |p|∗) = β∗(x, |p∗|).

For a.e. x ∈ Ω and a fixed c ∈ RN , if we define δ(x,p) = γ(x,p+ c) , then we have

δ∗(x,p∗) = sup
p∈RN

(p∗ · p− δ(x,p)) = sup
q∈RN

(p∗ · q − γ(x, q)− p∗ · c) = γ∗(x,p∗)− p∗ · c.
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5.2. Theorem on the duality theory for conservation laws

Let f ∈ W 1,p(Ω)∗ , g ∈ W 1−1/p,p(Γ1) and h ∈ W 1−1/p,p(Γ2)
∗ . Let Xg and X be defined by (2.6) and define

Y = Lp(Ω) , we identify Y ∗ with Lp′
(Ω) by the relation

〈p∗,p〉Y ∗,Y =

∫
Ω

p∗ · pdx.

Since X is a closed subspace of W 1,p(Ω) , it is a separable and reflexive Banach space with respect to the
norm ‖u‖X = ‖∇u‖Lp(Ω) which is equivalent to ‖u‖W 1,p(Ω) from Lemma 2.5. From Lemma 2.4, there exists
g ∈ W 1,p(Ω) such that g = g on Γ1 and there exists a constant C depending only on p,Ω and Γ1 such that

‖g‖W 1,p(Ω) ≤ C‖g‖W 1−1/p,p(Γ1). (5.1)

We consider the following problem: to find u ∈ Xg such that

F (u) = α := inf
v∈Xg

F (v), (5.2)

together with the so-called dual problem: to find p∗ ∈ Lp′
(Ω) such that

F∗(p
∗) = β := sup

q∗∈K
F∗(q

∗), (5.3)

where

F (v) =
1

2

∫
Ω

S(x, |∇v|2)dx− b(v) for v ∈ Xg,

b(v) =

∫
Ω

fvdx−
∫
Γ2

hvdσ for v ∈ Xg,

K = {q∗ ∈ Y ∗ = Lp′
(Ω); 〈q∗,∇v〉Y ∗,Y = b(v) for all v ∈ X},

F∗(q
∗) = −

∫
Ω

β∗(x, |q∗|)dx+

∫
Ω

q∗ ·∇gdx− b(g) for q∗ ∈ K.

We give a theorem on the duality theory for conservation laws.

Theorem 5.1 Assume that Ω is a bounded domain in RN (N ≥ 2) with C0,1 -boundary Γ which satisfies
(2.1). Then the problems (5.2) and (5.3) have a unique solution u ∈ Xg and p∗ ∈ K , respectively, and α = β ,

p∗ = St(x, |∇u|2)∇u a.e. in Ω, (5.4)

and there exists a constant C > 0 depending only on p,Γ1,Γ2 and Ω such that

‖u‖pW 1,p(Ω) + ‖p∗‖p
′

Lp′ (Ω)
≤ C(‖f‖p

′

W 1,p(Ω)∗ + ‖g‖p
W 1−1/p,p(Γ1)

+ ‖h‖p
′

W 1−1/p,p(Γ2)∗
). (5.5)

Moreover,
F∗(p

∗) ≤ F∗(p
∗) = F (u) ≤ F (u) for all u ∈ Xg and p∗ ∈ K. (5.6)
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We have the following error estimates. When p ≥ 2 , there exist constants c, c1 > 0 depending only on p,Γ1,Γ2

and Ω such that

c‖u− u‖pLp(Ω) ≤ c1‖∇u−∇u‖pLp(Ω) ≤ F (u)− F∗(p
∗) for all u ∈ Xg,p

∗ ∈ K. (5.7)

When 1 < p < 2 , there exists a constant c2 > 0 depending only on p,Γ1,Γ2 and Ω such that

c2(‖∇u‖pLp(Ω) + ‖∇u‖pLp(Ω))
(p−2)/2‖u− u‖2Lp(Ω) ≤ F (u)− F∗(p

∗) for all u ∈ Xg,p
∗ ∈ K. (5.8)

Proof
For any p ∈ Y , define a functional

H(p) =
1

2

∫
Ω

S(x, |p+∇g|2)dx− b(g).

For v ∈ Xg , if we put w = v − g , then w ∈ X and ∇w = ∇v −∇g . Thus we have

H(∇w)− b(w) =
1

2

∫
Ω

S(x, |∇v|2)dx− b(v) = F (v).

Therefore, we see that the problem (5.2) is equivalent to the problem: to find w ∈ X such that

H(∇w)− b(w) = inf
v∈X

(H(∇v)− b(v)), (5.9)

and

α = inf
v∈X

(H(∇v)− b(v)). (5.10)

This plays an important role in many physical problems of elasticity and plasticity theory. From [16, Theorem
51.B], the dual problem of (5.10) reads

γ = sup
p∗∈K

[−H∗(p∗)], (5.11)

where

H∗(p∗) = sup
p∈Y

(〈p∗,p〉Y ∗,Y −H(p)).

We compute H∗ . Since

H(p) =

∫
Ω

γ(x,p+∇g)dx− b(g) =

∫
Ω

δ(x,p)dx− b(g),
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we have

H∗(p∗) = sup
p∈Y

(〈p∗,p〉Y ∗,Y −H(p))

= sup
p∈Y

{
〈p∗,p〉Y ∗,Y −

∫
Ω

δ(x,p)dx

}
+ b(g)

=

(∫
Ω

δ(x,p)dx

)∗

(p∗) + b(g)

=

∫
Ω

δ∗(x,p∗)dx+ b(g) ( from [16, Problem 51.7] )

=

∫
Ω

(γ∗(x,p∗)− p∗ ·∇g)dx+ b(g)

=

∫
Ω

(β∗(x, |p∗|)− p∗ ·∇g)dx+ b(g).

Thus we have −H∗(p∗) = F∗(p
∗) . Hence we see that the problems (5.11) and (5.3) are identical and γ = β .

Now we compute H ′ . Since

H ′(p) = γ′(x,p+∇g) = St(x, |p+∇g|2)(p+∇g) for p ∈ Y,

it follows from Lemma 2.1 that

〈H ′(p)−H ′(q),p− q〉Y ∗,Y = 〈St(x, |p+∇g|2)(p+∇g)− St(x, |q +∇g|2)(q +∇g),p− q〉Y ∗,Y

≥
{

c
∫
Ω
|p− q|pdx if p ≥ 2,

c
∫
Ω
(|p+∇g|+ |q +∇g|)p−2|p− q|2dx if 1 < p < 2,

where c is a positive constant depending only on p and Ω . When 1 < p < 2 , we use the reverse Hölder
inequality (cf. Sobolev [12, p. 8] to get∫

Ω

(|p+∇g|+ |q +∇g|)p−2|p− q|2dx ≥ c1

(∫
Ω

(|p+∇g|p + |q +∇g|p)dx
)(p−2)/2

‖p− q‖2Lp(Ω),

where c1 ia a positive constant depending only on p and Ω . Thus there exists a constant c2 > 0 depending
only on p and Ω such that

〈H ′(p)−H ′(q),p− q〉Y ∗,Y

≥

{
c2‖p− q‖pLp(Ω) if p ≥ 2,

c2
(∫

Ω
(|p+∇g|p + |q +∇g|p)dx

)(p−2)/2 ‖p− q‖2Lp(Ω) if 1 < p < 2.
(5.12)

This implies that H ′ is strictly monotone. Furthermore,

〈H ′(p),p〉Y ∗,Y = 〈St(x, |p+∇g|2)(p+∇g),p〉Y ∗,Y

= St(x, |p+∇g|2)(p+∇g),p+∇g〉Y ∗,Y − St(x, |p+∇g|2)(p+∇g),∇g〉Y ∗,Y

≥ λ‖p+∇g‖pLp(Ω) − C

∫
Ω

|p+∇g|p−1|∇g|dx

≥ λ‖p+∇g‖pLp(Ω) − ε‖p+∇g‖pLp(Ω) − C(ε)‖∇g‖pLp(Ω)
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for any ε > 0 . Here we used the Hölder and the Young inequalities. If we choose ε so that ε < λ , we can see
that H ′ is coercive. Since it is clearly seen that H ′ : Y → Y ∗ is hemicontinuous, the inverse (H ′)−1 : Y ∗ → Y

exists and (H ′)−1 = (H∗)′ . Furthermore, we can apply [16, Theorem 53B]. Therefore, the problems (5.10) and
(5.11) have a unique solution w ∈ X and p∗ ∈ K , respectively, α = β , and

p∗ = H ′(∇w) = St(x, |∇w +∇g|2)(∇w +∇g).

If we put u = w + g , then (5.4) holds. Since u is a unique solution of (1.4) and

‖p∗‖p
′

Lp′ (Ω)
= ‖St(x, |∇u|2)∇u‖p

′

Lp′ (Ω)
≤ C‖∇u‖pLp(Ω),

we have the estimate (5.5) by (2.8). From (5.12) and [16, Theorem 51B], we get (5.7) and (5.8). 2

Remark 5.2 Here the Euler equation to (5.10) becomes:

〈H ′(∇w),∇v〉Y ∗,Y = b(v) for all v ∈ X, (5.13)

This means that ∫
Ω

St(x, |∇u|2)∇u ·∇vdx =

∫
Ω

fvdx+

∫
Γ2

hvdσ for all v ∈ X,

that is, u is a weak solution of (1.4).
The Euler equation to (5.11) becomes:

〈q∗ − p∗, (H ′)−1(p∗)〉Y ∗,Y ≥ 0 for all q∗ ∈ K. (5.14)

Since p∗ = St(x, |∇u|2)∇u = H ′(∇w) , we have (H ′)−1(p∗) = ∇w = ∇u − ∇g . Since q∗ ∈ K , we have
〈q∗,∇w〉Y ∗,Y = b(w) = b(u)− b(g) . Hence (5.14) becomes

∫
Ω

St(x, |∇u|2)∇u ·∇udx− b(u) ≤
∫
Ω

St(x, |∇u|2)∇u ·∇gdx− b(g).

We can derive the continuity of the solutions u and p∗ on the data.

Corollary 5.3 Assume that fj , f ∈ W 1,p(Ω)∗ , gj , g ∈ W 1−1/p,p(Γ1) , hj , h ∈ W 1−1/p,p(Γ2)
∗ satisfy fj → f

strongly in W 1,p(Ω)∗ , gj → g strongly in W 1−1/p,p(Γ1) , hj → h strongly in W 1−1/p,p(Γ2)
∗ . Let uj and p∗

j be
solutions of the problems (5.2) and (5.3) with f = fj , g = gj , h = hj . Then we can show that uj → u strongly

in W 1,p(Ω) and p∗
j → p∗ strongly in Lp′

(Ω) .

Proof The strong convergence of {uj} to u follows from Theorem 4.1. Since p∗
j = St(x, |∇uj |2)∇uj by

Theorem 5.1, it follows from Lemma 2.2 that

|p∗
j − p∗| ≤

{
C|∇uj −∇u|p−1 if 1 < p ≤ 2,
C(|∇uj |+ |∇u|)p−2|∇uj −∇u| if p > 2.
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When 1 < p ≤ 2 , we have ∫
Ω

|p∗
j − p∗|p

′
dx ≤ C‖uj − u‖pW 1,p(Ω) → 0 as j → ∞.

When p > 2 , it follows from the Hölder inequality that

∫
Ω

|p∗
j − p∗|p

′
dx ≤ C

∫
Ω

(|∇uj |+ |∇u|)(p−2)p′
|∇uj −∇u|p

′
dx

≤ C

(∫
Ω

(|∇uj |+ |∇u|)pdx
)(p−2)p′/p (∫

Ω

|∇uj −∇u|pdx
)p′/p

≤ C1‖uj − u‖p
′

W 1,p(Ω) → 0 as j → ∞.
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