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Abstract: In this paper, we present the notion of isotropic submersions between Riemannian manifolds. We first give
examples to illustrate this new notion. Then we express a characterization in terms of O’Neill’s tensor field T and
examine certain relations between sectional curvatures of the total manifold and the base manifold. We also study
λ -isotropic submersions with pointwise planar horizontal sections.
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1. Introduction
A submanifold (M, g) of a Riemannian manifold (N, g) is called isotropic if and only if for any point p and
any tangent vector X at a point p , we have that

g(h(X,X), h(X,X)) = λ(p)g(X,X)2 (1.1)

where h denotes the second fundamental form of the immersion and λ is a function on the submanifold.
Isotropic submanifolds were first introduced by O’Neill in [24]. It is known that every umbilical submanifold is
an isotropic submanifold, but the converse is not true. Several properties of isotropic immersions were explored
in [5, 21, 22].

Riemannian submersions were independently defined and studied by O’Neill [25] and Gray [15] as coun-
terpart of isometric immersions in semi-Riemannian, Lorentzian, almost Hermitian, contact and quaternionic
geometry. The most studied notion in terms of smooth maps in differential geometry is isometric immersion and
many textbooks and monographs about this concept have been published [10, 11, 13]. Although not as much
as isometric immersions, there are a few books on Riemannian submersions [14, 17, 18, 29]. Today, many re-
search articles on Riemannian submersions have been published and new Riemannian submersions under various
names, such as semi-Riemannian submersion, Lorentzian submersion [14], almost Hermitian submersion [33],
contact-complex submersion [17], quaternionic submersion [18] etc., have been introduced into the literature.
Riemannian submersions have applications in other research areas. Indeed, Riemannian submersions have been
used in Kaluza-Klein model and superstring theories of mathematical physics, [6, 14] and in robotic theory as
forward kinematics [3].

Recently, Şahin [27] introduced the notion of antiinvariant Riemannian submersions which are Riemannian
submersions from almost Hermitian manifolds such that the vertical distribution is antiinvariant under the
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almost complex structure of the total manifold. Later this notion has been extended for several cases, see:
[1, 2, 4, 8, 9, 16, 19, 20, 23, 26, 29, 30, 32].

We note that the concept of submanifold with planar normal sections was introduced by Chen in [12]. Such
submanifolds were studied widely by many authors and many nice geometric properties of such submanifolds
have been found, see [11]. On the other hand, the notion of planar horizontal sections for Riemannian
submersions has been introduced in [7].

In this paper, we introduce isotropic Riemannian submersions, give examples, obtain a characterization
and investigate relations between the total manifold and the base manifold of isotropic Riemannian submersions.
We also obtain a relation between isotropic submersions and Riemannian submersions having planar horizontal
sections. The paper is organized as follows. In Section 2, we recall some concepts which are necessary for this
paper. In Section 3, we define isotropic Riemannian submersions and we give two examples. Then we give
necessary and sufficient conditions for such submersions to be totally geodesic, totally umbilical and minimal.
We examined the correlation between curvatures of the total manifold and the base manifold. Moreover we
relate the new concept with the one of Riemannian submersion with pointwise planar horizontal sections. In
fact, we show that if a Riemannian submersion has geodesic 2 -planar horizontal sections, such submersions are
constant isotropic.

2. Preliminaries
Let M be an m -dimensional Riemannian manifold and N an n -dimensional Riemannian manifold. A Rie-
mannian submersion G :M −→ N is a map of M onto N satisfying the following axioms:

(S1) G has maximal rank.

(S2) The differential G∗ preserves the lengths of horizontal vectors.

For any point x ∈ N , the leaf Gx = G−1(x) is a submanifold of M with r = (m − n)−dimensional. The
integrable distribution of G is defined by ϑp = KerG∗p and ϑ is called the vertical distribution of submersion
G . For any point p ∈M , putting G(p) = x , the tangent space at p of Gx and ϑp coincide. The distribution κ
orthogonal to ϑ is called the horizontal distribution. Thus for every p ∈M , M has the follow decomposition:

TpM = ϑp ⊕ κp = ϑp ⊕ (ϑp)
⊥
.

The geometry of Riemannian submersion is characterized by O’Neill’s tensors T and A defined for vector fields
E,F on M by

AEF = κ∇κEϑF + ϑ∇κEκF, TEF = κ∇ϑEϑF + ϑ∇ϑEκF (2.1)

where ∇ is the Levi-Civita connection of M . One can easily see that a Riemannian submersion G : (Mm, g) →
(M̄n, g′) has totally geodesic fibres if and only if T vanishes identically. It is also easy to see that T is vertical,
TE = TϑE , and A is horizontal, AE = AκE . We note that the tensor field T satisfy

TUW = TWU ∀U,W ∈ Γ(kerG∗),

from here we have
∇VW = TVW + ∇̂VW ∀V,W ∈ Γ(kerG∗),

where ∇̂VW = ϑ∇VW .
We now recall some theorems and Lemmas which will be used in this paper.
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Theorem 2.1 [25] Let (Mm, g) , (M̄n, g′) be Riemannian manifolds and G : (Mm, g) → (M̄n, g′) a Rieman-
nian submersion. If α : I →M is regular curve and E(t) , W (t) denote the horizontal and vertical parts of its
tangent vector field, then α is a geodesic on M if and only if

(∇̄α̇W + TWE)(t) = 0

and
(∇̄EE + 2AEW + TWW )(t) = 0,

where ∇̄ is Schouten connection.

Lemma 2.2 [25] Let (Mm, g) , (M̄n, g′) be Riemannian manifolds and G : (Mm, g) → (M̄n, g′) a Riemannian
submersion. We have

(∇VA)W = −ATvW , (∇XT )Y = −TAXY ,

(∇XA)W = −AAXW, (∇V T )Y = −TTvY ,

where X,Y ∈ χϑ(M) , W,V ∈ χh(M) and E ∈ χ(M) . where X,Y ∈ χϑ(M) , W,V ∈ χh(M) and E ∈ χ(M) .
Also R̂, stand for the Riemannian curvature of any fibres (G−1(x), ĝx) . Then the corresponding Gauss and
Codazzi equations lead to:

R(U, V, F,W ) = R̂(U, V, F,W ) + g(TUW,TV F )− g(TVW,TUF ),

R(U, V,W,X) = g((∇V T )(U,W ), X)− g((∇UT )(V,W ), X), (2.2)

for any U, V,W,F ∈ χϑ(M), X ∈ χh(M). On the other hand for a vector field E ∈ χ(M) and V ∈ χϑ(M),

we have
(∇V T )V E = ∇V TV E − T∇V V E − TV ∇V E. (2.3)

Theorem 2.3 [25] Let (Mm, g) , (M̄n, g′) be Riemannian manifolds and G : (Mm, g) → (M̄n, g′) a Rieman-
nian submersion. Therefore, we have for the sectional curvature K , K ′ , K̂ of the total space, the base space
and the fibres, one has respectively

K(U.V ) = K̂(U, V ) + ∥TUV ∥2 − g(TUU, TV V ),

K(X,Y ) = K ′(X ′, Y ′) ◦ π − 3 ∥AXY ∥2 ,

K(X,V ) = g((∇XT )V V,X) + ∥TVX∥2 − ∥AXV ∥2 ,

for any X,Y ∈ κ, U, V ∈ ϑ .

We now recall that a Riemannian submersion G is called a Riemannian submersion with totally umbilical
fibers if

TVW = g(V,W )H,

for V,W ∈ Γ(kerG∗) , where H is the mean curvature vector field of the fibers.
Finally in this section, we will recall the notion of Riemannian submersion with planar horizontal sections.
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Definition 2.4 Let (M, g) be a m-dimensional Riemannian manifold and (En, ⟨, ⟩) be a n-dimensional
Euclidean space. Consider a Riemannian submersion G : En → M and denote its vertical distribution
and horizontal distribution by ϑ and κ , respectively. It is known that the vertical distribution ϑ is always
integrable. We denote the integral manifold of ϑ by M̃. For p ∈ M̃ and a nonzero vector X ∈ ϑp, we define
the (m+ 1)−dimensional affine subspace E(p,X) of En by

E(p,X) = p+ Span{X,κp}.

In a neighbourhood of p, the intersection M̃ ∩ E(p,X) is a regular curve α : (−ε, ε) → M̃ . We suppose that
the parameter t ∈ (−ε, ε) is a multiple of the arc-length such that α(0) = p and α′(0) = X. Each choice of
X ∈ ϑp yields a different curve. We will call α the horizontal section curve of M̃ at p in the direction of X.
The Riemannian submersion G is said to have ” pointwise k -planar horizontal sections (Pk − PHS)” if for
each horizontal section α , the higher order derivatives

{α′(0), α′′(0), ..., αk+1(0)}

are linearly dependent.

Thus a horizontal section can be written as below:

α(t) = p+ λ(t)X + U(t)

where U ∈ χκ(En), λ(t) ∈ R [7].

Theorem 2.5 Let G : (En, ⟨, ⟩) → (M, gM ) be a Riemannian submersion. Then G has P2−PHS if and only
if (∇XT )XX and TXX satisfy

(∇XT )XX ∧ TXX = 0,

for any X ∈ χϑ(En) [7].

3. Isotropic submersions
In this section, we are going to introduce isotropic submersions, give examples, obtain a characterization
and investigate the effect of this notion on the geometry of the total manifold and the base manifold of the
Riemannian submersion.

Definition 3.1 Let G :M −→ N be a Riemannian submersion. For u ∈ Γ(kerG∗) , if the following condition
is satisfied

g(Tuu, Tuu) = λg(u, u)2,

for all p ∈ M , then G is called λ-isotropic. If λ is constant for any p ∈ M , then G is called λ− constant
isotropic.

We first give the following theorem which will be very useful for investigating isotropic Riemannian submersions.

Theorem 3.2 Let G : (Mm, g) → (M̃n, g′) be a Riemannian submersion. If G is λ-isotropic, then we have

g(TXX,TXY ) = 0

for all orthogonal X,Y ∈ χϑ(M) .
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Proof For all U ∈ χϑ(M) we have

TUU = κ∇UU.

Hence, if T is isotropic, we find
g(κ∇UU,κ∇UU) = λg(U,U)2.

Now, let △ be the quadrilinear function on M ,

△ : χϑ(M)× χϑ(M)× χϑ(M)× χϑ(M) → C∞(M,R)

as
△(X,Y, U, V ) = g(TXY, TUV )− λg(X,Y )g(U, V ).

Because T is symmetric, △(X,Y, U, V ) is symmetric in X and Y , and also in U and V . Also △ is symmetric
by pairs: △(X,Y, U, V ) = △(U, V,X, Y ) . If G is λ isotropic, then we have

ψ(U) = △(U,U,U, U) = 0,

for all U ∈ χϑ(M) . From here,

ψ(X + Y ) + ψ(X − Y ) = 0, (3.1)

ψ(X + Y )− ψ(X − Y ) = 0 (3.2)

for all X,Y ∈ χϑ(M) . Now, ψ(X + Y ) , ψ(X − Y ) can be found as

ψ(X + Y ) = 4[g(TXX,TXY )− λg(X,X)g(X,Y )] (3.3)

+2[g(TXX,TY Y )− λg(X,X)g(Y, Y )]

+4[g(TXY, TXY )− λg(X,Y )2]

+4[g(TXY, TY Y )− λg(X,Y )g(Y, Y )],

and

ψ(X − Y ) = −4[g(TXX,TXY )− λg(X,X)g(X,Y )] (3.4)

+2[g(TXX,TY Y )− λg(X,X)g(Y, Y )]

+4[g(TXY, TXY )− λg(X,Y )2]

−4[g(TXY, TY Y )− λg(X,Y )g(Y, Y )],

Using (3.3),(3.4),(3.1) and (3.2) we have

ψ(X + Y ) = 4△(X,X,X, Y ) + 2△(X,X, Y, Y ) (3.5)

+4△(X,Y,X, Y ) + 4△(X,Y, Y, Y ),

ψ(X − Y ) = −4△(X,X,X, Y ) + 2△(X,X, Y, Y ) (3.6)

+4△(X,Y,X, Y )− 4△(X,Y, Y, Y ),
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and hence we find

1

4
(ψ(X + Y ) + ψ(X − Y )) = △(X,X, Y, Y ) + 2△(X,Y,X, Y ) = 0. (3.7)

Also, we have
1

8
(ψ(X + Y )− ψ(X − Y )) = △(X,X,X, Y ) +△(Y, Y, Y,X) = 0. (3.8)

If we replace Y by X + Y in (3.7), we obtain

6△(X,X,X, Y ) +△(X,X, Y, Y ) + 2△(X,Y,X, Y ) = 0. (3.9)

If we consider (3.7) in (3.9), we get

△(X,X,X, Y ) = 0.

Thus we arrive at

g(TXX,TXY ) = λg(X,X)g(X,Y ).

So, we get the assertion. 2

We now give examples of isotropic submersions.

Example 3.3 Let (M1, g1 ) and (M2, g2 ) be two Riemannian manifolds, f : M1 → ( 0, ∞ ) and π :

M1 × M2 → M1, σ : M1 × M2 → M2 the projection maps given by π (x, y) = x and σ (x, y) = y

for every (x, y) ∈ M1 ×M2 . Denote the warped product manifold M = (M1 ×f M2, g ) , where

g (X, Y ) = g1 (π∗X, π∗ Y ) + f (π(x, y) ) g2 (σ∗X, σ∗ Y )

for every X and Y of M and ∗ is symbol for the tangent map. The manifolds M1 and M2 are called the base
and the fiber of M . It is easy to prove that the first projection π :M1×fM2 −→M1 is a Riemannian submersion
whose vertical and horizontal spaces at any point p = (p1, p2) are respectively identified with Tp2

M2, Tp1
M1.

For the invariant T , for any U, V ∈ Xϑ(M) , one obtains:

TUV = − 1

2f
g(U, V )gradf. (3.10)

(3.10) shows that π is an isotropic Riemannian submersion[14].

The following example includes the above isotropic Riemannian submersions.

Example 3.4 Every Riemannian submersion with totally umbilical fibers is an isotropic Riemannian submer-
sion.

We now give an another example of an isotropic Riemannian submersion.
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Example 3.5 Let (R4, g) and (R2, ḡ) be Riemannian manifolds with the Riemannian metrics g = dx21+dx
2
2+

dx23 + dx24 and ḡ = 1−λ
λ (dx21 + dx22), 0 < λ < 1. Let’s consider the following map

G : R4 → R2

(x1, x2, x3, x4) → (
√
1− x21 − x22,

√
1− x23 − x24),

such that x22 + x24 = λ < 1, x21 + x23 = λ < 1 . It follows that G is a submersion. By direct computation, If
we consider above condition, we have

kerG∗ = ϑ = span

{
v = x2

∂

∂x1
− x1

∂

∂x2
, u = x4

∂

∂x3
− x3

∂

∂x4

}
and

kerG⊥
∗ = κ = span

{
X = −x1

∂

∂x1
− x2

∂

∂x2
, Y = −x3

∂

∂x3
− x4

∂

∂x4

}
.

Since we have

g(G∗X,G∗X) = ḡ(X,X) g(G∗Y,G∗Y ) = ḡ(Y, Y ).

G is a Riemannian submersion. Also, we obtain

Tvv = X, Tuu = Y

and
g(Tuu, Tuu) = g(Tvv, Tvv) = λ.

Hence, we show that G is an isotropic Riemannian submersion.

Lemma 3.6 Let G : (Mm, g) → (M̄n, g′) be a λ− isotropic Riemannian submersion. Then we have

1.
g(Tu1

u1, Tu2
u2) + 2g(Tu1

u2, Tu1
u2) = λ, for ∥u1∥ = ∥u2∥ = 1,

2.
g(Tu1u1, Tu3u4) + 2g(Tu1u3, Tu1u4) = 0,

3.
g(Tu1

u2, Tu3
u4) + g(Tu1

u3, Tu2
u4) + g(Tu1

u4, Tu2
u3) = 0,

for all orthogonal u1, u2, u3, u4 ∈ χϑ(M) .

Proof For any u1, u2, u3, u4 ∈ χϑ(M) , we have (3.8) and (3.7), namely

△(u1, u1, u1, u2) +△(u2, u2, u2, u1) = 0, (3.11)

and
△(u1, u1, u2, u2) + 2△(u1, u2, u1, u2) = 0. (3.12)
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If we replace u2 by u1 + u2 in (3.12), we find

△(u1, u1, u1, u2) = 0. (3.13)

If we replace u2 by u3 + u4 in equation (3.12), we obtain

△(u1, u1, u3, u4) + 2△(u1, u3, u1, u4) = 0. (3.14)

If we replace u1 by u1 + u2 in equation (3.14), we have

△(u1, u2, u3, u4) +△(u1, u3, u2, u4) +△(u2, u3, u1, u4) = 0. (3.15)

Now suppose that u1, u2, u3, u4 are orthogonal and use (3.12), we can find

g(Tu1
u1, Tu2

u2) + 2g(Tu1
u2, Tu1

u2) = λ. (3.16)

Using (3.14), we obtain

g(Tu1
u1, Tu3

u4) + 2g(Tu1
u3, Tu1

u4) = 0,

and equation (3.15), implies

g(Tu1
u2, Tu3

u4) + g(Tu1
u3, Tu2

u4) + g(Tu1
u4, Tu2

u3) = 0.

Thus the proof is completed. 2

Let G : (Mm, g) → (M̄n, g′) be a λ isotropic Riemannian submersion. Considering Theorem 2.3 and
Lemma 3.6, from (3.16), we have

g(Tuu, Tvv) + 2 ∥Tuv∥2 = λ. (3.17)

By direct computations we find
K(u, v) = K̂(u, v) + 3 ∥Tuv∥2 − λ,

and
2K(u, v) = 2K̂(u, v)− 3g(Tuu, Tvv) + λ.

Therefore, we have the following result.

Lemma 3.7 Let G : (Mm, g) → (M̄n, g′) be a λ isotropic Riemannian submersion. For orthonormal
u, v ∈ χϑ(M) we have

K(u, v) = K̂(u, v) + 3 ∥Tuv∥2 − λ, (3.18)

2K(u, v) = 2K̂(u, v)− 3g(Tuu, Tvv) + λ. (3.19)

By using the above Lemma 3.7 we have the following result.

Proposition 3.8 Let G : (Mm, g) → (M̄n, g′) be a λ isotropic Riemannian submersion. For ortonormal
u, v ∈ χϑ(M) the following expressions are equivalent to each other;

2291



ERDOĞAN and ŞAHİN/Turk J Math

1. K(u, v) = K̂(u, v)− λ ,

2. Tuv = 0 .

Proof Let us assume that K(u, v) = K̂(u, v) − λ . From (3.18) we have ∥Tuv∥ = 0 , namely Tuv = 0 .
Conversely, if Tuv = 0 , from Lemma 3.6 (1), we find g(Tuu, Tvv) = λ and from (3.19) we obtain K(u, v) =

K̂(u, v)− λ . 2

Using Proposition 3.8, we have the following result.

Theorem 3.9 Let G : (Mm, g) → (M̄n, g′) be a λ isotropic Riemannian submersion.For any vertical plane P

spanned by vectors u, v one has K(P ) = K̂(P )− λ if and only if G is a Riemannian submersion with minimal
fibres.

Proof From Proposition 3.8, we have Tuv = 0 if and only if K(u, v) = K̂(u, v)− λ . Namely,

Tuv = g(u, v)H,

where H is the mean curvature vector field. If we take x and x+y instead of u and v in Tuv = 0 , respectively,
we have

Tuv = 0 =⇒ Txx = 0.

If we take x+ y and y instead of u and v in Tuv = 0 , respectively, we have

Tuv = 0 =⇒ Tyy = 0.

Therefore, we find H = 0 . 2

Using Proposition 3.8 we have the following results.

Corollary 3.10 Let G : (Mm, g) → (M̄n, g′) be a λ− isotropic Riemannian submersion. {uj}1≤j≤r is local

orthonormal frame of vertical distribution of Mm . For horizontal vector field N =
∑r

j=1 Tujuj on (Mm, g) ,
we have

∥N∥2 = r2λ.

Corollary 3.11 Let G : (Mm, g) → (M̄n, g′) be a λ− isotropic Riemannian submersion. For a geodesic curve
α : I →Mm, γ = G ◦ α is geodesic if and only if

∥AEW∥2 =
λ

4
∥W∥2 ,

where E(t),W (t) are horizontal, vertical components of the vector field tangent to α , respectively.

Let G : (Mm, g) → (M̄n, g′) be a constant λ isotropic Riemannian submersion. For any (local) unitary
vector field u , we have

g(Tuu, Tuu) = λ.

Hence we obtain
g(∇uTuu, Tuu) = 0 ⇒ g((∇uT )uu, Tuu) + 2g(Tu∇uu, Tuu) = 0.
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If (∇uT )uu = 0 , then we have g(Tu∇uu, Tuu) = 0 . If ∇uu ∈ χh(Mm) , then we can conclude that ∇uu ⊥ u . If
∇uu ∈ χϑ(Mm) , then we find Tuu = 0 . Hence we have, G is a Riemannian submersion totally geodesic fibres
from T = 0 . The converse is obvious. Thus we find the following theorem.

Theorem 3.12 Let G : (Mm, g) → (M̄n, g′) be a constant λ isotropic Riemannian submersion. Then if
(∇uT )uu = 0 for any u ∈ ϑp one of the following assertions are valid

1. ∇uu ⊥ u in χϑ(Mm).

2. G is Riemannian submersion with totally geodesic fibres.

We now investigate a Riemannian submersion G from Euclidean space En to a Riemannian manifold M having
geodesic P2− PHS .

Theorem 3.13 Let G : En → M be a Riemannian submersion from Euclidean space En to a Riemannian
manifold M . If G has geodesic 2-planar horizontal sections, then G is a constant isotropic Riemannian
submersion at p ∈ M̃ . Here, M̃ is the integral manifold of vertical distribution.

Proof We suppose that G has geodesic 2−planar horizontal sections. Let α be a horizontal section curve at
α(0) = p ∈M and direction of α′(0) = v ∈ ϑ. Since G has geodesic 2−planar horizontal sections, we have

α′(0) = v,

α′′(0) = ∇vv = Tvv + ∇̂vv = Tvv

and
α′′′(0) = ∇vTvv = TvTvv + h(∇vTvv).

Here α′′′, is linear combination of v and κp, thus we find

TvTvv = av,

h(∇vTvv) = bTvv,

a, b ∈ R. In this case, from TvTvv = av, we have

TvTvv ∧ v = 0.

Hence, we find that
< TvTvv, z >= 0,

for any orthogonal vertical vectors v, z at p ∈ M̃. On the other hand, from the property of tensor field T , we
have

< TvTvv, z >= 0 ⇔< Tvv, Tvz >= 0. (3.20)

Since G has geodesic P2− PHS, we have cTvv = (∇vT )vv, c ∈ R and ∇̂vv = 0, thus, we obtain

< Tvv, Tvz >= 0 ⇔< (∇vT )vv, Tvz >= 0,

⇔ < ∇vTvv − T∇vvv − Tv∇vv, Tvz >= 0,

⇔ < ∇vTvv − TTvv+∇̂vv
v − Tv(Tvv + ∇̂vv), Tvz >= 0,

⇔ < ∇vTvv − TTvvv − TvTvv, Tvz >= 0,
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because of Tvv ∈ κp, we get TTvvv = 0 . Therefore, we obtain

< ∇vTvv, Tvz > − < TvTvv, Tvz >= 0.

Since TvTvv ∈ ϑp and Tvz ∈ κp, we find

< ∇vTvv, Tvz >= 0,

from (3.20), we get
< Tvv,∇vTvz >= 0.

From the covariant derivative of tensor field T , we can write

< Tvv, (∇vT )vz + T∇vvz + Tv∇vz >= 0.

Since T∇vvz = TTvvz + T∇̂vv
z = 0, if we expand z to parallel vector field Z through horizontal section curve

α, we can get ∇vZ = 0, thus we have
< Tvv, (∇vT )vZ >= 0.

From (2.2), we can write
< Tvv, (∇ZT )vv >= 0.

In this equation, if we take the covariant derivative of the tensor field T , we can write

< Tvv,∇ZTvv − T∇Zvv − Tv∇Zv >= 0,

< Tvv,∇ZTvv − TTZvv − T∇̂Zvv − TvTZv − Tv∇̂Zv >= 0. (3.21)

Since TvTZv ∈ ϑp and Tvv ∈ κp, we have,

< Tvv,∇ZTvv − 2Tv∇̂Zv >= 0,

< Tvv,∇ZTvv >= 2 < Tvv, Tv∇̂Zv > . (3.22)

From the property of tensor field T and TvTvv = av, we find

< Tvv, Tv∇̂Zv >=< TvTvv, ∇̂Zv >,

< TvTvv, ∇̂Zv >= a < v, ∇̂Zv > .

Also, for v ∈ ϑp unit vertical vector, we have < v,∇Zv >= 0 ⇔< v, TvZ+ ∇̂Zv >= 0 ⇔< v, ∇̂Zv >= 0. Thus,
from (3.21) we obtain

< Tvv,∇ZTvv − TTZvv − T∇̂Zvv >= 0.

Since, for ∇̂Zv ∈ ϑp, T∇̂Zvv = 0 and < Tvv, TTZvv >=< Tvv, TvTZv >= 0. That is, from (3.22), we get

< Tvv,∇ZTvv >= 0,

< Tvv,∇ZTvv >= 0 ⇔ 1

2
Z < Tvv, Tvv >= 0.

Therefore, we can say that, G is a constant isotropic Riemannian submersion.
2
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