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1. Introduction
In this paper, the existence of mild solutions in a real separable Banach space (E, | · |) is proved for neutral
multivalued integro-differential evolution equations with delay. The solutions are defined on the positive real
interval J = R+ , the delay is depending on the solution and is infinite.

Consider firstly in Section 3, the problem

d

dx
[u(x)− g(x, uρ(x,ux))] ∈ A(x)u(x) +

∫ x

0

I(x, y) F(y, uρ(y,uy))dy, a.e. x ∈ J , (1.1)

u0 = ψ ∈ B, (1.2)

where B is a given specified phase space, Λ = {(x, y) ∈ J 2/y ≤ x} , g : J ×B → E , ρ : J ×B → R , I : Λ → R
and ψ ∈ B are given functions, F : J × B → P(E) is a multivalued map with nonempty compact values, P(E)
is the set of all subsets of E and {A(x)}x≥0 is a family of linear closed operators from E into E which yields
to an evolution system of operators {U(x, y)}(x,y)∈Λ .

Let us consider ux the element of B which is the history of the state from time x ∈ J = R− up to the
present time x defined for any continuous function u and any x ∈ J by ux(θ) = u(x+ θ) for any θ ∈ J .

One example is given in the last section to illustrate the abstract theory.
Differential equations with delay are employed in modeling scientific phenomena during many years and

so on, often when the delay is a fixed constant, it’s called distributed delay as in the books of Hale and Lunel
in [26], Kolmanovskii and Myshkis in [31] and Wu in [35] and the papers of Corduneanu and Lakshmikantham
[18] and Hale and Kato [25].
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For evolution equations, Ahmed and Freidmann developed an extensive theory in [5, 6, 21]. Uniqueness,
existence and controllability results was established for various evolution problems with constant delay by Baghli
et al. in [2], [9]–[14].

However, complicated situations modeled differential equations when the delay depends on the unknown
function which is the researched solution, called equations with state-dependent delay. Existence and other
results were established recently for functional differential equations when the solution is depending on the
delay into a bounded interval for impulsive problems by Abada et al. [1], Benchohra et al. [16], Anguraj et
al. [7], Hernandez et al. [27] and Li et al. [32]. Perturbed and nonperturbed evolution equations with state-
dependent delay was given by Aoued and Baghli-Bendimerad [3, 4], Baghli-Bendimerad [8], and Baghli et al.
in [15].

Our purpose in this paper is to give an extension of the above results for neutral multivalued integro-
differential evolution inclusions with infinite state-dependent delay (1.1)− (1.2) . The existence results of mild
solutions are given using the nonlinear alternative of Frigon given in [22, 23] in Fréchet spaces for contractive
multivalued maps, combined with semigroup theory [6, 33].

2. Preliminaries
Notations, definitions and theorems which are used throughout this paper are introduced in this section.

Let C(J ;E) be the Banach space of all functions from J into E which are continuous and let B(E) be
the space of all linear operators from E into E which are bounded, with the next norm

‖ℵ‖B(E) = sup
|u|=1

|ℵ(u)|.

Each measurable function u : J → E which is measurable, u is said Bochner-integrable if |u| is Lebesgue-
integrable (see the monograph of Yosida [36]).

Let L1(J ,E) be the Banach space of all Bochner-integrable measurable functions u : J → E with the
norm defined by

‖u‖L1 =

∫ +∞

0

|u(x)| dx.

Then, let us consider the family {A(x)}x≥0 of closed, unbounded, linear and densely defined operators
on the Banach space E when the domain D(A(x)) is independent of x .

Definition 2.1 For every (x, y) ∈ Λ , a family {U(x, y)}(x,y)∈Λ is called an evolution system when the next
properties are verified :

(P1) U(x, x) = I where I is the identity operator,

(P2) U(x, y) U(y, z) = U(x, z) for z ≤ y ≤ x ,

(P3) For every U ∈ B(E) and for each u ∈ E , the mapping (x, y) → U(x, y) u is continuous.

We refer to the books of Ahmed [5], Engel and Nagel [20] and Pazy [33] for more details on evolution systems.
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Let X be a Fréchet space with a family of seminorms {‖ · ‖n}n∈N . Assume that the family of seminorms
{‖ · ‖n}n∈N verifies for every u ∈ X

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ . . .

Let Y ⊂ X , say that Y is bounded if for every n ∈ N , there exists wn > 0 such that for all v ∈ Y such
that :

‖v‖n ≤ wn.

For every n ∈ N , consider the equivalence relation ∼n defined for u, v ∈ X by

u ∼n v if and only if ‖u− v‖n = 0.

Associate to X a family {Xn}n in Banach spaces (Xn, ‖ · ‖n) . Denote the completion of Xn with respect
to ‖ · ‖n by the quotient space by Xn = (X|∼n

, ‖ · ‖n) ,. Associate to every Y ⊂ X a family {Yn}n of subsets
Yn ⊂ Xn as follows: For every u ∈ X , denote [u]n . the equivalence class of u of subset Xn and defined
Yn = {[u]n : u ∈ Y} . Denote respectively the notion of closure, the interior and the boundary of Yn by Yn ,
intn(Yn) and ∂nYn with respect to ‖ · ‖n in Xn .

In this paper, the phase space B considered is introduced by Hale and Kato in [25] and Hino et al. in
[29]. Then, (B, ‖ · ‖B) will be a seminormed linear space of functions from J into E verifying

(A1 ) For a fixed b > 0 , if u : (−∞, b) → E is continuous on [0, b] and u0 ∈ B , then for every x ∈ [0, b) , the
next conditions hold

(i) ux ∈ B ;

(ii) There exists a nonnegative constant ϵ such that

|u(x)| ≤ ϵ‖ux‖B;

(iii) There exist two functions κ(·),Π(·) : R+ → R+ nondependent of u with κ continuous and Π locally
bounded such that

‖ux‖B ≤ κ(x) sup
y≤x

|u(y)|+Π(x)‖u0‖B.

(A2 ) For each function u defined from (A1) , ux is a B−valued continuous function on [0, b] .

(A3 ) The space B is complete.

Set κb = sup
x∈[0,b]

κ(x) and Πb = sup
x∈[0,b]

Π(x) .

Remark 2.2 Note that

1. (ii) is equivalent to |ψ(0)| ≤ ϵ‖ψ‖B for every ψ ∈ B .

2. Two functions ψ and ψ of B can verify ‖ψ−ψ‖B = 0 without necessarily verify ψ(θ) = ψ(θ) for all θ ∈ J
because ‖ · ‖B is a seminorm.

3. For all ψ and ψ of B , ‖ψ − ψ‖B = 0 implies necessarily that ψ(0) = ψ(0) from Remark 1 .

2314



MEBARKI and BAGHLI-BENDIMERAD/Turk J Math

Here are cited samples of the specified phase spaces from the book by Hino et al. [29].

Example 2.3 Let

BC denote the space of all bounded continuous functions defined from J to E ;

BUC denote the space of all BC functions which are uniformly continuous;

C∞ =

{
ψ ∈ BC : lim

t→−∞
ψ(t) exist in E

}
;

C0 =

{
ψ ∈ BC : lim

t→−∞
ψ(t) = 0

}
, endowed with the uniform norm ‖ψ‖ = sup

t≤0
|ψ(t)| .

Then, (A1) − (A3) are verified for the cited spaces BUC , C∞ and C0 . But, (A1) and (A3) are verified for
BC and (A2) is not.

Example 2.4 Cg =

{
ψ ∈ C(J ,E) : ψ(t)

g(t)
is bounded on J

}
; C0

g =

{
ψ ∈ Cg : lim

t→−∞

ψ(t)

g(t)
= 0

}
, endowed with

the uniform norm ‖ψ‖ = sup
t∈J

|ψ(t)|
g(t)

. Then (A3) is verified for the spaces Cg and C0
g .

Consider the next condition on the function g .

(g1) For all b > 0, sup
0≤x≤b

sup
t≤−x

g(x+ t)

g(t)
< +∞.

The conditions (A1) and (A2) are verified if (g1) .

Example 2.5 For any real constant γ , define the functional space Cγ by

Cγ =

{
ψ ∈ C(J ,E) : lim

t→−∞
eγtψ(t) exists in E

}
endowed with the next norm ‖ψ‖ = sup

t∈J
{eγt|ψ(t)|}. Then, the

conditions (A1)− (A3) are verified in the space Cγ .

Consider the next space

B+∞ = {u : R → E : u|J ∈ C(J ,E), u0 ∈ B}

where u|J is the restriction of u to J .
Set R(ρ−) = {ρ(s, ψ) is continuous for (s, ψ) ∈ J ×B with ρ(s, ψ) ∈ R−}. Consider the next hypothesis

(Hψ) The function ψt from R(ρ−) into B is continuous and there exists a function Lψ : R(ρ−) → (0,∞)

which is bounded and continuous such that for every t ∈ R(ρ−)

‖ψt‖B ≤ Lψ(t)‖ψ‖B.

Remark 2.6 (Hψ) is verified usually by bounded and continuous functions [29].
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Lemma 2.7 [27] If u : (−∞, b] → E is a function such that u0 = ψ , then for every s ∈ R(ρ−) ∪ J

‖us‖B ≤ κb sup
t∈[0,s̆]

|u(t)|+ (Πb + Lψ)‖ψ‖B

where Lψ = sup
t∈R(ρ−)

Lψ(t) and s̆ = max{0, s} .

Proposition 2.8 By (Hψ) , (A1) and Lemma 2.7, we have for each x ∈ [0, n] and n ∈ N

‖uρ(x,ux)‖B ≤ κn|u(x)|+ (Πn + Lφ) ‖u0‖B.

Let (E, d) be a metric space. The next notations are used

Pcl(E) = {F ∈ P(E) : F closed}, Pb(E) = {F ∈ P(E) : F bounded},

Pcv(E) = {F ∈ P(E) : F convexe}, Pcp(E) = {F ∈ P(E) : F compact}.

Consider Hd : P(E)× P(E) −→ R+ ∪ {∞} , given by

Hd(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(A, b)
}

where d(A, b) = inf
a∈A

d(a, b) , d(a,B) = inf
b∈B

d(a, b) . Then (Pb,cl(E),Hd) is a metric space and (Pcl(E),Hd) is

a complete (generalized) metric space (see [30]).

Definition 2.9 A multivalued map G : J → Pcl(E) is called measurable if for each x ∈ E , the function
F : J → E defined by

F(t) = d(x,G(t)) = inf
z∈G(t)

|x− z|

is measurable where d is the metric endowed by the norm of E .

Definition 2.10 A multivalued map F : J × B −→ P(E) is called L1
loc -Carathéodory multivalued map if it

verifies:

(i) for all x ∈ J , u 7→ F(x, u) is continuous with respect to the metric Hd ;

(ii) for almost each u ∈ B , x 7→ F(x, u) is measurable;

(iii) for every nonnegative constant k , there exists hk ∈ L1
loc(J ;R+) such that for almost all x ∈ J and for

all ‖u‖B ≤ k

‖F(x, u)‖ ≤ hk(x).

Let (E, ‖ · ‖) be a Banach space. A multivalued map G : E → P(E) has closed (convex) values if G(x)
is closed (convex) for all x ∈ E . Say that G is bounded on bounded sets if G(B) is bounded in E for each
bounded set B of E , i.e.

sup
x∈B

sup
u∈G(x)

‖u‖ <∞.
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Finally, G has a fixed-point if there exists x ∈ E such that x ∈ G(x) .
For each u ∈ B+∞ let the set SF,u known as the set of selectors from F defined by

SF,u = {f ∈ L1(J ;E) : f(x) ∈ F(x, ux) , a.e. x ∈ J }.

Refer to the books of Deimling [19], Górniewicz [24], Hu and Papageorgiou [28] and Tolstonogov [34] for
more details on multivalued maps.

Let us recall here the definition of admissible multivalued contraction.

Definition 2.11 A multivalued map F : E → P(E) is called an admissible contraction with constant {κn}n∈N

if for each n ∈ N there exists kn ∈ (0, 1) such that

i) for all x, y ∈ E ,
Hd(F(x),F(y)) ≤ κn ‖x− y‖n.

ii) for every x ∈ E and every ϵ ∈ (0,∞)n , there exists y ∈ F(x) such that

‖x− y‖n ≤ ‖x− F(x)‖n + ϵn for every n ∈ N.

We are going to use the nonlinear alternative of Frigon [22, 23] for contractive multivalued maps in
Fréchet spaces as follows:

Theorem 2.12 Let E be a Fréchet space and U be an open neighborhood of the origin in E . Let ℵ : U −→ E
be an admissible multi-valued contraction. Assume that ℵ is bounded. Then only one of the next statements
holds :

(Fr1) The operator ℵ has a fixed-point;

(Fr2) There exists λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λ ℵ (x) .

3. Neutral integro-differential evolution inclusions

The definition of a mild solution for the neutral multivalued integro-differential evolution problem (1.1)− (1.2)

is given hereafter.

Definition 3.1 We say that the function u : R → E is a mild solution of the evolution system (1.1)− (1.2) if
u(x) = ψ(x) for all x ∈ J and the restriction of u to the interval J is continuous and there exists f ∈ L1(J ;E)
such that f(x) ∈ F(x, uρ(x,ux)) almost every x ∈ J when u verifies the next integral equation

u(x) = U(x, 0)[ψ(0)− g(0, ψ)] + g(x, uρ(x,ux)) +

∫ x

0

U(x, y)A(y) g(y, uρ(y,uy)) dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, r)f(r) drdy.
(3.1)

Here is given our main result after assuming the next needed hypotheses
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(H1) U(x, y) is compact for x > y and there exists a constant M̂ ≥ 1 such that for every (x, y) ∈ Λ

‖U(x, y)‖B(E) ≤ M̂.

(H2) For all x, y ∈ J , I(x, y) is measurable on [0, x] and

I(x) = sup
0≤y≤x

|I(x, y)|

is bounded on [0, n] ; let
Sn = sup

x∈[0,n]

I(x).

(H3) The multifunction F : J × B −→ P(E) is L1
loc -Carathéodory with compact and convex values for each

u ∈ B and there exist a function p ∈ L1
loc(J ;R+) and a continuous increasing function Ψ : J → R0

+ and
such that for almost every x ∈ J and each u ∈ B

‖F(x, u)‖P(E) ≤ p(x)Ψ(‖u‖B).

(H4) For all R > 0 , there exists lR ∈ L1
loc(J ;R+) such that for each x ∈ J and for all u, v ∈ B

Hd(F(x, u),F(x, v)) ≤ lR(x) ‖u− v‖B

with ‖u‖B ≤ R and ‖v‖B ≤ R and

d(0,F(x, 0)) ≤ lR(x) a.e. x ∈ J .

(H5) There exists a constant M0 > 0 such that for all x ∈ J

‖A−1(x)‖B(E) ≤M0.

(H6) There exists a constant 0 < L <
1

M0κn
, such that for all x ∈ J and ψ ∈ B

|A(x) g(x, ψ)| ≤ L (‖ψ‖B + 1).

(H7) There exists a constant L∗ > 0 such that

|A(y) g(y, ψ)−A(y) g(y, ψ)| ≤ L∗ (|y − y|+ ‖ψ − ψ‖B)

for all y, y ∈ J and ψ, ψ ∈ B .

Consider the following space

B+∞ =
{
y : R → E : y|[0,T ] continuous for T > 0 and y0 ∈ B

}
where y|[0,T ] is the restriction of y to the real compact interval [0, T ] .

2318



MEBARKI and BAGHLI-BENDIMERAD/Turk J Math

Let us fix τ > (1−M0L∗κn)
−1 for every n ∈ N and define in B+∞ the seminorms by

‖u‖n := sup
x∈[0,n]

e−τ L
∗
n(x) |u(x)|,

where L∗
n(x) =

∫ x

0

ln(y) dy with ln(x) = M̂nSnκnln(x) and ln is the function from (H4) . Then B+∞ is a

Fréchet space with those family of seminorms ‖ · ‖n∈N .

Theorem 3.2 Under the hypotheses (Hψ) , (H1)− (H7) and moreover for all n ∈ N , if

∫ +∞

δn

dy

y +Ψ(y)
>

κnM̂
(1−M0Lκn)

∫ n

0

max(L;nSnp(y)) dy (3.2)

with

δn =

Πn + Lψ + κnM̂ϵ+
κnM0L

[
Πn + Lψ + (κnϵ+ 1)M̂

]
(1−M0Lκn)

 ‖ψ‖B +
κn[M0L(M̂+ 1) + M̂Ln]

(1−M0Lκn)
,

then problem (1.1)− (1.2) has at least one mild solution on R .

Proof. We will transform the problem (1.1)− (1.2) into a problem of fixed-point. Consider the multivalued
operator ℵ : B+∞ → B+∞ defined by

ℵ(u) =


h ∈ B+∞ : h(x) =



ψ(x), if x ∈ J ;

U(t, 0)[ψ(0)− g(0, ψ)] + g(x, uρ(x,ux)) +

∫ x

0

U(x, y)A(y)g(y, uρ(y,uy))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy, if x ∈ J


where f ∈ SF,u = {v ∈ L1(J ,E) : v(z) ∈ F(z, uρ(z,uz)) for almost every z ∈ J }. Clearly, ℵ fixed-points are mild
solutions of (1.1) − (1.2) ’s problem. We see also that, for each y ∈ B+∞ , the set SF,u is nonempty since by
(H3) , F has a measurable selection as in Theorem III.6 of [17]. For ψ ∈ B , let define the function ω(.) : R → E
by

ω(x) =

{
ψ(x), if x ∈ J ;

U(x, 0) ψ(0), if x ∈ J .

Then ω0 = ψ . For each function ϖ ∈ B+∞ , set that

u(x) = ϖ(x) + ω(x).

Obviously u verifies (3.1) if and only if ϖ verifies ϖ0 = 0 and
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ϖ(x) = g(x,Θ(x, ρ,ϖ, ω))− U(t, 0)g(0, ψ) +
∫ x

0

U(x, y)A(y)g(y,Θ(x, ρ,ϖ, ω))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy,

where Θ(x, ρ,ϖ, ω) = ϖρ(x,ϖx+ωx) + ωρ(x,ϖx+ωx) and f(z) ∈ F(z,Θ(z, ρ,ϖ, ω)) .
Let

B0
+∞ = {ϖ ∈ B+∞ : ϖ0 = 0} .

For any ϖ ∈ B0
+∞ , we have

‖ϖ‖+∞ = ‖ϖ0‖B + sup
0≤x<+∞

|ϖ(x)| = sup
0≤x<+∞

|ϖ(x)|.

Thus (B0
+∞, ‖ · ‖+∞) is a Banach space.

We define the operator ℵ̃ : B0
+∞ → B0

+∞ by

ℵ̃(ϖ)(x) =


h ∈ B0

+∞ : h(x) = g(x,Θ(x, ρ,ϖ, ω))− U(t, 0)g(0, ψ) +
∫ x

0

U(x, y)A(y)g(y,Θ(x, ρ,ϖ, ω))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy, x ∈ J


where f ∈ SF,ϖ = {v ∈ L1(J ,E) : v(x) ∈ F(z,Θ(z, ρ,ϖ, ω)) a. e. x ∈ J }.

Obviously the operator ℵ having a fixed-point is equivalent to ℵ̃ having one, so prove it in the next steps.

Step 1 : Estimates of solutions. Let ϖ ∈ B0
+∞ be a possible fixed point of the operator ℵ̃ . Given

n ∈ N , then ϖ should be solution of the inclusion ϖ ∈ λℵ̃(ϖ) for some λ ∈ (0, 1) and there exists
f ∈ SF,ϖ ⇔ f(x) ∈ F (z,Θ(x, ρ,ϖ, ω)) such that, for each z ∈ [0, n] we have

|ϖ(x)| ≤ λ
[
|g(x,Θ(x, ρ,ϖ, ω))|+ ‖U(t, 0)‖B(E)|g(0, ψ)| +

∫ x

0

‖U(x, y)‖B(E)|A(y)g(y,Θ(x, ρ,ϖ, ω))|dy

+

∫ x

0

‖U(x, y)‖B(E)

∫ y

0

|I(y, z)||f(z)| dz dy
]
.

By (H1), (H2), (H3) , (H5) and (H6) , we get

|ϖ(x)| ≤ ‖A−1(x)‖B(E)|A(x)g(x,Θ(x, ρ,ϖ, ω))|+ M̂‖A−1(0)‖B(E)|A(0)g(0, ψ)|

+ M̂
∫ x

0

|A(y)g(y,Θ(x, ρ,ϖ, ω))| dy + M̂ n sup
x∈[0,n]

|I(x)|
∫ x

0

|f(y)| dy,

≤ M0L(‖Θ(x, ρ,ϖ, ω)‖B + 1) + M̂M0L(‖ψ‖B + 1) + M̂L

∫ x

0

(‖Θ(y, ρ,ϖ, ω)‖B + 1) dy

+ M̂ n Sn

∫ x

0

p(y)Ψ(‖Θ(y, ρ,ϖ, ω)‖B) dy.
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Hence, we obtain

|ϖ(x)| ≤ M0L(M̂+ 1) + M̂Ln+ M̂M0L‖ψ‖B +M0L‖Θ(x, ρ,ϖ, ω)‖B
+ M̂L

∫ x

0

‖Θ(y, ρ,ϖ, ω)‖B dy + M̂ n Sn

∫ x

0

p(y)Ψ(‖Θ(y, ρ,ϖ, ω)‖B) dy.
(3.3)

From the hypothesis (Hψ) , the axiom (A1) , the definitions of ϖ and ω , the Lemma 2.7 and the
Proposition 2.8, we get for each x ∈ [0, n]

‖Θ(x, ρ,ϖ, ω)‖B ≤ ‖ϖρ(x,ϖx+ωx)‖B + ‖ωρ(x,ϖx+ωx)‖B,

≤ κn(|ϖ(x)|+ |ω(x)|) + (Πn + Lψ)(‖ϖ0‖B + ‖ω0‖B),

≤ κn(|ϖ(x)|+ ‖U(x, 0)‖B(E)|ψ(0)|) + (Πn + Lψ)‖ψ‖B,

≤ κn(|ϖ(x)|+ M̂|ψ(0)|) + (Πn + Lψ)‖ψ‖B.

Using (ii) , we get

‖Θ(x, ρ,ϖ, ω)‖B ≤ κn|ϖ(x)|+ (Πn + Lψ + κnM̂ϵ)‖ψ‖B.

Set cn := (Πn + Lψ + κnM̂ϵ)‖ψ‖B . Then

‖Θ(x, ρ,ϖ, ω)‖B ≤ κn|ϖ(x)|+ cn. (3.4)

Then the inequality (3.3) becomes using the increasing character of Ψ

|ϖ(x)| ≤ M0L(M̂+ 1) + M̂Ln+ M̂M0L‖ψ‖B +M0L(κn|ϖ(x)|+ cn)

+ M̂L

∫ x

0

(κn|ϖ(y)|+ cn) dy + M̂ n Sn

∫ x

0

p(y) Ψ (κn|ϖ(y)|+ cn) dy.

So

(1−M0Lκn)|ϖ(x)| ≤ M0L(M̂+ 1) + M̂Ln+M0Lcn + M̂M0L‖ψ‖B

+ M̂L

∫ x

0

(κn|ϖ(y)|+ cn) dy + M̂ n Sn

∫ x

0

p(y) Ψ (κn|ϖ(y)|+ cn) dy.

Set δn := cn +
κn

(1−M0Lκn)

[
M0L(M̂+ 1) + M̂Ln+M0Lcn + M̂M0L‖ψ‖B

]
. Thus

κn|ϖ(x)|+ cn ≤ δn +
κnM̂

(1−M0Lκn)

[
L

∫ x

0

(κn|ϖ(y)|+ cn)dy

+nSn

∫ x

0

p(y)Ψ (κn|ϖ(y)|+ cn) dy

]
.

(3.5)

Consider the function µ defined by

µ(x) = sup {κn|ϖ(y)|+ cn : 0 ≤ y ≤ x} , 0 ≤ x ≤ +∞.
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Let x⋆ ∈ [0, x] be such that
µ(x) = κn|ζ(x⋆)|+ cn.

From the inequality (3.5) , we get for all x ∈ [0, n]

µ(x) ≤ δn +
κnM̂

(1−M0Lκn)

[
L

∫ x

0

µ(y)dy + nSn

∫ x

0

p(y)Ψ (µ(y)) dy

]
.

Let us take the right-hand side of the above inequality as ν(x) . Then, we have

µ(x) ≤ ν(x) ∀x ∈ [0, n].

From the definition of ν , we get

ν(0) = δn and ν′(x) =
κnM̂

(1−M0Lκn)
[Lµ(x) + nSnp(x)Ψ (µ(x))] a.e. x ∈ [0, n].

Using the increasing character of Ψ , we have

ν′(x) ≤ κnM̂
(1−M0Lκn)

[Lν(x) + nSnp(x)Ψ (ν(x))] a.e. x ∈ [0, n].

Hence

ν′(x) ≤ κnM̂
(1−M0Lκn)

max(L;nSnp(x)) [ν(x) + Ψ (ν(x))] a.e. x ∈ [0, n].

So, using (3.2) for each x ∈ [0, n] , we have

∫ ν(x)

δn

dy

y +Ψ(y)
≤ κnM̂

(1−M0Lκn)

∫ x

0

max(L;nSnp(y)) dy,

≤ κnM̂
(1−M0Lκn)

∫ n

0

max(L;nSnp(y)) dy,

<

∫ +∞

δn

dy

y +Ψ(y)
.

Thus, for every x ∈ [0, n] , there exists a constant Λn such that ν(x) ≤ Λn and hence µ(x) ≤ Λn . Since
‖ϖ‖n ≤ µ(x) , we have ‖ϖ‖n ≤ Λn. Set

U =

{
ϖ ∈ B0

+∞ : sup
0≤x≤n

|ϖ(x)| ≤ Λn + 1 for all n ∈ N
}
.

Clearly, U is an open subset of B0
+∞ .

Step 2 : We shall show that ℵ̃ : U → P(B0
+∞) is a multivalued contraction.
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Let ϖ,ϖ ∈ B0
+∞ and h ∈ ℵ̃(ϖ) . Then there exists f(x) ∈ F(x,Θ(x, ρ,ϖ, ω)) such that for each x ∈ [0, n]

h(x) = g(x,Θ(x, ρ,ϖ, ω))− U(t, 0)g(0, ψ) +
∫ x

0

U(x, y)A(y)g(y,Θ(x, ρ,ϖ, ω))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy.

From (H7) , we get

|A(y) [g(y,Θ(x, ρ,ϖ, ω))− g(y,Θ(x, ρ,ϖ, ω))]| ≤ L∗ ‖Θ(x, ρ,ϖ, ω)−Θ(x, ρ,ϖ, ω)‖B.

From (H4) , we have that

Hd (F (x,Θ(x, ρ,ϖ, ω)) ,F (Θ(x, ρ,ϖ, ω))) ≤ ln(x) ‖Θ(x, ρ,ϖ, ω)−Θ(x, ρ,ϖ, ω)‖B.

Set Υ(x, ρ,ϖ, ω,ϖ, ω,B) = ‖Θ(x, ρ,ϖ, ω)−Θ(x, ρ,ϖ, ω)‖B .
Hence, there is ϑ ∈ F (Θ(x, ρ,ϖ, ω)) such that for x ∈ [0, n]

|f(x)− ϑ| ≤ ln(x) Υ(x, ρ,ϖ, ω,ϖ, ω,B).

Consider U⋆ : [0, n] → P(E) , given by

U⋆ = {ϑ ∈ E : |f(x)− ϑ| ≤ ln(x) Υ(x, ρ,ϖ, ω,ϖ, ω,B)}

Since the multivalued operator V(x) = U⋆(x) ∩ F (Θ(x, ρ,ϖ, ω)) is measurable (in [17] as in Proposition
III.4), so there exists a function f(x) , which is also a measurable selection for V . So, for f(x) ∈ F (Θ(x, ρ,ϖ, ω)) ,
we have for each x ∈ [0, n]

|f(x)− f(x)| ≤ ln(x) Υ(x, ρ,ϖ, ω,ϖ, ω,B). (3.6)

Using (A1) , Lemma 2.7 and Proposition 2.8 , we get for each x ∈ [0, n]

Υ(x, ρ,ϖ, ω,ϖ, ω,B) ≤ ‖ϖρ(x,ϖx+ωx) −ϖρ(x,ϖx+ωx)‖B + ‖ωρ(x,ϖx+ωx) − ωρ(x,ϖx+ωx)‖B,

≤ κ(x)|ϖ(x)−ϖ(x)|+
(
Π(x) + Lψ(x)

)
‖ϖ0 −ϖ0‖B

+ κ(x)|ω(x)− ω(x)|+
(
Π(x) + Lψ(x)

)
‖ω0 − ω0‖B.

By the definition of B+∞ and B0
+∞ , we have the fact that ϖ0 = ϖ0 = 0 , ω0 = ω0 = ψ

and ω(x) = ω(x) = U(x, 0)ψ(0) . Then we get

Υ(x, ρ,ϖ, ω,ϖ, ω,B) ≤ κn |ϖ(x)−ϖ(x)|. (3.7)

Let us define, for each x ∈ [0, n]

h(x) = g(x,Θ(x, ρ,ϖ, ω))− U(t, 0)g(0, ψ) +
∫ x

0

U(x, y)A(y)g(y,Θ(x, ρ,ϖ, ω))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy.
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Then, by (H1) , (H2) , (H5) , (H7) and the inequality (3.6) , we have

|h(x)− h(x)| ≤ ‖A−1(x)‖B(E)|A(x)[g(x,Θ(x, ρ,ϖ, ω))− g(x,Θ(x, ρ,ϖ, ω))]|

+

∫ x

0

‖U(x, y)‖B(E)|A(y)[g(y,Θ(x, ρ,ϖ, ω))− g(y,Θ(x, ρ,ϖ, ω))]|dy

+

∫ x

0

‖U(x, y)‖B(E)

∫ y

0

|I(y, z)||f(z)− f(z)| dz dy,

≤ M0L∗ Υ(x, ρ,ϖ, ω,ϖ, ω,B) +
∫ x

0

M̂L∗ Υ(y, ρ,ϖ, ω,ϖ, ω,B)dy

+

∫ x

0

M̂ n sup
y∈[0,n]

|I(y)| ln(y) Υ(y, ρ,ϖ, ω,ϖ, ω,B) dy.

From the inequality (3.7) and by the hypothesis (H4) , we get

|h(x)− h(x)| ≤ M0L∗κn |ϖ(x)−ϖ(x)|+
∫ x

0

M̂L∗κn |ϖ(y)−ϖ(y)| dy

+

∫ x

0

M̂nSnκnln(y) |ϖ(y)−ϖ(y)| dy,

≤ M0L∗κn|ϖ(x)−ϖ(x)|+
∫ x

0

M̂κn [L∗ + nSnln(y)] |ϖ(y)−ϖ(y)|dy.

Let us take here L∗
n(x) =

∫ x

0

ln(y) dy where ln(x) := M̂κn [L∗ + nSnln(x)] and ln is the function from

(H4) , we have

|h(x)− h(x)| ≤ M0L∗κn |ϖ(x)−ϖ(x)|+
∫ x

0

ln(y) |ϖ(y)−ϖ(y)| dy,

≤ M0L∗κn eτ L
∗
n(x) ] [e−τ L

∗
n(x)|ϖ(x)−ϖ(x)|]

+

∫ x

0

[ln(y) e
τ L∗

n(y) ] [e−τ L
∗
n(y) |ϖ(y)−ϖ(y)|] dy.

The definition of the seminorms leads to

|h(x)− h(x)| ≤ M0L∗κn eτ L
∗
n(x) ] ‖ϖ −ϖ‖n +

∫ x

0

[
eτ L

∗
n(y)

τ

]′
dy ‖ϖ −ϖ‖n,

≤
[
M0L∗κn +

1

τ

]
eτ L

∗
n(x) ‖ϖ −ϖ‖n.

Therefore,

‖h− h‖n ≤
[
M0L∗κn +

1

τ

]
‖ϖ −ϖ‖n.

By interchanging ϖ and ϖ roles, we obtain analogously

Hd

(
ℵ̃(ϖ), ℵ̃(ϖ)

)
≤

[
M0L∗κn +

1

τ

]
‖ϖ −ϖ‖n.
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Since,

M0L∗κn +
1

τ
< 1,

so the multivalued operator ℵ̃ is a contraction for all n ∈ N .

Step 3 : ℵ̃ is an admissible multivalued operator.
Let ϖ ∈ B0

+∞ . Set, for every n ∈ N , the space

B0
n :=

{
u : (−∞, n] → E : u|[0,n] ∈ C([0, n], E), u0 ∈ B

}
and let us consider the multivalued operator ℵ̃ : B0

n → Pcl(B0
n) defined by:

ℵ̃(ϖ)(x) =


h ∈ B0

n : h(x) = g(x,Θ(x, ρ,ϖ, ω))− U(t, 0)g(0, ψ) +
∫ x

0

U(x, y)A(y)g(y,Θ(x, ρ,ϖ, ω))dy

+

∫ x

0

U(x, y)
∫ y

0

I(y, z)f(z) dz dy, x ∈ [0, n]


where f ∈ SnF,ϖ = {v ∈ L1([0, n],E) : v(x) ∈ F(z,Θ(z, ρ,ϖ, ω)) a. e. x ∈ [0, n]}.

By the hypotheses (H1) , (H3) and since F is a multivalued map with compact values, we can show here

that for every ϖ ∈ B0
n , ℵ̃(ϖ) ∈ Pcl(B0

n) and there exists ϖ⋆ ∈ B0
n such that ϖ⋆ ∈ ℵ̃(ϖ⋆) . Let h ∈ B0

n , ϖ ∈ U

and α > 0 . Assume that ϖ⋆ ∈ ℵ̃(ϖ) , then we have

|ϖ(x)−ϖ⋆(x)| ≤ |ϖ(x)− h(x)|+ |ϖ⋆(x)− h(x)|

≤ eτ L
∗
n(x)

[
‖ϖ − ℵ̃(ϖ)‖n + ‖ϖ⋆ − h‖n

]
.

Since h is arbitrary, we may suppose that h ∈ B(ϖ⋆, α) = {h ∈ B0
n : ‖h−ϖ⋆‖n ≤ α} .

Therefore,
‖ϖ −ϖ⋆‖n ≤ ‖ϖ − ℵ(ϖ)‖n + α.

If ϖ is not in ℵϖ) , then ‖ϖ⋆ − ℵ̃(ϖ)‖ 6= 0 . Since ℵ̃(ϖ) is compact, there exists ω ∈ ℵ̃(ϖ) such that

‖ϖ⋆ − ℵ̃(ϖ)‖ = ‖ϖ⋆ − ω‖ . Then we have

|ϖ(x)− ω(x)| ≤ |ϖ(x)− h(x)|+ |ω(x)− h(x)|

≤ eτ L
∗
n(x)

[
‖ϖ − ℵ̃(ϖ)‖n + ‖ω − h‖n

]
.

Thus,
‖ϖ − ω‖n ≤ ‖ϖ − ℵ̃(ϖ)‖n + α.

So, ℵ̃ is an admissible multivalued operator.

Finally, the three steps imply that ℵ̃ is an admissible multivalued contraction and there is no ϖ ∈ ∂U

such that ϖ ∈ λℵ̃(ϖ) for some λ ∈ (0, 1) from the choice of U .
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Then the statement (Fr2) in Theorem 2.12 does not hold and the nonlinear alternative of Frigon implies

only the fact that the statement (Fr1) is verified, we deduce so that the multivalued operator ℵ̃ has a fixed-point
ϖ⋆ .

So u⋆(x) = ϖ⋆(x) + ω(x) , x ∈ (−∞,+∞) is a fixed point of the operator ℵ , which is a mild solution of
problem (1.1)− (1.2) . 2

4. Example
To illustrate the previous results, we consider the neutral functional differential inclusion

∂

∂x

[
u(x, ξ)−

∫ 0

−∞
a1(y − x)u

(
y − ρ1(x)ρ2

(∫ π

0

a2(z)|u(z, y)|2dz
)
, ξ

)
dy

]
∈ ∂2u(x, ξ)

∂ξ2

+a0(x, ξ)u(x, ξ) +

∫ x

−∞
η(x, y)

∫ 0

−∞
D
(
y − x, u

(
z − ρ1(y)ρ2

(∫ π

0

a2(t)|u(y, x)|2dt
)
, ξ

))
dydz,

a. e. x ≥ 0, ξ ∈ [0, π],

u(x, 0) = u(x, π) = 0, x ≥ 0,

u(t, ξ) = u0(t, ξ), −∞ < t ≤ 0, ξ ∈ [0, π],

(4.1)

where a0(x, ξ) is a continuous function and is uniformly Hölder continuous in x ;
a1 : R− → R and a2 : [0, π] → R , ρi : [0,+∞[→ R for i = 1, 2 and η : R2

+ → R are given continuous
functions and D : R+ × R → P(R) is a multivalued application with compact and convex values.

For this system, we are going to consider the space E = L2([0, π],R) and the operator A : D(A) ⊂ E → E
given by Aw = w′′ with

D(A) := { w ∈ E : w′′ ∈ E, w(0) = w(π) = 0 }.

Thus A is the infinitesimal generator of an analytic semigroup {T (x)}x≥0 on E . Hence, A has a discrete
spectrum with −n2 eigenvalues, n ∈ N and the corresponding eigenfunctions are defined by

yn(ξ) =

√
2

π
sin(nξ)

are normalized.
In addition, {yn : n ∈ N} is an orthonormal basis of E and

T (x)ω =

∞∑
n=1

e−n
2x(ω, yn)yn for ω ∈ E and x ≥ 0.

From this representation, then T (x) is compact for every x > 0 and that ‖T (x)‖ ≤ e−x for every x ≥ 0 .
Define the operator A(x) : D(A) ⊂ E → E on D(A) by

A(x)ω(ξ) = Aω(ξ) + a0(x, ξ)ω(ξ).

Then since a0(·) is continuous and that a0(x, ξ) ≤ −δ0 (δ0 > 0) for every x ∈ R ,
ξ ∈ [0, π] , it follows that the system

u′(x) = A(x)u(x) x ≥ y,
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u(y) = x ∈ E,

has an associated evolution family given by

U(x, y)ω(ξ) =
[
T (x− y) exp

(∫ x

y

a0(z, ξ)dz

)
ω

]
(ξ).

From this expression, it follows that U(x, y) is a compact linear operator and that

‖U(x, y)‖ ≤ e−(1+δ0)(x−y) for every (x, y) ∈ Λ.

Theorem 4.1 Let B = BUC(R−;E) and ψ ∈ B . Assume that the condition (Hψ) holds. Suppose that the
functions a1 : R− → R , a2 : [0, π] → R , ρi : R+ −→ R for i = 1, 2 and η : R2

+ → R are given continuous
functions and for F : R+×R → P(R) is a multivalued application with compact and convex values. Then there
exists a mild solution of (4.1) on ]−∞,+∞[ .

Proof. From the assumptions, we have that

I(x, ψ) = η(x, ψ),

F(x, ψ)(ξ) =

∫ 0

−∞
D(y − x)ψ(y, ξ)dy,

g(x, ψ)(ξ) =

∫ 0

−∞
a1(y − x)ψ(y, ξ)dy

and

ρ(y, ψ) = y − ρ1(y)ρ2

(∫ π

0

a2(t)|ψ(0, ξ)|2dt
)

are defined functions, with it possible to transform system (4.1) into our abstract system (1.1)−(1.2) . Moreover,
the functions ρi are bounded and linear. So, we deduce the existence of mild solutions directly from application
of Theorem 3.2 for a suitable given multifunction with compact and convex values F .
From Remark 2.6, we have the next result:

Corollary 4.2 Let ψ ∈ B be continuous and bounded. Then there exists a mild solution of (4.1) on R .
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