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Abstract: In this paper, we show that the statement in the study of Srivastava (1987) holds also for the Hewitt
realcompactification. The mentioned statement showed that when the action of a finite topological group on a Tychonoff

space is given, the Stone-Cech compactification of the orbit space of the action is the orbit space of the Stone-Cech
compactification of the space. As an application, we show that Srivastava’s result can be obtained using the main

theorem of the present study.
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1. Introduction
Let G be a topological group and X be a Hausdorff topological space. If the continuous map 6 : G x X — X
holds the following statements, then 6 is called an action of G on X.

1. 6(e,z) = x for all z € X, where e is the identity of G.
2. 0(g,0(h,z)) =0(gh,x) forall g, h€ G and z € X.

The space X, together with a given action 6 of G is called a G-space. We shall use notation gz for
0 (g,2). The space X/G = {G (x) : x € X} endowed with the quotient topology relative to 7 is called the orbit
space of X, where 7 is the orbit map from X to X/G and G (x) = {gx : g € G} is orbit of . A subspace A
of a G-space X is called invariant, if (G x A)=A. A map [ from a G-space X to a G-space Y is called
G-equivariant if f(gz) =gf (z) forall g€ G, z € X.

Tychonoff [17] proved that a Tychonoff space could be imbedded in a compact Hausdorff space. In
1937, devoloping an idea of Tychonoff, Stone [13] and Cech [4] indepentdently introduced the existence and
uniquness (up to homeomorphism) of the StoneCech compactification of a Tychonoff space. In 1938, a more
general construction was given by Wallman [15] applied to any 7T) space X and produced the Stone-Cech
compactification of X whenever X is T,. Stone’s original construction was simplified by Gelfand and Shilov
[6] in 1941.

It is well known that every continuous map of a Tychonoff space into R may not be extended to a

continuous map of the Stone-Cech compactification of the the space into R. This leads to the notion of the
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(Hewitt) realcompactification of a Tychonoff space. If X is a Tychonoff space such that realcompactification
of X is X, then X is said to be realcompact. Realcompact spaces were introduced by Hewitt [10].

In the theory of transformation groups, the structure of the orbit space plays an important role. Srivastava
[12] showed that 8 (X/G) is homeomorphic to 8 (X) /G for a finite group G. Note that here, X and 5 (X/G)
are the Stone-Cech compactifications of X and X/G, respectively.

In this paper, we show that the Hewitt realcompactification of the orbit space of X is the orbit space
of the Hewitt realcompactification of X. Among different constructions of the Stone-Cech or the Hewitt
realcompactifications, we will use the construction with maximal ideals or real maximal ideals of the ring of all

real-valued contiuous functions on a Tychonoff space.

2. Preliminaries
We recall some basic notions and fundamental knowledge about continuous functions for more detail, see
[8, 10, 14]. By a mapping we always mean a continuous function.

The set C (X) of all real-valued continuos functions on a topological space X has an algebra structure

under the pointwise operation, that is for each f, g € C'(X) and ¢ € R,

(f+9) (@)= f(@)+g(x), (f9)(z) = f(2)g(x), and (cf)(x) = cf (x)

We shall say that a subspace S of X is C'-embedded (C*-embedded) in X if every (bounded) function
in C(S) (C*(S)) can be extended to a function in C(X) (C* (X)).

Let f be a element of C'(X). Theset Z (f) ={x € X : f(z) =0} will be called the zero-set of f. For
A C C(X), we will write Z [A] to designate the family of the zero-sets {Z (f): f € A}. Furthermore, the
family Z [C (X)] of all zero-sets in X will be denoted, for simplicity, by Z (X).

Definition 2.1 [8] A nonempty subfamily F of Z (X) is called a z-filter on X provided that
i) 0¢F

ii) if Z1, Zo € F, then Z1NZy € F

iii) if ZeF, Z €eZ(X), and Z' D Z, then Z' € F

The collection of all z-filters on X, denoted by F'(X), is partially ordered by set inclusion. It is said
that a proper z-filter in F'(X) is a z-ultrafilter in case it is maximal in F' (X). Since there is a bijective map
between the set of all (maximal) ideals in C (X) and the set of all z-(ultra) filters [8, Theorem 7.2], we can
classifying maximal ideals in C' (X) using some definitions for ultrafilters. Therefore, if NZ [I] is nonempty for

an ideal I in C'(X), then we call I a fixed ideal; otherwise I is a free ideal.

Definition 2.2 [1/] Let X be a Tychonoff space. For every bounded, real valued continuous function, there is

a unique compact space BX such that the following diagram is commutative
X s BX

x iﬁ’(f)
R
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where i is an imbedding with i (X) dense in X . BX is called as the Stone—Cech compactification of X .

Any element f of C (X) is a mapping of X into aR = R U {co}, the one point compactification of R,

and thus has an extension f® which maps X into aR.

X—— BX

T

R——aR

Definition 2.3 [1] If f is unbounded, there will be a point in FX\X at which f* will take the value co. For
each map [ in C(X), we define

vpX = BX\{p € BX : f*(p) = oo}
Thus, v¢X is the set of points of SX at which f is finite, and we will call vy X the set of real points of f.
Let vX the subspace of BX consisting of points which are real points for every f in C(X), i.e.

vX =n{yX:feC(X)}

The space vX is called the (Hewitt) realcompactification of X. A space X is said to be realcompact if
X =vX, i.e. the only points which are real points for every f in C (X) are the points of X itself. X is called
pseudocompact if vX = X .

Remark 2.4 [t is immediate that the subspace vX of BX is the largest subspace of X to which every member
of C(X) can be extended without any extension taking on the value co. The extension of f to vX is denoted by
v (f) which is the restriction B(f)|,x [14]. Any continuous map f: X =Y induces the following commutative
diagram.

X X

|

Y=Y

It is well known that [8, Corollary 8.5]
a) vX is the largest subspace of 83X in which X is C-embedded.
b) vX is the smallest realcompact space between X and SX.

Now let M = M (X) denote the set of all maximal ideals in C' (X). We can make M into a topological

space by taking, as a base for the closed sets, all sets of form
S(f)={MeM:feM}, feC(X)

The topology thus defined is called the Stone topology on M. The resultant topological space M is called the
Structure space of the ring C' (X). It turns out that M is a compact Hausdorff space. Gelfand and Kolmogoroff
showed that the maximal ideals of C (X) are in one-to-one correspondence with the points of X . It is worth

noting that if M is topologized as above, then M is homeomorphic to SX [10, Theorem 46].

2332



EYIDOGAN and ONAT/Turk J Math

Theorem 2.5 (Gelfand—Kolmogoroff) [7, 8] For every point p of BX, the set
MP ={feC(X):peClsgxZ(f)}

is a mazimal ideal of C (X). Conversely, for every mazimal ideal M of C (X), there is a unique p € BX such
that M = MP. If p € X, then MP is the fized ideal M, ={f € C(X): f (p) = 0}; otherwise MP is free.

It is well known that for each fixed maximal ideal M in C (X), the quotient ring C' (X) /M is isomorphic
to the real field R. Note that for each maximal ideal M in C (X), the quotient ring C (X) /M always contains

an isomorphic copy of R [10, 16]. Now we can give the following definition.

Definition 2.6 [10] A mazimal ideal M in C(X) is said to be real in case the quotient ring C(X) /M s

isomorphic to R, otherwise M 1is said to be hyperreal.

We close this section with some fundamental knowledge of orbit space which will be need to be able to

determine realcompactification of orbit space.

Lemma 2.7 [2, Theorem 3.1] If X is a Hausdorff G -space with G compact, then
1. X/G is Hausdorff.
2. m: X — X/G is open and closed.
3. m: X — X/G is proper (m—1 (compact) is compact).

Let X and Y be topological spaces and let f be a map from X to Y that is continuous, closed, surjective
and f~!(y) is compact relative to X for each y in Y, then f is called as perfect map. Hence the orbit map

is perfect.

Proposition 2.8 [11] If X is a completely reqular G -space, then the orbit space X/G is completely regular.

Note that, more generally, if X is a completely regular and f : X — Y is a closed, open surjective

mapping, then Y is also completely regular [3].

Lemma 2.9 [5, 3.11.G] If there exists a perfect open mapping f : X — Y of a realcompact space X onto a
Tychonoff space Y , then Y is realcompact.

3. Main results
From now on, we shall consider SX as the space of all maximal ideals of C (X). Since we mentioned that we
would prefer the construction of the Stone-Cech compactification using maximal ideals, now we will prove the

following proposition differently from Srivastava’s method [12].

Proposition 3.1 If G is a finite topological group and X is a Tychonoff G-space, then we can extend this

action on X .
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Proof Define ¢ : G x BX — BX, ¢(9,M) = g~ M, where g7'M = {gflf cfe M} and g7 !'f : X = R,
(97'f) (=) = f (g ). It is trivial that ¢ (e, M) = M, and ¢ (g1, ¢ (92, M)) = ¢ (g192, M). It is sufficient to
show that the action is continuous. Since the collection {S(f): f € C (X)} is a base for the closed sets, then

e (S (/) {(g; M) :0(g.M)=g'M € S(f)}
= {(g,M):ng_lM}

{(9: M) :gf e M} = | {g} x {S (9}

geG

is the finite union of closed sets, and it is closed, so the action is continuos. Now we will show that the restriction
on G x X of the action of G on X is the action of G on X. Let g € G and p € X. Since the elements of

X are in one-to-one correspondence with the fixed maximal ideal M,, we shall show that g~'M, = M,,. If
g 'f € g7'M,, then (¢7f) (gp) = f (97 gp) = f(p) =0. So g~'f € Mgy,. On the contrary, if f € M,
then (9f) (p) = f(gp) =0 = gf € M. Hence f =g~ ' (gf) € g~' M,. m

Remark 3.2 [t is shown [10] that the realcompact space vX is the family of all real mazimal ideals of C (X).
Now, we will show that v(X) is a G-invariant subspace. Suppose that g € G and M € vX, i.e. M isa
real maximal ideal of C (X). Since M is real, then there is an isomorphism ® : C (X)/M — R. Therefore
:0(X)/g'M =R, f+9 M — ®(gf + M) is also an isomorphism, so g~'M is also real. Thus vX is

a G -invariant subspace of BX .

Remark 3.3 Now, we shall show that any equivariant map induces equivariant map on realcompact spaces.
That is, if X and Y are G-spaces and f : X — Y is a equivariant map, then v (f) : vX — vY is also
equivariant map. Let MP € vX C X . Since X is dense in X, then there exists a net (sz)iel in X which
convergences to MP . Therefore we have v (f) (gMP) = lim f (gM}) = glim f (M}) = gv (f) (MP), which shows
that v (f) : vX = VY is equivariant map.

Theorem 3.4 Let G be a finite topological group and X be a Tychonoff G -space, then vX/G is homeomorphic
to v (X/G), that is, vX/G =~ v (X/G).

Proof Since v is functorial, the orbit map 7x : X — X/G induces the map v (7x) : vX — v (X/G). Define
v:vX)/G—-v(X/G), G(M)—v(rx) (M) for M €v(X).

@ is well-defined:

Firstly, let show that the extended action of G on v (X/G) is trivial. Let ¢ € G and M € v (X/G),
where v (X/G) = {M C C(X/G) : M is real maximal ideal}. Then gM = {gf : f € M} and gf : X/G - R,
(9f)(G(P) =[G (P)=f(G(P) = gf =f = gM=M.

If G(M)=G(N), then M = gN for some g € G. Since v (nx) is G-equivariant and the action of G
on v (X/Q) is trivial, then we have that v (7x) (M) =v(rx) (gN) =gv (rx) (N) =v (7x) (N).

@ is injective:

Suppose that i : X/G — (vX) /G and ix : X — v (X) are the inclusion map, 7x : X — X/G and
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m:vX — (vX) /G are the orbit maps. Consider the following commutative diagram.

X —=sXx/G

v(X) —v(X)/G

Since the orbit space of any realcompact space is also realcompact by Lemma 2.9, (vX) /G is realcompact
space, v (m) = 7. And we have v (ix) = Id,(x). From the functorial property of v/, we have that the following

commutative diagram.

v(mx)
—_—

v(X) v(X/Q)

ol e
V(X)) —> v(X)/G

If o(G(M))=¢(G(N)), then v (rx) (M) =v(rx)(N). From the above diagram, M = gN for some g € G.
We have G (M) = G (N).

Since ¢ is injective, we can consider (vX) /G C v(X/G). Since X/G C (vX) /G C v (X/G) C B(X/G),
the orbit space (vX) /G is realcompact space, and v (X/G) is the smallest realcompact space between X/G
and 8 (X/G), we have that (vX) /G =v (X/G). O

Now, as a result of this theorem, we obtain Srivastava’s theorem [12].

Theorem 3.5 Let G be a finite topological group and X be a Tychonoff G -space. The Stone—Cech compactifi-
cation of the orbit space is the orbit space of the Stone-Cech compactification of X , that is, 8 (X/G) = (8X) /G

Proof Since vX/G =~ v (X/G), B(vX/G)=p v (X/G)) =5 (X/G). It is sufficient to show that 8 (vX/G) =
BX/G. For this, let show that v X/G is C*-embeded in X/G. Suppose that f: vX/G — R any bounded

countinuous function. Consider the next diagram.

vXC - BX

Since there is a unique Stone extension S (fw) : X — R of fr, and B (fn) is constant on orbits, then it
induces the map 8X/G — R which commutes the diagram. Thus vX/G is C*-embeded in 8X/G. O

In [1], Blair and Van Douwen generalized the concept of realcompactness by defining a space X to be
nearly realcompact if SX — v X is dense in SX — X; that is, X nearly vX . Clearly every realcompact space
has this property.

Now, the orbit space of any nearly realcompact space by finite group is also nearly realcompact space.
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Corollary 3.6 Let G be a finite group and X be a Tychonoff G-space. If X is a nearly realcompact space,

then the orbit space X/G is also nearly realcompact.

Proof Suppose that X is a nearly realcompact space. Hence X — vX is dense in 8X — X. Then
(BX —vX)/G = (BX)/G — (vX) /G is also dense in (X — X) /G = (BX)/G — X/G. Since (5X)/G =
B(X/G) and (vX)/G = v(X/G), then (X/G) — v (X/G) is dense in §(X/G) — X/G, which proves the
claim. O

In [9], Henriksen and Rayburn defined a space X to be nearly pseudocompact if vX — X is dense
in X — X; that is, vX nearly SX. Obviously, every pseudocompact space is nearly pseudocompact. The

following corollary can be proved in the same way as the above corollary.

Corollary 3.7 Let G be a finite group and X be a Tychonoff G-space. If X is a nearly pseudocompact space,

then the orbit space X/G is also nearly pseudocompact.
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