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Abstract: In this paper, we show that the statement in the study of Srivastava (1987) holds also for the Hewitt
realcompactification. The mentioned statement showed that when the action of a finite topological group on a Tychonoff
space is given, the Stone-Čech compactification of the orbit space of the action is the orbit space of the Stone-Čech
compactification of the space. As an application, we show that Srivastava’s result can be obtained using the main
theorem of the present study.
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1. Introduction
Let G be a topological group and X be a Hausdorff topological space. If the continuous map θ : G×X → X

holds the following statements, then θ is called an action of G on X .

1. θ (e, x) = x for all x ∈ X , where e is the identity of G .

2. θ (g, θ (h, x)) = θ (gh, x) for all g , h ∈ G and x ∈ X .

The space X , together with a given action θ of G is called a G -space. We shall use notation gx for
θ (g, x) . The space X/G = {G (x) : x ∈ X} endowed with the quotient topology relative to π is called the orbit
space of X , where π is the orbit map from X to X/G and G (x) = {gx : g ∈ G} is orbit of x . A subspace A

of a G -space X is called invariant, if θ(G × A)=A . A map f from a G -space X to a G -space Y is called
G -equivariant if f (gx) = gf (x) for all g ∈ G , x ∈ X .

Tychonoff [17] proved that a Tychonoff space could be imbedded in a compact Hausdorff space. In
1937, devoloping an idea of Tychonoff, Stone [13] and Čech [4] indepentdently introduced the existence and
uniquness (up to homeomorphism) of the Stone–Čech compactification of a Tychonoff space. In 1938, a more
general construction was given by Wallman [15] applied to any T1 space X and produced the Stone–Čech
compactification of X whenever X is T4 . Stone’s original construction was simplified by Gelfand and Shilov
[6] in 1941.

It is well known that every continuous map of a Tychonoff space into R may not be extended to a
continuous map of the Stone–Čech compactification of the the space into R . This leads to the notion of the
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(Hewitt) realcompactification of a Tychonoff space. If X is a Tychonoff space such that realcompactification
of X is X , then X is said to be realcompact. Realcompact spaces were introduced by Hewitt [10].

In the theory of transformation groups, the structure of the orbit space plays an important role. Srivastava
[12] showed that β (X/G) is homeomorphic to β (X) /G for a finite group G . Note that here, βX and β (X/G)

are the Stone–Čech compactifications of X and X/G , respectively.
In this paper, we show that the Hewitt realcompactification of the orbit space of X is the orbit space

of the Hewitt realcompactification of X . Among different constructions of the Stone–Čech or the Hewitt
realcompactifications, we will use the construction with maximal ideals or real maximal ideals of the ring of all
real-valued contiuous functions on a Tychonoff space.

2. Preliminaries
We recall some basic notions and fundamental knowledge about continuous functions for more detail, see
[8, 10, 14]. By a mapping we always mean a continuous function.

The set C (X) of all real-valued continuos functions on a topological space X has an algebra structure
under the pointwise operation, that is for each f , g ∈ C (X) and c ∈ R ,

(f + g) (x) = f (x) + g (x) , (fg) (x) = f (x) g (x) , and (cf) (x) = cf (x)

We shall say that a subspace S of X is C -embedded (C∗ -embedded) in X if every (bounded) function
in C (S) (C∗ (S)) can be extended to a function in C (X) (C∗ (X)).

Let f be a element of C (X) . The set Z (f) = {x ∈ X : f (x) = 0} will be called the zero-set of f . For
A ⊆ C (X) , we will write Z [A] to designate the family of the zero-sets {Z (f) : f ∈ A} . Furthermore, the
family Z [C (X)] of all zero-sets in X will be denoted, for simplicity, by Z (X) .

Definition 2.1 [8] A nonempty subfamily F of Z (X) is called a z -filter on X provided that

i) ∅ /∈ F

ii) if Z1 , Z2 ∈ F , then Z1 ∩ Z2 ∈ F

iii) if Z ∈ F , Z ′ ∈ Z (X) , and Z ′ ⊃ Z , then Z ′ ∈ F

The collection of all z -filters on X , denoted by F (X) , is partially ordered by set inclusion. It is said
that a proper z -filter in F (X) is a z -ultrafilter in case it is maximal in F (X) . Since there is a bijective map
between the set of all (maximal) ideals in C (X) and the set of all z -(ultra) filters [8, Theorem 7.2], we can
classifying maximal ideals in C (X) using some definitions for ultrafilters. Therefore, if ∩Z [I] is nonempty for
an ideal I in C (X) , then we call I a fixed ideal; otherwise I is a free ideal.

Definition 2.2 [14] Let X be a Tychonoff space. For every bounded, real valued continuous function, there is
a unique compact space βX such that the following diagram is commutative

X � � i //

f !!B
BB

BB
BB

B βX

β(f)

��
R
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where i is an imbedding with i (X) dense in βX . βX is called as the Stone–Čech compactification of X .

Any element f of C (X) is a mapping of X into αR = R ∪ {∞} , the one point compactification of R ,
and thus has an extension fα which maps βX into αR .

X
� � //

f

��

βX

fα

��
R // αR

Definition 2.3 [14] If f is unbounded, there will be a point in βX\X at which fα will take the value ∞ . For
each map f in C (X) , we define

νfX = βX\ {p ∈ βX : fα (p) = ∞}

Thus, νfX is the set of points of βX at which fα is finite, and we will call νfX the set of real points of f .
Let νX the subspace of βX consisting of points which are real points for every f in C (X) , i.e.

νX = ∩{νfX : f ∈ C (X)}

The space νX is called the (Hewitt) realcompactification of X . A space X is said to be realcompact if
X = νX , i.e. the only points which are real points for every f in C (X) are the points of X itself. X is called
pseudocompact if νX = βX .

Remark 2.4 It is immediate that the subspace νX of βX is the largest subspace of βX to which every member
of C (X) can be extended without any extension taking on the value ∞ . The extension of f to νX is denoted by
ν (f) which is the restriction β(f)|νX [14]. Any continuous map f : X → Y induces the following commutative
diagram.

X � � //

f

��

νX

ν(f)

��
Y
� � // νY

It is well known that [8, Corollary 8.5]

a) νX is the largest subspace of βX in which X is C -embedded.

b) νX is the smallest realcompact space between X and βX .

Now let M = M (X) denote the set of all maximal ideals in C (X) . We can make M into a topological
space by taking, as a base for the closed sets, all sets of form

S (f) = {M ∈ M : f ∈ M} , f ∈ C (X)

The topology thus defined is called the Stone topology on M . The resultant topological space M is called the
Structure space of the ring C (X) . It turns out that M is a compact Hausdorff space. Gelfand and Kolmogoroff
showed that the maximal ideals of C (X) are in one-to-one correspondence with the points of βX . It is worth
noting that if M is topologized as above, then M is homeomorphic to βX [10, Theorem 46].
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Theorem 2.5 (Gelfand–Kolmogoroff) [7, 8] For every point p of βX , the set

Mp = {f ∈ C (X) : p ∈ ClβXZ (f)}

is a maximal ideal of C (X) . Conversely, for every maximal ideal M of C (X) , there is a unique p ∈ βX such
that M = Mp . If p ∈ X , then Mp is the fixed ideal Mp = {f ∈ C (X) : f (p) = 0} ; otherwise Mp is free.

It is well known that for each fixed maximal ideal M in C (X) , the quotient ring C (X) /M is isomorphic
to the real field R . Note that for each maximal ideal M in C (X) , the quotient ring C (X) /M always contains
an isomorphic copy of R [10, 16]. Now we can give the following definition.

Definition 2.6 [10] A maximal ideal M in C (X) is said to be real in case the quotient ring C (X) /M is
isomorphic to R , otherwise M is said to be hyperreal.

We close this section with some fundamental knowledge of orbit space which will be need to be able to
determine realcompactification of orbit space.

Lemma 2.7 [2, Theorem 3.1] If X is a Hausdorff G-space with G compact, then

1. X/G is Hausdorff.

2. π : X → X/G is open and closed.

3. π : X → X/G is proper (π−1 (compact) is compact).

Let X and Y be topological spaces and let f be a map from X to Y that is continuous, closed, surjective
and f−1 (y) is compact relative to X for each y in Y , then f is called as perfect map. Hence the orbit map
is perfect.

Proposition 2.8 [11] If X is a completely regular G-space, then the orbit space X/G is completely regular.

Note that, more generally, if X is a completely regular and f : X → Y is a closed, open surjective
mapping, then Y is also completely regular [3].

Lemma 2.9 [5, 3.11.G] If there exists a perfect open mapping f : X → Y of a realcompact space X onto a
Tychonoff space Y , then Y is realcompact.

3. Main results
From now on, we shall consider βX as the space of all maximal ideals of C (X) . Since we mentioned that we
would prefer the construction of the Stone–Čech compactification using maximal ideals, now we will prove the
following proposition differently from Srivastava’s method [12].

Proposition 3.1 If G is a finite topological group and X is a Tychonoff G-space, then we can extend this
action on βX .
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Proof Define φ : G × βX → βX , φ (g,M) = g−1M , where g−1M =
{
g−1f : f ∈ M

}
and g−1f : X → R ,(

g−1f
)
(x) = f

(
g−1x

)
. It is trivial that φ (e,M) = M , and φ (g1, φ (g2,M)) = φ (g1g2,M) . It is sufficient to

show that the action is continuous. Since the collection {S (f) : f ∈ C (X)} is a base for the closed sets, then

φ−1 (S (f)) =
{
(g,M) : φ (g,M) = g−1M ∈ S (f)

}
=

{
(g,M) : f ∈ g−1M

}
= {(g,M) : gf ∈ M} =

∪
g∈G

{g} × {S (gf)}

is the finite union of closed sets, and it is closed, so the action is continuos. Now we will show that the restriction
on G ×X of the action of G on βX is the action of G on X . Let g ∈ G and p ∈ X . Since the elements of
X are in one-to-one correspondence with the fixed maximal ideal Mp , we shall show that g−1Mp = Mgp . If
g−1f ∈ g−1Mp , then

(
g−1f

)
(gp) = f

(
g−1gp

)
= f (p) = 0 . So g−1f ∈ Mgp . On the contrary, if f ∈ Mgp ,

then (gf) (p) = f (gp) = 0 ⇒ gf ∈ Mp . Hence f = g−1 (gf) ∈ g−1Mp . 2

Remark 3.2 It is shown [10] that the realcompact space νX is the family of all real maximal ideals of C (X) .
Now, we will show that ν (X) is a G-invariant subspace. Suppose that g ∈ G and M ∈ νX , i.e. M is a
real maximal ideal of C (X) . Since M is real, then there is an isomorphism Φ : C (X) /M → R . Therefore
Φ̄ : C (X) /g−1M → R , f + g−1M → Φ(gf +M) is also an isomorphism, so g−1M is also real. Thus νX is
a G-invariant subspace of βX .

Remark 3.3 Now, we shall show that any equivariant map induces equivariant map on realcompact spaces.
That is, if X and Y are G-spaces and f : X → Y is a equivariant map, then υ (f) : υX → υY is also
equivariant map. Let Mp ∈ υX ⊂ βX . Since X is dense in βX , then there exists a net (Mp

i )i∈I in X which
convergences to Mp . Therefore we have υ (f) (gMp) = lim f (gMp

i ) = g lim f (Mp
i ) = gυ (f) (Mp) , which shows

that υ (f) : υX → υY is equivariant map.

Theorem 3.4 Let G be a finite topological group and X be a Tychonoff G-space, then νX/G is homeomorphic
to ν (X/G) , that is, νX/G ≈ ν (X/G) .

Proof Since ν is functorial, the orbit map πX : X → X/G induces the map ν (πX) : νX → ν (X/G) . Define
φ : (νX) /G → ν (X/G) , G (M) → ν (πX) (M) for M ∈ ν (X) .

φ is well-defined:
Firstly, let show that the extended action of G on ν (X/G) is trivial. Let g ∈ G and M ∈ ν (X/G) ,

where ν (X/G) = {M ⊂ C (X/G) : M is real maximal ideal} . Then gM = {gf : f ∈ M} and gf : X/G → R ,
(gf) (G (P )) = f (gG (P )) = f (G (P )) ⇒ gf = f ⇒ gM = M .

If G (M) = G (N) , then M = gN for some g ∈ G . Since ν (πX) is G -equivariant and the action of G

on ν (X/G) is trivial, then we have that ν (πX) (M) = ν (πX) (gN) = gν (πX) (N) = ν (πX) (N) .
φ is injective:
Suppose that i : X/G → (νX) /G and iX : X → ν (X) are the inclusion map, πX : X → X/G and
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π : νX → (νX) /G are the orbit maps. Consider the following commutative diagram.

X
πX //� _

iX

��

X/G

i

��
ν(X)

π
// ν(X)/G

Since the orbit space of any realcompact space is also realcompact by Lemma 2.9, (νX) /G is realcompact
space, ν (π) = π . And we have ν (iX) = Idν(X) . From the functorial property of ν , we have that the following
commutative diagram.

ν(X)
ν(πX)//

Idν(X)

��

ν(X/G)

ν(i)

��
ν(X)

π
// ν(X)/G

If φ (G (M)) = φ (G (N)) , then ν (πX) (M) = ν (πX) (N) . From the above diagram, M = gN for some g ∈ G .
We have G (M) = G (N) .

Since φ is injective, we can consider (νX) /G ⊂ ν (X/G) . Since X/G ⊂ (νX) /G ⊂ ν (X/G) ⊂ β (X/G) ,
the orbit space (νX) /G is realcompact space, and ν (X/G) is the smallest realcompact space between X/G

and β (X/G) , we have that (νX) /G = ν (X/G) . 2

Now, as a result of this theorem, we obtain Srivastava’s theorem [12].

Theorem 3.5 Let G be a finite topological group and X be a Tychonoff G-space. The Stone–Čech compactifi-
cation of the orbit space is the orbit space of the Stone–Čech compactification of X , that is, β (X/G) = (βX) /G .

Proof Since νX/G ≈ ν (X/G) , β (νX/G) = β (ν (X/G)) = β (X/G) . It is sufficient to show that β (νX/G) =

βX/G . For this, let show that νX/G is C∗ -embeded in βX/G . Suppose that f : νX/G → R any bounded
countinuous function. Consider the next diagram.

νX � � //

π

��

βX

πβX

��

����
��
��
��
��
��
��
��

νX/G � � //

f

��

βX/G

zzu
u
u
u
u

R

Since there is a unique Stone extension β (fπ) : βX → R of fπ , and β (fπ) is constant on orbits, then it
induces the map βX/G → R which commutes the diagram. Thus νX/G is C∗ -embeded in βX/G . 2

In [1], Blair and Van Douwen generalized the concept of realcompactness by defining a space X to be
nearly realcompact if βX − νX is dense in βX −X ; that is, X nearly νX . Clearly every realcompact space
has this property.

Now, the orbit space of any nearly realcompact space by finite group is also nearly realcompact space.

2335



EYİDOĞAN and ONAT/Turk J Math

Corollary 3.6 Let G be a finite group and X be a Tychonoff G-space. If X is a nearly realcompact space,
then the orbit space X/G is also nearly realcompact.

Proof Suppose that X is a nearly realcompact space. Hence βX − νX is dense in βX − X . Then
(βX − νX) /G = (βX) /G − (νX) /G is also dense in (βX −X) /G = (βX) /G − X/G . Since (βX) /G =

β (X/G) and (νX) /G = ν (X/G) , then β (X/G) − ν (X/G) is dense in β (X/G) − X/G , which proves the
claim. 2

In [9], Henriksen and Rayburn defined a space X to be nearly pseudocompact if νX − X is dense
in βX − X ; that is, νX nearly βX . Obviously, every pseudocompact space is nearly pseudocompact. The
following corollary can be proved in the same way as the above corollary.

Corollary 3.7 Let G be a finite group and X be a Tychonoff G-space. If X is a nearly pseudocompact space,
then the orbit space X/G is also nearly pseudocompact.
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