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Abstract: The aim of this paper is to construct generating functions for new classes of Catalan-type numbers and
polynomials. Using these functions and their functional equations, we give various new identities and relations involving
these numbers and polynomials, the Bernoulli numbers and polynomials, the Stirling numbers of the second kind, the
Catalan numbers and other classes of special numbers, polynomials and functions. Some infinite series representations,
including the Catalan-type numbers and combinatorial numbers, are investigated. Moreover, some recurrence relations
and computational algorithms for these numbers and polynomials are provided. By implementing these algorithms in
the Python programming language, we illustrate the Catalan-type numbers and polynomials with their plots under the
special conditions. We also give some derivative formulas for these polynomials. Applying the Riemann integral, contour
integral, Volkenborn (bosonic p -adic) integral and fermionic p -adic integral to these polynomials, we also derive some
integral formulas. With the help of these integral formulas, we give some identities and relations associated with some
classes of special numbers and also the Cauchy-type numbers.

Key words: Generating function, Bernoulli polynomials, Stirling numbers, Catalan numbers, partial differential
equations, computational algorithms, p -adic integral

1. Introduction
Special numbers and polynomials are among the most commonly used tools in applied mathematics, in combina-
torial probability, in mathematical physics, and in mathematical analysis. In recent years, some researchers have
studied these families of combinatorial numbers and polynomials and used their generating functions to present
a variety of relations involving those numbers and polynomials (cf. [2]–[35]). The main object of this paper is
to construct generating functions for Catalan-type combinatorial numbers and polynomials, give computational
algorithms with plots, and make applications of these polynomials. Then, many properties of these numbers
and polynomials are provided with the help of p -adic integral and generating function methods. There are very
interesting applications of the generating functions for the Catalan-type numbers and polynomials. Some of
these are given in this paper. Some remarks and observations on the results of this paper among generating
functions, computational algorithms, integral representations including the Riemann integral, contour integral
and p -adic integrals, and infinite series representation for the Catalan-type numbers and polynomials are given.
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The notations and definitions related to some known numbers and polynomials and used to derive main
results of this article are briefly summarized below. This summary involves the definitions, relations and
formulas such as the Bernoulli numbers and polynomials, the Apostol-type numbers and polynomials, the
Stirling numbers, the Catalan numbers and combinatorial numbers with their generating functions.

The following notations and definitions are used throughout this paper.
The Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn are given respectively by

BP (x, t) = ext
t

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(1.1)

where

BN (t) =
t

et − 1
=

∞∑
n=0

Bn
tn

n!
, (1.2)

so that Bn = Bn(0) and B2n+1 = 0 for n ∈ N = {1, 2, 3, . . .} (cf. [3]–[34]).
Let v ∈ N0 = {0, 1, 2, 3, . . .} . Next, we note that the Stirling numbers, S1(a, v) , of the first kind are

defined by

(ln (z + 1))
v
=

∞∑
a=0

v!S1(a, v)
za

a!
, (1.3)

so that these numbers are also given by

(z)a =

a∑
v=0

S1 (a, v) z
v, (1.4)

where (z)a = z(z − 1) · · · (z − a+ 1) with (z)0 = 1 (cf. [2]-[34]).
The Stirling numbers, S2(a, v) , of the second kind are given by

(ez − 1)
v
=

∞∑
a=0

v!S2(a, v)
za

a!
, (1.5)

where v ∈ N0 (cf. [2], [7], [29], [34]). Similary, another relation between these numbers and (z)a is given by

za =

a∑
k=0

(z)k S2 (a, k) (1.6)

(cf. [2]–[34]). The Stirling numbers came also into existence in many types of not only enumeration problems,
but also ODEs problems such as differential operators, the Bell numbers and polynomials, combination lock,
the Poisson distribution, the Stirling and binomial transforms, and etc. (cf. [7], [2], [29], [34]).

The Catalan numbers, Cn , are defined by

1− (1− 4t)
1
2 = 2

∞∑
n=0

Cnt
n+1
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where

Cn =
(2n)!

(n+ 1)!n!
(1.7)

(cf. [2], [20, pp. 109–110]). The Catalan numbers are came up as a solution of many types of problems: the
Euler’s polygon problem, the Ballot problems, the Dyck path, and other kinds of enumeration problems (cf. [2],
[5, pp. 96–106], [20, pp. 109–110]).

The Cauchy numbers, bl(0) , are given by

bl (0) =

1∫
0

(x)l dx (1.8)

and

f (z) =
z

ln (z + 1)
=

∞∑
l=0

bl (0)
zl

l!
(1.9)

(cf. [27, p. 116], [18], [22], [26]). Using (1.9), we easily have

bl (0) =

l∑
a=0

S1 (l, a)

a+ 1
, (1.10)

(cf. [4, p. 294], [22, p. 1908], [27, p. 114]).
Let v ∈ N and θ be a real or complex number. The numbers Yn (θ) of order v and the polynomials

Yn (x; θ) of order v are defined respectively by the following generating functions:

2v

(θ (1 + θz)− 1)
v =

∞∑
m=0

Y (v)
m (θ)

zm

m!
(1.11)

and
2v (1 + θz)

x

(θ (1 + θz)− 1)
v =

∞∑
m=0

Y (v)
m (x; θ)

zm

m!
(1.12)

(cf. [21]). If we set v = 1 in (1.11) and (1.12), we have

Ym (θ) = Y (1)
m (θ) ,

and
Ym (x; θ) = Y (1)

m (x; θ) ,

which are related to the Bernoulli-type numbers, the Fibonacci numbers, the Stirling numbers, Euler-type num-
bers, and etc. Note that these numbers have many applications in enumerative combinatorics and probability
(for details, see [32], [35], [21]).

We end this section by providing the outline of this paper. In Section 2, we construct generating functions
for new classes of Catalan-type numbers and polynomials related to the Catalan numbers, and other kinds of
numbers and polynomials. In Section 3, in order to evaluate numerical values of the Catalan-type numbers and
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polynomials, we not only give recurrence relations, but also computational algorithms. In Section 4, using PDEs
of the generating functions for the Catalan-type polynomials, some derivative formulas and identities are derived.
In Section 5, applying integrals of the Riemann, the contour and the p -adic to the Catalan-type polynomials
some formulas including Cauchy-type numbers are also derived. In Section 6, using generating function of
the Catalan-type numbers with its functional equations, we derive various new identities and relations for
the Catalan-type polynomials, the Bernoulli numbers and polynomials, the Stirling numbers, and the Catalan
numbers. Finally, some infinite series representations related to the Catalan-type numbers are given.

2. New classes of Catalan-type numbers and polynomials
Here, generating functions for new classes of Catalan-type numbers and polynomials are constructed. In order
to give this construction, we need to present the following theorem:

Theorem 2.1 A power series given by

FV (t, λ) =

∞∑
n=0

Vn (λ) t
n

converges when 0 <
∣∣∣ λ2t
(λ−1)2

∣∣∣ ≤ 1
8 , and

FV (t, λ) =
1− λ+

√
(λ− 1)

2
+ 8λ2t

2λ2t
. (2.1)

In particular,

Vn (λ) = (−1)n Cn
2n+1λ2n

(λ− 1)
2n+1 , (2.2)

where n ≥ 0 .

Proof We first consider the following set:

D =

{
t : |t| < (λ− 1)

2

8λ2

}
.

For t ∈ D , by applying binomial theorem, we get

(
1− 4

(
−2λ2 (λ− 1)

−2
t
)) 1

2

=

∞∑
l=0

( 1
2

l

)(
8λ2 (λ− 1)

−2
t
)l

.

After some elementary calculations on RHS of the above equation, we have

(
1− 4

(
−2λ2 (λ− 1)

−2
t
)) 1

2 − 1 =

∞∑
l=0

(−1)l+1 2l (2l)!λ2l+2

(l + 1) (l!)
2
(λ− 1)

2l+2
tl+1

which yields

1− λ+

√
(λ− 1)

2
+ 8λ2t

2λ2t
=

∞∑
n=0

(−1)n Cn
2n+1λ2n

(λ− 1)
2n+1 t

n. (2.3)
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Thus, the desired result is obtained. 2

Note that the series on the RHS of Equation (2.3) converges when

t = − (λ− 1)
2

8λ2
,

and it converges absolutely and uniformly on D̄ which is a closed subset of D . Consequently, we have the
following summary on the behavior of the function FV (t, λ) on the sets D and D̄ , respectively:

1) FV (t, λ) is analytic in D .
2) FV (t, λ) is continuous on D̄ .
3) FV (t, λ) is a generating function for so-called Catalan-type numbers Vn (λ) .
We now define generating function for so-called Catalan-type polynomials, Vn (x;λ) , as follows:

FV (z, x, λ) = FV (z, λ) (1 + z)
x
2 =

∞∑
n=0

Vn (x;λ) z
n. (2.4)

Theorem 2.2

Vm (x;λ) =

m∑
j=0

(
x
2

)
j

j!
Vm−j (λ) , (2.5)

where m ∈ N0 .

Proof Applying the binomial theorem to (2.4) and using (2.1), we get

∞∑
m=0

Vm (x;λ) zm =

∞∑
m=0

(
x
2

)
m

m!
zm

∞∑
m=0

Vm (λ) zm.

Thus
∞∑

m=0

Vm (x;λ) zm =

∞∑
m=0

m∑
j=0

(
x
2

)
j

j!
Vm−j (λ) z

m.

Comparing the coefficients zm on the both sides of the equation just above, we get the desired result. 2

Theorem 2.3 Let n ∈ N0 . Then we have

Vn (x;λ) =

n∑
j=0

j∑
c=0

Vn−j (λ)S1(j, c)

2cj!
xc. (2.6)

Proof Replacing z by x
2 in (1.4), we have

(x
2

)
j
=

j∑
c=0

(x
2

)c
S1(j, c). (2.7)

Combining the equation just above with (2.5), the desired result is obtained. 2

2341



KUCUKOGLU et al./Turk J Math

Notice that the formula (2.5) allows us to compute the values of the polynomials Vn (x;λ) by using the
falling factorial polynomials, while the formula (2.6) provides easier computation of these polynomials directly
with the numbers S1 (n, k) .

By combining (2.5) with (2.6), we get the following corollary:

Corollary 2.4
n∑

j=0

(
x
2

)
j

j!
Vn−j (λ) =

n∑
j=0

j∑
c=0

Vn−j (λ)S1(j, c)

2cj!
xc

where n ∈ N0 .

Remark 2.5 Recently, in [6], Cossali introduced the generating functions for the polynomials jn (y) as follows:

J (x, y) =
(1− yx) +

√
(1− yx)

2 − 4x

2x
=

∞∑
n=0

jn (y)x
n,

cf. [6]). Substituting xy = λ (for instance x = −2λ2t and y = − 1
2λt ) into the above equation, we have

J

(
−2λ2t,− 1

2λt

)
= −1

2

1− λ+

√
(λ− 1)

2
+ 8λ2t

2λ2t


=

∞∑
n=0

jn

(
− 1

2λt

)
xn.

We should note here that even though the generating function given in Remark 2.5 is obtained after the change
of variables, it can be seen that there is no relation between the numbers Vn (λ) and the expression jn

(
− 1

2λt

)
,

since the expression jn
(
− 1

2λt

)
does not satisfy a polynomial property.

3. Computational algorithms and plots of the Catalan-type numbers and polynomials
Here, recurrence relations and computational algorithms are given in order to evaluate numerical values of
the Catalan-type numbers and polynomials. Implementing these algorithms in Python programming language
(Python version 2.7.10)∗ on a Python IDE (JetBrains PyCharm Community Edition 5.0.3)† with the library
Matplotlib [12] of 2D plotting and the library NumPy [23] of scientific computing, we illustrate the polynomials
Vn (x;λ) with their plots under the special conditions.

Theorem 3.1 Let V0 (λ) =
2

λ−1 . For n ∈ N , we have

Vn (λ) =
nλ2

1− λ

n−1∑
j=0

Vj (λ)Vn−j−1 (λ) .

∗Python Software Foundation (2020). Python Language Reference, Version 2.7.10 [online]. Website
https://www.python.org/downloads/release/python-2710/ [accessed 00 Month Year].

†JetBrains (2020). JetBrains PyCharm Community Edition 5.0.3. The Python IDE for Professional Developers [online]. Website
https://www.jetbrains.com/pycharm/ [accessed 00 Month Year].
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Proof The following functional equation is obtained with the aid of (2.1):

tF 2
V (t, λ) +

λ− 1

λ2
FV (t, λ) =

2

λ2
. (3.1)

By using (3.1), we get
∞∑

n=0

n−1∑
j=0

Vj (λ)Vn−j−1 (λ)nt
n +

λ− 1

λ2

∞∑
n=0

Vn (λ) t
n =

2

λ2
.

Making some calculations, the assertion of Theorem 3.1 is obtained. 2

By using Theorem 3.1, we give a computation algorithm, given by Algorithm 1, consisting of the procedure
V_CATALAN_TYPE_NUM which returns the values of the numbers Vn(λ) .

Algorithm 1 Let n be a nonnegative integer and λ ∈ C . This algorithm will return the numbers Vn(λ) ,
recursively.

procedure V_CATALAN_TYPE_NUM(n : nonnegative integer, λ)
Begin
Local variable j : nonnegative integer
if n = 0 then

return 2/ (λ− 1)
else

return
(
(n ∗ power (λ, 2)) / (1− λ)

)
∗ sum

(
V_CATALAN_TYPE_NUM(j, λ) ∗

V_CATALAN_TYPE_NUM (n− j − 1, λ) , j, 0, n− 1

)
end if

end procedure

By using Algorithm 1, we compute some values of the numbers Vn(λ) as follows:

V0(λ) = 2 (λ− 1)
−1

, V1(λ) = −4λ2(λ− 1)
−3

,

V2(λ) = 16λ4(λ− 1)
−5

, V3(λ) = −80λ6(λ− 1)
−7

,

and so on.
By the following Algorithm 2, we also give V_CATALAN_TYPE_POLY procedure for calculating values of the

polynomials Vn(x;λ) .

Algorithm 2 Let n be a nonnegative integer and λ ∈ C . By using (2.5), this algorithm will return the
polynomials Vn(x;λ) with the help of V_CATALAN_TYPE_NUM procedure given by Algorithm 1.

procedure V_Catalan_Type_Poly(n : nonnegative integer, x , λ)
Global variable V poly ← 0
Local variable j : nonnegative integer
for j = 0; j ≤ n; j = j + 1 do

V poly ← V poly + (Falling_Fact (x/2, j) /Fact (j)) ∗V_CATALAN_TYPE_NUM(n− j, λ)
end for
return V poly

end procedure
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Using Algorithm 2, we also compute some values of the polynomials Vn (x;λ) as follows:

V0 (x;λ) = 2(λ− 1)
−1

,

V1 (x;λ) = (λ− 1)
−1

x− 4λ2(λ− 1)
−3

,

V2 (x;λ) = x2(λ− 1)
−1 −

(
4λ2 − 4λ+ 2

)
(λ− 1)

−3
x+ 16λ4(λ− 1)

−5
,

and so on. Next, by implementing the above algorithms in Python, some plots of the Catalan-type polynomials
are illustrated under the special conditions. The curves in Figures 1 and 2 provide considerable information to
analyse some characteristics of these polynomials.

4. Some derivative formulas and identities of the Catalan-type polynomials derived from PDEs

Here, using PDEs of (2.4), some derivative formulas and identities are derived.

Theorem 4.1
∂

∂x
{Vm (x;λ)} = 1

2

m∑
a=1

(−1)a−1
Vm−a (x;λ)

a
(4.1)

where m ∈ N .

Proof Differentiating both side of (2.4), the following equation is obtained:

∂

∂x
{FV (z, x;λ)} = ln (z + 1)

2
FV (z, x;λ) . (4.2)

Combining (2.4) and series representation for the function ln (z + 1) with (4.2), we have

∞∑
m=0

∂

∂x
{Vm (x;λ)}zm =

1

2

∞∑
m=1

(−1)m+1

m
zn

∞∑
m=0

Vm (x;λ) zm.

Therefore
∞∑

m=0

∂

∂x
{Vm (x;λ)}zm =

1

2

∞∑
m=0

m∑
a=1

(−1)a−1
Vm−a (x;λ)

a
zm.

Making some calculations, the desired result is obtained. 2

Theorem 4.2
∂

∂x
{Vm (x;λ)} = 2

m∑
a=1

a−1∑
c=0

(
x
2

)
a
Vm−a (λ)

a! (x− 2c)
(4.3)

where m ∈ N .

Proof Applying the operator ∂
∂x to (2.5) yields

∂

∂x
{Vm (x;λ)} =

m∑
a=0

Vm−a (λ)

a!

d

dx

{(x
2

)
a

}
. (4.4)
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(c) n = 5 and x ∈ [− 60, 60] .

(d) n = 6 and x ∈ [− 60, 60] .

(a) n = 3 and x ∈ [− 60, 60] .

(b) n = 4 and x ∈ [− 60, 60] .

Figure 1. For λ ∈ {−2,− 3
2
,−1,− 1

2
, 0, 1

2
} , some plots of the polynomials Vn (x;λ) in the cases: (a) n = 3 and

x ∈ [−60, 60] ; (b) n = 4 and x ∈ [−60, 60] ; (c) n = 5 and x ∈ [−60, 60] ; (d) n = 6 and x ∈ [−60, 60] .
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(b) n = 5 and λ = − 100 .

(c) n = 5 and λ = 1
2
.

(d) n = 5 and λ = − 1
2
.

(a) n = 5 and λ = 100 .

Figure 2. For x ∈ [−40, 40] , some plots of the polynomials Vn (x;λ) in the cases: (a) n = 5 and λ = 100 ; (b) n = 5
and λ = −100 ; (c) n = 5 and λ = 1

2
; (d) n = 5 and λ = − 1

2
.
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Substituting

d

dx
{(x)a} =

(x)a

a−1∑
c=0

1
x−c if a ∈ N

0 if a = 0,

(4.5)

(cf. [25, Eq. (9)]) into (4.4), the desired result is obtained. 2

Theorem 4.3

∂k

∂xk
{Vm (x;λ)} = k!

2k

m∑
a=k

S1(a, k)Vm−a (x;λ)

a!
(4.6)

where m, k ∈ N .

Proof Taking k th derivative of (2.4) yields

∂k

∂xk
{FV (z, x, λ)} = (ln (z + 1))

k

2k
FV (z, x, λ) . (4.7)

Combining (2.4) and (1.3) with (4.7) yields

∞∑
m=0

∂k

∂xk
{Vm (x;λ)}zm = k!2−k

∞∑
m=k

S1(m, k)
zm

m!

∞∑
m=0

Vm (x;λ) zm.

Hence
∞∑

m=0

∂k

∂xk
{Vm (x;λ)}zm = k!2−k

∞∑
m=0

m∑
a=k

S1(a, k)Vm−a (x;λ)

a!
zm.

Making some calculations, the desired result is obtained. 2

Remark 4.4 When k = 1 , (4.6) yields

∂

∂x
{Vm (x;λ)} = 1

2

m∑
a=1

S1(a, 1)Vm−a (x;λ)

a!
. (4.8)

Combining (1.3) with (4.8) and

S1(a, 1) = (−1)1+a
(a− 1)!, (4.9)

we also get (4.1).

5. Integral formulas for the Catalan-type polynomials

Here, we apply integrals of the Riemann, the contour and the p -adic to the Catalan-type polynomials in order
to derive some formulas.
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5.1. Riemann integral formulas for the polynomials Vn (x;λ)

Here, we give Riemann integral formula for the polynomials Vn (x;λ) .

Theorem 5.1 ∫ 1

0

Vm−1 (x;λ) dx = 2

m∑
a=0

bm−a (0)

(m− a)!
(Va (1;λ)− Va (λ)) (5.1)

where m ∈ N .

Proof Integrating (2.4), we get

∫ 1

0

FV (z, x, λ) dx =
1− λ+

√
(λ− 1)

2
+ 8λ2z

2λ2z

∫ 1

0

(1 + z)
x
2 dx

which yields ∫ 1

0

FV (z, x, λ) dx =
1− λ+

√
(λ− 1)

2
+ 8λ2z

2λ2z

(
2
(√

z + 1− 1
)

ln (z + 1)

)
.

Thus, we get ∫ 1

0

FV (z, x, λ) dx =
2

z
f (z) (FV (z, 1, λ)− FV (z, λ)) . (5.2)

Combining (5.2) with (2.4) and (1.9) yields

∞∑
m=0

zm+1

∫ 1

0

Vm (x;λ) dx = 2

∞∑
m=0

bm (0)
zm

m!

∞∑
m=0

(Vm (1;λ)− Vm (λ)) zm.

Therefore
∞∑

m=0

zm+1

∫ 1

0

Vm (x;λ) dx = 2

∞∑
m=0

m∑
a=0

bm−a (0)

(m− a)!
(Va (1;λ)− Va (λ)) z

m.

Making some calculations, the desired result is obtained. 2

Remark 5.2 Integrating (2.5) yields another Riemann integral of the polynomials Vm (x;λ) as follows:∫ 1

0

Vm (x;λ) dx =

m∑
j=0

Vm−j (λ) kj , (5.3)

where the numbers kn is given by

kn =

∫ 1

0

(x
2

n

)
dx, (5.4)

which are so-called Bernoulli-type numbers of the second kind (or Cauchy-type numbers). Using (5.4), some
values of the numbers kn are given by

k0 = 1, k1 =
1

4
, k2 = −1

3
, k3 =

27

16
,

and so on.
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5.2. Contour integral representation of the numbers Vn (λ)

Here, we give a contour integral representation of the numbers Vn (λ) .
Binomial coefficients are computed by following the Cauchy integral formula and the residue theorem:∫

Ω

(1 + w)
k

wj+1
dw = 2πi

(
k

j

)
(5.5)

where Ω is a simple closed contour surrounding the origin (cf. [1]).
By replacing k by 2k and j by k in (5.5), and then combining the final equation with (1.7) and (2.2),

we obtain a contour integral representation of the numbers Vn (λ) by the following theorem:

Theorem 5.3

Vk (λ) =
i2k−1

(
2λ2
)k

π (λ− 1)
2k+1

∫
Ω

(1 + w)
2k

wk+1
dw, (5.6)

where k ∈ N0 and w ∈ C .

5.3. p-adic integrals of the polynomials Vn (x;λ)

Here, by applying the Volkenborn integral and the p -adic fermionic integral to the polynomials Vn (x;λ) on the
set of p -adic integers Zp , some formulas are derived.

Theorem 5.4 ∫
Zp

Vm (x;λ) dµ1 (x) =

m∑
a=0

a∑
k=0

Vm−a (λ)S1(a, k)Bk

a!2k
,

where m ∈ N0 .

Theorem 5.5 ∫
Zp

Vm (x;λ) dµ−1 (x) =

m∑
a=0

a∑
k=0

Vm−a (λ)S1(a, k)Ek

a!2k
,

where m ∈ N0 .

The following definitions and notations are used in order to prove Theorems 5.4 and 5.5.
Let µ1 (x) be the Haar distribution. The Volkenborn (p -adic bosonic) integral of h (x) , which is uniformly

differentiable function on Zp , is defined by

∫
Zp

h (x) dµ1 (x) = lim
M→∞

p−M

pM−1∑
l=0

h (l) , (5.7)

(cf. [28]; see also [14], [15], [17], [33]).
In [8, Corollary 3, p. 5], Dolgy et al. defined the following numbers:

dn =
(−1)n 22n

n!

∫
Zp

(x
2

)
n
dµ1 (x) (5.8)

2349



KUCUKOGLU et al./Turk J Math

and ∫
Zp

(x
2

)
n
dµ1 (x) =

n∑
k=0

2−kS1(n, k)Bk, (5.9)

(cf. [8], [19]).
Let µ−1 (x) = (−1)x . The p -adic fermionic integral of h (x) , which is uniformly differentiable function

on Zp , is defined by ∫
Zp

h (x) dµ−1 (x) = lim
M→∞

pM−1∑
l=0

(−1)l h (l) (5.10)

(cf. [14], [15]).
In [16, Theorem 3, p.497], Kim gave the following formula:

Cn =
(−1)n 22n

n!

∫
Zp

(x
2

)
n
dµ−1 (x) , (5.11)

and ∫
Zp

(x
2

)
n
dµ−1 (x) =

n∑
k=0

2−kS1(n, k)Ek, (5.12)

(cf. [16], [31], [19]).
For more examples and details about p -adic integration techniques, see Schikhof [28], and also [33].
In the light of the above p -adic integral representations, we can now give the proof of Theorems 5.4 and

5.5.

Proof [Proof of Theorem 5.4] Applying (5.7) to (2.5) yields∫
Zp

Vm (x;λ) dµ1 (x) =

m∑
a=0

Vm−a (λ)

a!

∫
Zp

(x
2

)
a
dµ1 (x) . (5.13)

Combining (5.13) with (5.9) yields the desired result. 2

Proof [Proof of Theorem 5.5] Applying (5.10) to (2.5) yields∫
Zp

Vm (x;λ) dµ−1 (x) =

m∑
a=0

Vm−a (λ)

a!

∫
Zp

(x
2

)
a
dµ−1 (x) . (5.14)

Combining (5.14) with (5.12) yields the desired result. 2

Combining (5.13) with (5.8) yields a relation between the polynomials Vn (x;λ) and the numbers dn by
the following corollary:

Corollary 5.6 ∫
Zp

Vm (x;λ) dµ1 (x) =

m∑
a=0

(−1)a 2−2aVm−a (λ) da. (5.15)

where m ∈ N0 .
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On the other hand, combining (5.14) with (5.11) yields the following result:

Corollary 5.7 ∫
Zp

Vm (x;λ) dµ−1 (x) =

m∑
a=0

(−1)a 2−2aVm−a (λ)Ca. (5.16)

where m ∈ N0 .

6. Further formulas and identities
Here, using generating function and functional equations, further formulas and identities are derived. These

results include the numbers Vn (λ) , the numbers Y
(k)
n (λ) , the numbers Bn , the polynomials Bn (x) , the num-

bers S1 (n, k) , the numbers S2 (n, k) and the numbers Cn . We also provide some infinite series representations
including the Catalan-type numbers.

The numbers Vm (λ) and the numbers Y
(m+1)
m (λ) have the following relationship:

Theorem 6.1
Y (m+1)
m (λ) = (m+ 1)!Vm (λ) , (6.1)

where m ∈ N0 .

Proof Using (1.11) and (2.1), and also some elemantary calculations yields the desired result. 2

Theorem 6.2

a−1∑
n=0

n!
(
2−3λ−2 (1− λ)

2
)n

Vn (λ)S2(a− 1, n) (6.2)

=
4

(λ− 1) a

(
Ba

(
1

2

)
−Ba

)
,

where a ∈ N .

Proof Assuming λ > 1 , we set the following functional equation:

z (λ− 1)FV

(
2−3λ−2 (1− λ)

2
(ez − 1), λ

)
= 4BP

(
z,

1

2

)
− 4BN (z). (6.3)

Combining (6.3) with (1.2), (1.1) and (2.1) yields

z

∞∑
n=0

Vn (λ)
(
2−3λ−2 (1− λ)

2
(ez − 1)

)n

=
4

λ− 1

∞∑
a=0

(
Ba

(
1

2

)
−Ba

)
za

a!
.
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Thus, with the aid of (1.5), we have

z

∞∑
a=0

∞∑
n=0

n!
(
2−3λ−2 (1− λ)

2
)n

Vn (λ)S2(a, n)
za

a!

=
4

λ− 1

∞∑
a=0

(
Ba

(
1

2

)
−Ba

)
za

a!
.

Since S2(a, n) = 0 when a < n , we have

∞∑
a=0

a

a−1∑
n=0

n!
(
2−3λ−2 (1− λ)

2
)n

Vn (λ)S2(a− 1, n)
za

a!

=
4

λ− 1

∞∑
a=0

(
Ba

(
1

2

)
−Ba

)
za

a!
.

Making some calculations, the desired result is obtained. 2

Combining the following well-known identity (cf. [7], [34]):

Ba

(
1

2

)
=
(
21−a − 1

)
Ba

with (6.2), we derive a computation formula for the Bernoulli numbers:

Theorem 6.3

Ba =
a

23 − 23−a

a−1∑
n=0

(1− λ)
2n+1

n!Vn (λ)S2(a− 1, n)

(8λ2)
n ,

where a ∈ N .

By using (2.2), the numbers Cn and the numbers Vn (λ) have the following relationship:

Corollary 6.4

Cn = (−1)n (λ− 1)
2n+1

Vn (λ)

2n+1λ2n
,

where n ∈ N0 .

6.1. Infinite series representations for the Catalan-type numbers
Here, we define new functions by using some infinite series representation for the Catalan-type numbers and
combinatorial numbers. Applications of these functions involve some generating functions for the Bernoulli, the
Euler and the Genocchi polynomials. We end this section by presenting another series representation related
to the Fibonacci-type polynomials in two variables.

Let θ ∈ C . Then we set

g(θ) =

∞∑
m=0

(m+ 1)Vm (θ)

Y
(m+1)
m (θ)

θm.
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By using the function g(θ) , we define the following function:

g(θ, x) =
θg(xθ)

g(θ)− 1

which is a generating function of the polynomials Bn (x) for |θ| < 2π . Similary, the function g(θ, x) gives the
following functions

2g(xθ)

g(θ) + 1
, 2g(xθ)

g(θ) + g(−θ)
, and 2θg(xθ)

g(θ) + 1

which give generating functions of the Euler and the Genocchi polynomials for |θ| < π . Besides, using the
function g(θ, x) , moment generating functions and the other generating functions for special numbers and
polynomials may be obtained.

By considering the infinite series comprising of a quotient of the numbers Vn (λ) and the numbers Cn ,
we get the following result:

Theorem 6.5 Assuming ∣∣∣∣∣ 2λ2

(λ− 1)
2

∣∣∣∣∣ < 1,

we have

h(λ) :=
2 (λ− 1)

3λ2 − 2λ+ 1
=

∞∑
n=0

Vn (λ)

Cn
.

Remark 6.6 Note that the function h(λ) satisfy the following relation:

h(λ) = 2 (λ− 1)H (λ; 2,−3; 1, 1, 1)

where

H (λ;x, y; a, b, c) =
1

1− xaλ− ybλb+c
(a, b, c ∈ N0)

which is a generating function for the Fibonacci-type polynomials in two variables (for details, see [24]). In
the same manner of the above calculations, by investigating infinite series representations for the Catalan-type
numbers and polynomials under the special conditions, one may encounter with the generating functions for
the Lucas numbers and poynomials, the Pell numbers and polynomials derived from the Pell equations, and
Chebyshev polynomials.
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