т ̈̈вітак

Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: 1990 - 2003
© TÜBİTAK

New criteria for the oscillation and asymptotic behavior of second-order neutral differential equations with several delays

Başak KARPUZ ${ }^{1, *}$, © Shyam S. SANTRA ${ }^{2}$ ©

${ }^{1}$ Department of Mathematics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
${ }^{2}$ Department of Mathematics, JIS College of Engineering, Kalyani, India

| Received: 25.06 .2020 | Accepted/Published Online: 10.08 .2020 | Final Version: 16.11 .2020 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: In this paper, necessary and sufficient conditions for asymptotic behavior are established of the solutions to second-order neutral delay differential equations of the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(r(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)-p(t) x(\tau(t))]\right)^{\gamma}\right)+\sum_{i=1}^{m} q_{i}(t) f_{i}\left(x\left(\sigma_{i}(t)\right)\right)=0 \quad \text { for } t \geq t_{0}
$$

We consider two cases when $f_{i}(u) / u^{\beta}$ is nonincreasing for $\gamma>\beta$, and nondecreasing for $\beta>\gamma$, where β and γ are quotients of two positive odd integers. Our main tool is Lebesgue's dominated convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem.

Key words: Oscillation, nonoscillation, nonlinear, delay argument, second-order neutral differential equations, Lebesgue's dominated convergence theorem

1. Introduction

In this article, we consider the neutral differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(r(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)-p(t) x(\tau(t))]\right)^{\gamma}\right)+\sum_{i=1}^{m} q_{i}(t) f_{i}\left(x\left(\sigma_{i}(t)\right)\right)=0 \quad \text { for } t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where γ is quotient of two positive odd integers, and the functions $f_{i}, p, q_{i}, r, \sigma_{i}, \tau$ are continuous that satisfy the conditions stated below:
(A1) $\tau, \sigma_{i} \in \mathrm{C}\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ satisfy $\tau(t) \leq t$ and $\sigma_{i}(t) \leq t$ for $t \geq t_{0}, \lim _{t \rightarrow \infty} \tau(t)=\infty$ and $\lim _{t \rightarrow \infty} \sigma_{i}(t)=$ ∞ for $i=1,2, \ldots, m$.
(A2) $r \in \mathrm{C}\left(\left[t_{0}, \infty\right),(0, \infty)\right), q_{i} \in \mathrm{C}\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ such that $\sum_{i=1}^{m} q_{i} \not \equiv 0$ on any interval of the form $[T, \infty)$.
(A3) $f_{i} \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ is nondecreasing and $u f_{i}(u)>0$ for $u \neq 0, i=1,2, \ldots, m$.
(A4) $\lim _{t \rightarrow \infty} R(t)=\infty$, where $R(t):=\int_{t_{0}}^{t} r^{-1 / \gamma}(\eta) \mathrm{d} \eta$ for $t \geq t_{0}$.
*Correspondence: bkarpuz@gmail.com
2010 AMS Mathematics Subject Classification: 34C10, 34C15, 34K11
(A5) $p \in \mathrm{C}\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ satisfies $0 \leq p(t) \leq p_{0}<1$ for all $t \geq t_{0}$, where $p_{0} \in \mathbb{R}^{+}$.
The main feature of this article is having conditions that are both necessary and sufficient for the oscillation of all solutions to (1.1).

In 1978, Brands [10] has proved that for bounded delays, the solutions of

$$
x^{\prime \prime}(t)+q(t) x(\sigma(t))=0 \quad \text { for } t \geq t_{0}
$$

where $t-M \leq \sigma(t) \leq t$ for some M, are oscillatory if and only if the solutions of $x^{\prime \prime}(t)+q(t) x(t)=0$ are oscillatory. In [11, 13], Chatzarakis et al. have considered a more general second-order half-linear differential equation of the form

$$
\begin{equation*}
\left(r\left(x^{\prime}\right)^{\alpha}\right)^{\prime}(t)+q(t)(x(\sigma(t)))^{\alpha}=0 \quad \text { for } t \geq t_{0} \tag{1.2}
\end{equation*}
$$

and established new oscillation criteria for (1.2) in both of the cases $\lim _{t \rightarrow \infty} R(t)=\infty$ and $\lim _{t \rightarrow \infty} R(t)<\infty$.
Wong [35] has obtained the necessary and sufficient conditions for oscillation of solutions of

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}[x(t)-p x(t-\tau)]+q(t) f(x(t-\sigma))=0 \quad \text { for } t \geq t_{0}
$$

in which the neutral coefficient satisfies $p \in(0,1)$ and delays are constants. However, we have seen in $[6,14]$ that the authors Baculíková and Džurina have studied

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(r(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)+p(t) x(\tau(t))]\right)^{\gamma}\right)+q(t)(x(\sigma(t)))^{\alpha}=0 \quad \text { for } t \geq t_{0} \tag{1.3}
\end{equation*}
$$

and established sufficient conditions for oscillation of solutions of (1.3) using comparison techniques when $\gamma=\alpha=1,0 \leq p(t)<\infty$ and $\lim _{t \rightarrow \infty} R(t)=\infty$. By the same technique, Baculíková and Džurina [7] have considered (1.3) and obtained sufficient conditions for oscillation of the solutions of (1.3) by considering the assumptions $0 \leq p(t)<\infty$ and $\lim _{t \rightarrow \infty} R(t)=\infty$. In [34], Tripathy et al. have studied (1.3) and established several sufficient conditions for oscillations of the solutions of (1.3) by considering the assumptions $\lim _{t \rightarrow \infty} R(t)=\infty$ and $\lim _{t \rightarrow \infty} R(t)<\infty$ for various ranges of the neutral coefficient p. In [9], Bohner et al. have obtained sufficient conditions for oscillation of solutions of (1.3) when $\gamma=\alpha, \lim _{t \rightarrow \infty} R(t)<\infty$ and $0 \leq p(t)<1$. Grace et al. [16] have established sufficient conditions for the oscillation of the solutions of (1.3) when $\gamma=\alpha$ and by considering the cases $\lim _{t \rightarrow \infty} R(t)<\infty$ and $\lim _{t \rightarrow \infty} R(t)=\infty$ when $0 \leq p(t)<1$. In [19], Li et al. have established sufficient conditions for the oscillation of the solutions of (1.3), under the assumptions $\lim _{t \rightarrow \infty} R(t)<\infty$ and $p(t) \geq 0$. Karpuz and Santra [18] have obtained several sufficient conditions for the oscillatory and asymptotic behavior of the solutions of

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(r(t) \frac{\mathrm{d}}{\mathrm{~d} t}[x(t)-p(t) x(\tau(t))]\right)+q(t) f(x(\sigma(t)))=0 \quad \text { for } t \geq t_{0}
$$

by considering the cases $\lim _{t \rightarrow \infty} R(t)<\infty$ and $\lim _{t \rightarrow \infty} R(t)=\infty$ for different ranges of p.
For more information on oscillation of second-order neutral differential equations, we refer []
$[1-5,8,12,15,16,20-33,36]$ to the reader and the references cited therein. Note that most of the works have been considered for sufficient conditions, and merely a few works have been concerned with the necessary
and sufficient conditions. Hence, unlike the above methods, the main feature of this article is to establish conditions that are both necessary and sufficient for oscillation of all solutions of (1.1).

Neutral differential equations have several applications in the natural sciences and engineering. For example, they often appear in the study of distributed networks containing lossless transmission lines (see, e.g., [17]). In this paper, we restrict our attention to study oscillation and nonoscillation of (1.1), which includes the class of functional differential equations of neutral type.

By a solution of (1.1), we mean a function $x \in \mathrm{C}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$, where $T_{x} \geq t_{0}$, such that $x-p \cdot x \circ \tau \in$ $\mathrm{C}^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$ and $r\left([x-p \cdot x \circ \tau]^{\prime}\right)^{\gamma} \in \mathrm{C}^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$, and satisfies (1.1) on the interval $\left[T_{x}, \infty\right)$. A solution x of (1.1) is said to be proper if it is not identically zero eventually, i.e. $\sup \{|x(\eta)|: \eta \geq T\}>0$ for all $T \geq T_{x}$. We assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on $\left[T_{x}, \infty\right)$; otherwise, it is said to be nonoscillatory. Equation (1.1) itself is said to be oscillatory if all of its solutions are oscillatory.

When a domain is not specified explicitly for mathematical expressions, they are assumed to hold eventually, i.e. they are satisfied for all t large enough.

2. Results

Lemma 2.1 Assume (A1)-(A5), and that x is an eventually positive solution of (1.1). Then, only one of the following two cases hold.
(i) $\lim _{t \rightarrow \infty} x(t)=0$.
(ii) There exist $T \geq t_{0}$ and $\delta>0$ such that

$$
\begin{equation*}
0<z(t):=x(t)-p(t) x(\tau(t)) \leq \delta R(t) \quad \text { for all } t \geq T \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(R(t)-R(T))\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(x\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta\right)^{1 / \gamma} \leq z(t) \leq x(t) \quad \text { for all } t \geq T . \tag{2.2}
\end{equation*}
$$

Proof Let x be an eventually positive solution. Then, by (A1) there exists a t_{1} such that $x(t)>0, x(\tau(t))>0$ and $x\left(\sigma_{i}(t)\right)>0$ for all $t \geq t_{1}$ and $i=1,2, \ldots, m$. Note that z defined in (2.1) is continuous and satisfies $z(t) \leq x(t)$ for $t \geq t_{1}$. From (1.1), it follows that

$$
\begin{equation*}
\left(r\left(z^{\prime}\right)^{\gamma}\right)^{\prime}(t)=-\sum_{i=1}^{m} q_{i}(t) f_{i}\left(x\left(\sigma_{i}(t)\right)\right) \leq 0 \quad \text { for } t \geq t_{1} \tag{2.3}
\end{equation*}
$$

Therefore, $r\left(z^{\prime}\right)^{\gamma}$ is nonincreasing on $\left[t_{1}, \infty\right)$. Next, we show that $r\left(z^{\prime}\right)^{\gamma}$ is positive on $\left[t_{1}, \infty\right)$. Assume the contrary that there exists $t_{2} \geq t_{1}$ such that $r\left(t_{2}\right)\left(z^{\prime}\left(t_{2}\right)\right)^{\gamma} \leq 0$. Using (A2) and (A3), it follows from (2.3) that there exists $t_{3} \geq t_{2}$ such that

$$
r(t)\left(z^{\prime}(t)\right)^{\gamma} \leq r\left(t_{3}\right)\left(z^{\prime}\left(t_{3}\right)\right)^{\gamma}<0 \quad \text { for all } t \geq t_{3}
$$

Then,

$$
z^{\prime}(t) \leq\left(\frac{r\left(t_{3}\right)}{r(t)}\right)^{1 / \gamma} z^{\prime}\left(t_{3}\right) \quad \text { for } t \geq t_{3}
$$

Integrating from t_{3} to t, we have

$$
\begin{equation*}
z(t) \leq z\left(t_{3}\right)+\left(r\left(t_{3}\right)\right)^{1 / \gamma} z^{\prime}\left(t_{3}\right)\left(R(t)-R\left(t_{3}\right)\right) \tag{2.4}
\end{equation*}
$$

By (A4), the right-hand side tends to $(-\infty)$, then $\lim _{t \rightarrow \infty} z(t)=-\infty$. Since p is bounded and z is unbounded, x cannot be bounded. This allows the existence of an increasing unbounded sequence $\left\{\xi_{k}\right\}$ such that $x\left(\xi_{k}\right)=\sup \left\{x(\eta): \eta \leq \xi_{k}\right\}$ for $k \in \mathbb{N}$. Then $x\left(\tau\left(\xi_{k}\right)\right) \leq x\left(\xi_{k}\right)$ and

$$
z\left(\xi_{k}\right)=x\left(\xi_{k}\right)-p\left(\xi_{k}\right) x\left(\tau\left(\xi_{k}\right)\right) \geq\left(1-p\left(\xi_{k}\right)\right) x\left(\xi_{k}\right) \geq\left(1-p_{0}\right) x\left(\xi_{k}\right) \geq 0
$$

which contradicts $\lim _{k \rightarrow \infty} z\left(\xi_{k}\right)=-\infty$. Therefore, $r\left(z^{\prime}\right)^{\gamma}>0$ on $\left[t_{1}, \infty\right)$.
From $r\left(z^{\prime}\right)^{\gamma}>0$ and $r>0$ on $\left[t_{1}, \infty\right)$, it follows that $z^{\prime}>0$ on $\left[t_{1}, \infty\right)$. Then, there is $t_{2} \geq t_{1}$ such that only one of the following two cases happens.

Case 1. Let $z(t)<0$ for all $t \geq t_{2}$. Note that by (A1), $\lim \sup _{t \rightarrow \infty} x(t)=\lim \sup _{t \rightarrow \infty} x(\tau(t))$. Then, $0>z(t) \geq x(t)-p_{0} x(\tau(t))$ for all $t \geq t_{2}$, which implies $0 \geq\left(1-p_{0}\right) \limsup _{t \rightarrow \infty} x(t)$. Since $\left(1-p_{0}\right)>0$, it follows that $\limsup \operatorname{sum}_{t \rightarrow \infty} x(t)=0$, hence $\lim _{t \rightarrow \infty} x(t)=0$.
Case 2. Let $z(t)>0$ for all $t \geq t_{2}$. Note that $x(t) \geq z(t)$ for all $t \geq t_{2}$, and z is positive and increasing on $\left[t_{2}, \infty\right)$, so x cannot converge to zero. By nonincreasing nature of $r\left(z^{\prime}\right)^{\gamma}$, we have

$$
z^{\prime}(t) \leq\left(\frac{r\left(t_{2}\right)}{r(t)}\right)^{1 / \gamma} z^{\prime}\left(t_{2}\right) \quad \text { for } t \geq t_{2}
$$

Integrating the above inequality over $\left[t_{2}, t\right)$, we obtain

$$
z(t) \leq z\left(t_{2}\right)+\left(r\left(t_{2}\right)\right)^{1 / \gamma} z^{\prime}\left(t_{2}\right)\left(R(t)-R\left(t_{2}\right)\right) \quad \text { for } t \geq t_{2}
$$

By (A4), there exists a constant $\delta>0$ such that (2.1) holds.
Since $r\left(z^{\prime}\right)^{\gamma}$ is positive and nonincreasing on $\left[t_{2}, \infty\right), \lim _{t \rightarrow \infty} r(t)\left(z^{\prime}(t)\right)^{\gamma}$ exists and is nonnegative. Integrating (1.1) over $[t, s$), we have

$$
r(s)\left(z^{\prime}(s)\right)^{\gamma}-r(t)\left(z^{\prime}(t)\right)^{\gamma}+\int_{t}^{s} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(x\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta=0 \quad \text { for all } s \geq t \geq t_{2}
$$

Dropping the positive term $r(s)\left(z^{\prime}(s)\right)^{\gamma}$ and then letting $s \rightarrow \infty$ yields

$$
\begin{equation*}
r(t)\left(z^{\prime}(t)\right)^{\gamma} \geq \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(x\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta \quad \text { for all } t \geq t_{2} \tag{2.5}
\end{equation*}
$$

Then, we get

$$
z^{\prime}(t) \geq\left(\frac{1}{r(t)} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(x\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta\right)^{1 / \gamma} \quad \text { for all } t \geq t_{2}
$$

Since $z\left(t_{2}\right)>0$, integrating the above inequality over $\left[t_{2}, t\right)$ yields

$$
z(t) \geq \int_{t_{2}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(x\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \quad \text { for all } t \geq t_{2}
$$

Taking the inner integration out at its minimum value and using (A4), we arrive at

$$
z(t) \geq\left(R(t)-R\left(t_{2}\right)\right)\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(x\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \quad \text { for all } t \geq t_{2}
$$

which yields (2.2).
This completes the proof.

Remark 2.2 Assume (A1)-(A5), and that x is an eventually positive unbounded solution of (1.1). Then, (i) of Lemma 2.1 cannot hold.

For the next theorem, we introduce a new additional condition.
(C1) There exists a constant $\beta>0$, which is a quotient of two positive odd integers, with $\gamma>\beta$, such that

$$
\frac{f_{i}(u)}{u^{\beta}} \text { is non-increasing on }(-\infty, 0) \text { and }(0, \infty), i=1,2, \ldots, m
$$

For example, $f_{i}(u):=|u|^{\alpha_{i}} \operatorname{sgn}(u)$, where $\beta>\alpha_{i}>0$, satisfies (C1).

Theorem 2.3 Assume (A1)-(A5) and (C1). Every solution of (1.1) is oscillatory or converges to zero, if and only if

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(\delta R\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta=\infty \quad \text { for all } \delta>0 \tag{2.6}
\end{equation*}
$$

Proof We prove sufficiency by contradiction. Initially, we assume that a solution x is eventually positive, which does not converge to zero. Then, Case 1 in Lemma 2.1 leads to $\lim _{t \rightarrow \infty} x(t)=0$, which contradicts the assumption that x does not converge to zero. Next, we show that Case 2 of Lemma 2.1 also leads to a contradiction. In Case 2, there exists t_{1} such that

$$
x(t) \geq z(t) \geq\left(R(t)-R\left(t_{1}\right)\right) w^{1 / \gamma}(t) \geq 0 \quad \text { for all } t \geq t_{1}
$$

where

$$
w(t):=\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(x\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta \quad \text { for } t \geq t_{1}
$$

Since $\lim _{t \rightarrow \infty} R(t)=\infty$, there exists $t_{2} \geq t_{1}$ such that $R(t)-R\left(t_{1}\right) \geq \frac{1}{2} R(t)$ for $t \geq t_{2}$. Then,

$$
\begin{equation*}
z(t) \geq \frac{1}{2} R(t) w^{1 / \gamma}(t) \quad \text { for all } t \geq t_{2} \tag{2.7}
\end{equation*}
$$

Computing the derivative of w, we have

$$
w^{\prime}(t)=-\sum_{i=1}^{m} q_{i}(t) f_{i}\left(x\left(\sigma_{i}(t)\right)\right) \quad \text { for all } t \geq t_{2}
$$

Thus, w is nonnegative and nonincreasing. Since $x>0$, by (A3), $f_{i} \circ x \circ \sigma_{i}>0$, and by (A2), it follows that $\sum_{i=1}^{m} q_{i} \cdot f_{i} \circ x \circ \sigma_{i} \not \equiv 0$ on any interval of the form $[T, \infty)$, thus w^{\prime} cannot be identically zero, and w cannot be constant on any interval $[T, \infty)$. Therefore, $w(t)>0$ for $t \geq t_{1}$. Computing the derivative, we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} w^{1-\beta / \gamma}(t)=\left(1-\frac{\beta}{\gamma}\right) w^{-\beta / \gamma}(t) w^{\prime}(t) \quad \text { for } t \geq t_{2} \tag{2.8}
\end{equation*}
$$

Integrating (2.8) over $\left[t_{2}, t\right)$, and using positivity of w, we have

$$
\begin{align*}
w^{1-\beta / \gamma}\left(t_{2}\right) & \geq\left(1-\frac{\beta}{\gamma}\right)\left(-\int_{t_{2}}^{t} w^{-\beta / \gamma}(\eta) w^{\prime}(\eta) \mathrm{d} \eta\right) \tag{2.9}\\
& =\left(1-\frac{\beta}{\gamma}\right)\left(\int_{t_{2}}^{t} w^{-\beta / \gamma}(\eta) \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(x\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta\right)
\end{align*}
$$

for $t \geq t_{2}$. Next, we find a lower bound for the right-hand side of (2.9), independent of the solution x. Since $x \geq z$, by (A3), (C1), (2.1), and (2.7), we have

$$
\begin{aligned}
f_{i}(x(t)) & \left.\geq f_{i}(z(t))\right) \frac{(z(t))^{\beta}}{(z(t))^{\beta}} \geq \frac{f_{i}(\delta R(t))}{(\delta R(t))^{\beta}}(z(t))^{\beta} \geq \frac{f_{i}(\delta R(t))}{(\delta R(t))^{\beta}}\left(\frac{R(t) w^{1 / \gamma}(t)}{2}\right)^{\beta} \\
& =\frac{f_{i}(\delta R(t))}{(2 \delta)^{\beta}} w^{\beta / \gamma}(t)
\end{aligned}
$$

for $t \geq t_{2}$. Since w is nonincreasing, $\beta / \gamma>0$, and σ_{i} is a delay, it follows that

$$
\begin{equation*}
f_{i}\left(x\left(\sigma_{i}(t)\right)\right) \geq \frac{f_{i}\left(\delta R\left(\sigma_{i}(t)\right)\right)}{(2 \delta)^{\beta}} w^{\beta / \gamma}\left(\sigma_{i}(t)\right) \geq \frac{f_{i}\left(\delta R\left(\sigma_{i}(t)\right)\right)}{(2 \delta)^{\beta}} w^{\beta / \gamma}(t) \quad \text { for } t \geq t_{2} \tag{2.10}
\end{equation*}
$$

Going back to (2.9), we have

$$
\begin{equation*}
w^{1-\beta / \gamma}\left(t_{2}\right) \geq \frac{\left(1-\frac{\beta}{\gamma}\right)}{(2 \delta)^{\beta}} \int_{t_{2}}^{t} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(\delta R\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta \quad \text { for } t \geq t_{2} \tag{2.11}
\end{equation*}
$$

Since $(1-\beta / \gamma)>0$, by (2.6) the right-hand side tends to ∞ as $t \rightarrow \infty$. This contradicts (2.11) and completes the proof of sufficiency for eventually positive solutions.

For an eventually negative solution x, we introduce the variables $y:=-x$ and $g_{i}(u):=-f_{i}(-u)$. Then, y is an eventually positive solution of (1.1) with g_{i} instead of f_{i}. Note that g_{i} satisfies (A3) and (C1) so can apply the above process for the solution y.

Next, we show the necessity part by a contrapositive argument. When (2.6) does not hold we find an eventually positive solution that does not converge to zero. If (2.6) does not hold for some $\delta>0$, then for every $\varepsilon>0$, there exists $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(\delta R\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta \leq \varepsilon \quad \text { for all } t \geq t_{1} \tag{2.12}
\end{equation*}
$$

We can pick $\alpha>0$ such that $\left(1-p_{0}\right) \delta>\alpha$, which yields $\delta>\alpha$. Now, let (2.12) hold with $\varepsilon:=\left(1-p_{0}\right)^{\gamma} \delta^{\gamma}-\alpha^{\gamma}>$ 0 . Define the set of continuous functions

$$
M:=\left\{x \in \mathrm{C}\left(\left[t_{0}, \infty\right),[0, \infty)\right): \alpha \psi(t) \leq x(t) \leq \delta \psi(t) \quad \text { for all } t \geq t_{0}\right\}
$$

where

$$
\psi(t):= \begin{cases}0, & t_{1} \geq t \geq t_{0} \\ \int_{t_{1}}^{t} \frac{1}{(r(\eta))^{1 / \gamma}} \mathrm{d} \eta, & t \geq t_{1}\end{cases}
$$

Then, we define an operator Φ on M by

$$
(\Phi x)(t):= \begin{cases}0, & t_{1} \geq t \geq t_{0} \\ p(t) x(\tau(t))+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}\left(\alpha^{\gamma}+\int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(x\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta\right)\right)^{1 / \gamma} \mathrm{d} \eta, & t \geq t_{1}\end{cases}
$$

Note that when x is continuous, Φx is also continuous on $\left[t_{0}, \infty\right)$. If x is a fixed point of Φ, i.e. $\Phi x=x$, then x is a solution of (1.1).

First, we estimate a lower bound for Φx. By (A3), we have $f_{i} \circ x \circ \sigma_{i} \geq 0$ and by (A2), we have

$$
(\Phi x)(t) \geq 0+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}\left(\alpha^{\gamma}+0\right)\right)^{1 / \gamma} \mathrm{d} \eta=\alpha \psi(t) \quad \text { for } t \geq t_{1}
$$

Now, we estimate an upper bound for Φx. For $x \in M$, by (A2) and (A3), we have $f_{i} \circ x \circ \sigma_{i} \leq f_{i} \circ(\delta R) \circ \sigma_{i}$. Then, by (2.12), we get

$$
\begin{aligned}
(\Phi x)(t) & \leq p_{0} \delta \psi(t)+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}\left(\alpha^{\gamma}+\int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(\delta R\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta\right)\right)^{1 / \gamma} \mathrm{d} \eta \\
& \leq p_{0} \delta \psi(t)+\left(\alpha^{\gamma}+\varepsilon\right)^{1 / \gamma} \psi(t)=\delta \psi(t)
\end{aligned}
$$

for $t \geq t_{1}$. Therefore, Φ maps M into M.
Next, we find a fixed point for Φ in M. Let us define a sequence of functions in M by the recurrence relation

$$
u_{n}(t):=\left\{\begin{array}{ll}
0, & n=0 \\
\left(\Phi u_{n-1}\right)(t), & n \in \mathbb{N}
\end{array} \quad \text { for } t \geq t_{0}\right.
$$

Note that we have $u_{1}(t) \geq u_{0}(t)$ for $t \geq t_{0}$. Using that f_{i} is nondecreasing and mathematical induction, we can show that $u_{n+1}(t) \geq u_{n}(t)$ for $t \geq t_{0}$. Therefore, the sequence $\left\{u_{n}\right\}$ converges pointwise to a function u. Using Lebesgue's dominated convergence theorem, we can show that u is a fixed point of Φ in M. This shows that under assumption (2.12), there is a nonoscillatory solution that does not converge to zero. This completes the proof.

Corollary 2.4 Under the assumptions of Theorem 2.3, every unbounded solution of (1.1) is oscillatory if and only if (2.6) holds.

Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.3. Hence, the details are omitted.

For the next theorem, we introduce two new additional conditions.
(C2) Assume the existence of a differentiable function σ_{0} and a positive constant κ such that

$$
\sigma_{i}(t) \geq \sigma_{0}(t) \text { and } \sigma_{0}^{\prime}(t) \geq \kappa \quad \text { for } t \geq t_{0} \text { and } i=1,2, \ldots, m
$$

(C3) There exists a constant $\beta>0$, which is a quotient of two positive odd integers, with $\beta>\gamma$, such that

$$
\frac{f_{i}(u)}{u^{\beta}} \text { is non-decreasing on }(-\infty, 0) \text { and }(0, \infty), i=1,2, \ldots, m
$$

For example, $f_{i}(u):=|u|^{\alpha_{i}} \operatorname{sgn}(u)$, where $\alpha_{i}>\beta>0$, satisfies (C3).

Theorem 2.5 Assume (A1)-(A5), (C2), (C3), and let r be differentiable and nondecreasing. Every solution of (1.1) is oscillatory or converges to zero, if and only if

$$
\begin{equation*}
\int_{t_{1}}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta=\infty \tag{2.13}
\end{equation*}
$$

Proof We prove sufficiency by contradiction. Initially, assume that x is an eventually positive solution that does not converge to zero. Using the same argument as in Lemma 2.1, there exists $t_{1} \geq t_{0}$ such that $x\left(\sigma_{i}(t)\right)>0$, $x(\tau(t))>0$, and $r\left(z^{\prime}\right)^{\gamma}$ is positive and nonincreasing. Case 1 of Lemma 2.1 leads to $\lim _{t \rightarrow \infty} x(t)=0$, which contradicts the assumption that x does not converge to zero.

Case 2 of Lemma 2.1 also leads to a contradiction. In Case $2, z(t)$ is positive and increasing for $t \geq t_{1}$. It follows from (A5) and (2.1) that $z(t) \leq x(t)$ for $t \geq t_{1}$. From (A3), $z(t) \geq z\left(t_{1}\right)$ and (C3), we have

$$
f_{i}(x(t)) \geq \frac{f_{i}(z(t))}{(z(t))^{\beta}}(z(t))^{\beta} \geq \frac{f_{i}\left(z\left(t_{1}\right)\right)}{\left(z\left(t_{1}\right)\right)^{\beta}}(z(t))^{\beta} \quad \text { for all } t \geq t_{1}
$$

By (A1), there exists a $t_{2} \geq t_{1}$ such that $\sigma_{i}(t) \geq t_{1}$ for $t \geq t_{2}$. Then,

$$
\begin{equation*}
f_{i}\left(x\left(\sigma_{i}(t)\right)\right) \geq \frac{f_{i}\left(z\left(t_{1}\right)\right)}{\left(z\left(t_{1}\right)\right)^{\beta}}\left(z\left(\sigma_{i}(t)\right)\right)^{\beta} \quad \text { for all } t \geq t_{2} \tag{2.14}
\end{equation*}
$$

Using (2.14), $\sigma_{i} \geq \sigma_{0}$, which is an increasing function, and that z is increasing, it follows from (2.5) that

$$
r(t)\left(z^{\prime}(t)\right)^{\gamma} \geq \frac{z^{\beta}\left(\sigma_{0}(t)\right)}{\left(z\left(t_{1}\right)\right)^{\beta}} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(z\left(t_{1}\right)\right) \mathrm{d} \eta \quad \text { for all } t \geq t_{2}
$$

From $r\left(z^{\prime}\right)^{\gamma}$ being nonincreasing and σ_{0} being a delay, we have

$$
r\left(\sigma_{0}(t)\right)\left(z^{\prime}\left(\sigma_{0}(t)\right)\right)^{\gamma} \geq r(t)\left(z^{\prime}(t)\right)^{\gamma} \quad \text { for all } t \geq t_{2}
$$

We use this in the left-hand side of the above inequality. Then, dividing by $r\left(\sigma_{0}(t)\right)>0$, raising both sides to the power of $1 / \gamma$, and dividing by $z^{\beta / \gamma}\left(\sigma_{0}(t)\right)>0$, we have

$$
\frac{z^{\prime}\left(\sigma_{0}(t)\right)}{\left(z\left(\sigma_{0}(t)\right)\right)^{\beta / \gamma}} \geq\left(\frac{1}{r\left(\sigma_{0}(t)\right)\left(z\left(t_{1}\right)\right)^{\beta}} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(z\left(t_{1}\right)\right) \mathrm{d} \eta\right)^{1 / \gamma} \quad \text { for all } t \geq t_{2}
$$

Multiplying the left-hand side by $\sigma_{0}^{\prime}(t) / \kappa \geq 1$, and integrating over $\left[t_{2}, t\right)$, we get

$$
\begin{equation*}
\frac{1}{\kappa} \int_{t_{2}}^{t} \frac{z^{\prime}\left(\sigma_{0}(\eta)\right) \sigma_{0}^{\prime}(\eta)}{z^{\beta / \gamma}\left(\sigma_{0}(\eta)\right)} \mathrm{d} \eta \geq \frac{1}{z^{\beta / \gamma}\left(t_{2}\right)} \int_{t_{2}}^{t}\left(\frac{1}{r\left(\sigma_{0}(\eta)\right)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(z\left(t_{1}\right)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \quad \text { for all } t \geq t_{2} \tag{2.15}
\end{equation*}
$$

On the left-hand side, since $\beta>\gamma$, integrating gives us

$$
\left.\frac{1}{\kappa(1-\beta / \gamma)}\left(z\left(\sigma_{0}(\eta)\right)\right)^{1-\beta / \gamma}\right|_{\eta=t_{2}} ^{t} \leq \frac{1}{\kappa(\beta / \gamma-1)}\left(z\left(\sigma_{0}\left(t_{2}\right)\right)\right)^{1-\beta / \gamma} \quad \text { for all } t \geq t_{2}
$$

On the right-hand side of (2.15), we use that $\min _{1 \leq i \leq m} f_{i}\left(z\left(t_{1}\right)\right)>0$ and that $r \circ \sigma_{0} \leq r$, to conclude that (2.13) implies the right-hand side approaching ∞, as $t \rightarrow \infty$. This contradiction implies that the solution x cannot be eventually positive.

For eventually negative solutions, we use the same change of variables as in the proof of Theorem 2.3, and proceed as above.

To prove the necessity part, we assume that (2.13) does not hold, and obtain an eventually positive solution that does not converge to zero. If (2.13) does not hold, then for each $\varepsilon>0$ there exists $t_{1} \geq t_{0}$ such that

$$
\int_{t}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \leq \varepsilon \quad \text { for all } t \geq t_{1}
$$

Pick $\delta, \alpha>0$ such that $\left(1-p_{0}\right) \delta>\alpha>0$. For $\varepsilon:=\left(1-p_{0}\right) \delta-\alpha>0$, we can find t_{1} such that

$$
\begin{equation*}
\int_{t}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}(\delta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \leq \varepsilon \quad \text { for all } t \geq t_{1} \tag{2.16}
\end{equation*}
$$

Let us consider the set of continuous functions

$$
M:=\left\{x \in \mathrm{C}\left(\left[t_{0}, \infty\right),[0, \infty)\right): \alpha \leq x(t) \leq \delta \text { for } t \geq t_{0}\right\}
$$

Then, we define the operator

$$
(\Phi x)(t):= \begin{cases}\alpha+p\left(t_{1}\right) x\left(\tau\left(t_{1}\right)\right) & t_{1} \geq t \geq t_{0} \\ \alpha+p(t) x(\tau(t))+\int_{t_{1}}^{t} \frac{1}{r(\eta)}\left(\int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(x\left(\sigma_{i}(\zeta)\right)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta, & t \geq t_{1}\end{cases}
$$

Note that if x is continuous, Φx is also continuous at t_{1}. This follows by taking the right and left limits in the three possible cases in the definition of Φ. Also note that if $\Phi x=x$, then x is solution of (1.1).

First, we estimate a lower bound for Φx. Let $x \in M$. Then $x \geq \alpha$ and by (A3), we have $(\Phi x)(t) \geq \alpha$ for $t \geq t_{1}$.

Now, we estimate an upper bound for Φx. Let $x \in M$, then $x \leq \delta$ and

$$
(\Phi x)(t) \leq \alpha+p_{0} \delta+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}(\delta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \quad \text { for } t \geq t_{1}
$$

Since σ_{0} is a delay and r is nondecreasing, we can replace r by $r \circ \sigma_{0}$ and the above inequality is still valid. By (2.16) and the definition of ε, we have

$$
(\Phi x)(t) \leq \alpha+p_{0} \delta+\varepsilon=\delta \quad \text { for } t \geq t_{1}
$$

Therefore, Φ maps M to M.
To find a fixed point for Φ in M, we define a sequence of functions by the recurrence relation

$$
\begin{aligned}
u_{0}(t) & =0 \quad \text { for } t \geq t_{1} \\
u_{1}(t) & =\left(\Phi u_{0}\right)(t)=1 \quad \text { for } t \geq t_{1} \\
u_{n+1}(t) & =\left(\Phi u_{n}\right)(t) \quad \text { for } n \geq 1, t \geq t_{1}
\end{aligned}
$$

Note that we have $u_{1} \geq u_{0}$ on $\left[t_{1}, \infty\right)$. Using that f is nondecreasing and mathematical induction, we can prove that $u_{n+1} \geq u_{n}$ on $\left[t_{1}, \infty\right)$. Therefore, $\left\{u_{n}\right\}$ converges pointwise to a function u in M. Then, u is a fixed point of Φ and a positive solution to (1.1) that does not converge to zero.

Corollary 2.6 Under the assumptions of Theorem 2.5, every unbounded solution of (1.1) is oscillatory if and only if (2.13) holds.

Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.5. Hence, the details are omitted.

The next theorem requires neither (C1) nor (C3) but considers only bounded solutions.

Theorem 2.7 Under assumptions (A1)-(A5), every bounded solution of (1.1) is oscillatory or converges to zero if and only if (2.13) holds.

Proof We prove sufficiency by contradiction. Assume x is an eventually positive solution that does not converge to zero. Then, we proceed as in Lemma 2.1 up to equation (2.4). Since x and p are bounded so z is bounded. Then, the left-hand side of (2.4) is bounded, while the right-hand side approaches $(-\infty)$ as $t \rightarrow \infty$. This contradiction implies that $z^{\prime}(t)>0$ for $t \geq t_{1}$. As in Lemma 2.1, we have two possible cases.

Case 1. $z(t)<0$ for all $t \geq t_{1}$. This leads to a contradiction. As in Case 1 of Lemma 2.1, we have $\lim _{t \rightarrow \infty} x(t)=0$, which contradicts the assumption that x does not converge to zero.
Case 2. $z(t)>0$ for all $t \geq t_{1}$. This also leads to a contradiction. Since z is positive and increasing, $z(t) \geq z\left(t_{1}\right)$ for $t \geq t_{1}$. Recall that $x \geq z$ so x cannot converge to zero. By (A2), there is a $t_{2} \geq t_{1}$ such that $\sigma_{i}(t) \geq t_{1}$ and $x\left(\sigma_{i}(t)\right) \geq z\left(t_{1}\right)$ for $t \geq t_{2}$ and $i=1,2, \ldots, m$. From (A4), $f \circ x \circ \sigma \geq f\left(z\left(t_{1}\right)\right)>0$. Then,
integrating as we did for (2.5), we have

$$
z(t) \geq z\left(t_{2}\right)+\int_{t_{2}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) f_{i}\left(z\left(t_{1}\right)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \quad \text { for } t \geq t_{2}
$$

which shows that $z(t) \rightarrow \infty$ as $t \rightarrow \infty$. This contradicts the fact that z is bounded.
For eventually negative solutions, we proceed as above to obtain also a contradiction. Therefore, every bounded solution must be oscillatory or converge to zero.

The necessity part of the proof follows from that of Theorem 2.5. Thus, the proof is complete.

Corollary 2.8 Under the assumptions of Theorem 2.7, every unbounded solution of (1.1) is oscillatory if and only if (2.13) holds.

Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.7. Hence, the details are omitted.

Example 2.9 Consider the neutral differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left[x(t)-\mathrm{e}^{-t} x(\tau(t))\right]\right)^{11 / 3}\right)+\frac{1}{t+1}(x(t-2))^{1 / 3}+\frac{1}{t+2}(x(t-1))^{5 / 3}=0, \quad t \geq 1 \tag{2.17}
\end{equation*}
$$

Here, $\gamma:=11 / 3, r(t):=\mathrm{e}^{-t}, 0 \leq p(t):=\mathrm{e}^{-t} \leq 1 / \mathrm{e}<1, \sigma_{1}(t):=t-2, \sigma_{2}(t):=t-1, R(t):=\int_{1}^{t} \mathrm{e}^{3 \eta / 11} \mathrm{~d} \eta=$ $\frac{11}{3}\left(\mathrm{e}^{3 t / 11}-\mathrm{e}^{3 / 11}\right)$ for $t \geq 1, f_{1}(u):=u^{1 / 3}$ and $f_{2}(u):=u^{5 / 3}$ for $u \in \mathbb{R}$. With $\beta:=7 / 3$, we see that (C1) holds, i.e. $f_{1}(u) / u^{\beta}=u^{-2}$ and $f_{2}(u) / u^{\beta}=u^{-2 / 3}$, both of which are decreasing functions. To check (2.6), we compute

$$
\begin{aligned}
\int_{1}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(\delta R\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta & \geq \int_{1}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) f_{i}\left(\delta R\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta \\
& \geq \int_{1}^{\infty} q_{1}(\eta) f_{1}\left(\delta R\left(\sigma_{1}(\eta)\right)\right) \mathrm{d} \eta \\
& =\int_{1}^{\infty} \frac{1}{\eta+1}\left(\delta \frac{11}{3}\left(\mathrm{e}^{3(\eta-2) / 11}-\mathrm{e}^{3 / 11}\right)\right)^{1 / 3} \mathrm{~d} \eta=\infty
\end{aligned}
$$

for all $\delta>0$. So, all the conditions of Theorem 2.3 hold, and therefore, each solution of (2.17) is oscillatory or converges to zero.

Example 2.10 Consider the neutral differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left[x(t)-\mathrm{e}^{-t} x(\tau(t))\right]\right)^{1 / 3}\right)+t(x(t-2))^{7 / 3}+(t+1)(x(t-1))^{11 / 3}=0, \quad t \geq 1 \tag{2.18}
\end{equation*}
$$

Here, $\gamma:=1 / 3, r(t): \equiv 1, \sigma_{1}(t):=t-2, \sigma_{2}(t):=t-1$ for $t \geq 1, f_{1}(u):=u^{7 / 3}$ and $f_{2}(u):=u^{11 / 3}$ for $u \in \mathbb{R}$. With $\beta:=5 / 3$, we see that (C3) holds, i.e. $f_{1}(u) / u^{\beta}=u^{2 / 3}$ and $f_{2}(u) / u^{\beta}=u^{2}$ both of which are increasing
functions. To check (2.13), we compute

$$
\begin{aligned}
\int_{0}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta & \geq \int_{0}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \\
& \geq \int_{0}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} q_{1}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \\
& \geq \int_{0}^{\infty}\left(\int_{\eta}^{\infty} \zeta \mathrm{d} \zeta\right)^{3} \mathrm{~d} \eta=\infty
\end{aligned}
$$

So, all the conditions of Theorem 2.5 hold. Thus, every solution of (2.18) is oscillatory or converges to zero.

3. Final Comments

Based on this work and $[6,7,9,14,16,18-20,31,34]$ it would be interesting to fill the gap in establishing necessary and sufficient conditions for the oscillation of the solutions of the second-order nonlinear neutral differential equation (1.1) under the conditions $p \leq 0$ and/or $p \geq 1$.

We would like to mention that the papers $[1,23]$ are concerned with the oscillation of neutral differential equations in the case where $p \geq 1$ and $p \not \equiv 1$ eventually, whereas [25] is concerned with the oscillation of neutral differential equations in the case where $p \equiv p_{0} \geq 0$ and $p_{0} \neq 1$, which suggest a possible/useful technique for studying the oscillation problem here. Furthermore, new criteria presented in this paper complement and improve related results obtained in [1, 23, 25].

References

[1] Agarwal RP, Bohner M, Li T, Zhang C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Applied Mathematics and Computation 2013; 225: 787-794.
[2] Agarwal RP, Bohner M, Li T, Zhang C. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian Journal of Mathematics 2014; 30 (1): 1-6.
[3] Agarwal RP, Bohner M, Li T, Zhang C. Oscillation of second-order Emden-Fowler neutral delay differential equations. Annali di Matematica Pura ed Applicata Series IV 2014; 193 (6): 1861-1875.
[4] Agarwal RP, Bohner M, Li T, Zhang C. Even-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties. Applied Mathematics and Computation 2015; 266: 481-490.
[5] Agarwal RP, Zhang C, Li T. Some remarks on oscillation of second order neutral differential equations. Applied Mathematics and Computation 2016; 274: 178-181.
[6] Baculíková B, Džurina J. Oscillation theorems for second order neutral differential equations. Computers \& Mathematics with Applications 2011; 61 (1): 94-99.
[7] Baculíková B, Džurina J. Oscillation theorems for second-order nonlinear neutral differential equations. Computers \& Mathematics with Applications 2011; 62 (12): 4472-4478.
[8] Baculíková B, Li T, Džurina J. Oscillation theorems for second order neutral differential equations. Electronic Journal of Qualitative Theory of Differential Equations 2011; 61 (1): 94-99.
[9] Bohner M, Grace SR, Jadlovská I. Oscillation criteria for second-order neutral delay differential equations. Electronic Journal of Qualitative Theory of Differential Equations 2017; 60: 1-12.
[10] Brands JJAM. Oscillation theorems for second-order functional differential equations. Journal of Mathematical Analysis and Applications 1978; 63 (1): 54-64.
[11] Chatzarakis GE, Džurina J, Jadlovská I. New oscillation criteria for second-order half-linear advanced differential equations. Applied Mathematics and Computation 2019; 347: 404-416.
[12] Chatzarakis GE, Grace SR, Jadlovská I, Li T, Tunç E. Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019; 5691758: 1-7.
[13] Chatzarakis GE, Jadlovská I. Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics 2019; 48 (1): 170-179.
[14] Džurina J. Oscillation theorems for second order advanced neutral differential equations. Tatra Mountains Mathematical Publications 2011; 48: 61-71.
[15] Džurina J, Grace SR, Jadlovská I, Li T. Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Mathematische Nachrichten 2020; 293 (5): 910-922.
[16] Grace SR, Džurina J, Jadlovská I, Li T. An improved approach for studying oscillation of second-order neutral delay differential equations. Journal of Inequalities and Applications 2018; 193: 1-13.
[17] Hale JK. Functional Differential Equations. In: Hsieh PF, Stoddart AWJ (editors). Analytic Theory of Differential Equations. Lecture Notes in Mathematics, Vol 183. Berlin, Germany: Springer-Verlag, 1971.
[18] Karpuz B, Santra SS. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics 2019; 48 (3): 633-643.
[19] Li H, Zhao Y, Han Z. New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations. Journal of Applied Mathematics and Computing 2019; 60 (1-2): 191-200.
[20] Li Q, Wang R, Chen F, Li T. Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Advances in Difference Equations 2015; 35: 1-7.
[21] Li T, Rogovchenko YV. Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstract and Applied Analysis 2014; 594190: 1-5
[22] Li T, Rogovchenko YV. Oscillation of second-order neutral differential equations. Mathematische Nachrichten 2015; 288 (10): 1150-1162.
[23] Li T, Rogovchenko YV. Oscillation criteria for even-order neutral differential equations. Applied Mathematics Letters 2016; 61: 35-41.
[24] Li T, Rogovchenko YV. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatshefte für Mathematik 2017; 184 (3): 489-500.
[25] Li T, Rogovchenko YV. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Applied Mathematics Letters 2020; 105 (106293): 1-7.
[26] Moaaz O. New criteria for oscillation of nonlinear neutral differential equations. Advances in Difference Equations 2019; 484: 1-11.
[27] Moaaz O, Elabbasy EM, Qaraad B. An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation. Journal of Inequalities and Applications 2020; 69: 1-18.
[28] Moaaz O, Anis M, Baleanu D, Muhib A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020; 8 (6): 986.
[29] Pinelas S, Santra SS. Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. Journal of Fixed Point Theory and Applications 2018; 20 (1): 1-13.
[30] Qian Y, Xu R. Some new oscillation criteria for higher-order quasi-linear neutral delay differential equations. Differential Equations \& Applications 2011; 3 (3): 323-335.
[31] Santra SS. Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differential Equations \& Applications 2016; 8 (1): 33-51.
[32] Santra SS. Oscillation analysis for nonlinear neutral differential equations of second order with several delays. Mathematica 2017; 59 (82) (1-2): 111-123.
[33] Santra SS. Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term. Mathematica 2019; 61 (84) (1): 63-78.
[34] Tripathy AK, Panda B, Sethi AK. On oscillatory nonlinear second order neutral delay differential equations. Differential Equations \& Applications 2016; 8 (2): 247-258.
[35] Wong JSW. Necessary and sufficient conditions for oscillation of second order neutral differential equations. Journal of Mathematical Analysis and Applications 2000; 252 (1): 342-352.
[36] Zhang C, Agarwal RP, Bohner M, Li T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bulletin of the Malaysian Mathematical Sciences Society 2015; 38 (2): 761-778.

