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Abstract: In this paper, necessary and sufficient conditions for asymptotic behavior are established of the solutions to

second-order neutral delay differential equations of the form
i L) - pweem)) ) + i (O fi (2(o:()) =0 for ¢ > ¢
at at P St =t

We consider two cases when f;(u) /uﬁ is nonincreasing for v > £, and nondecreasing for 5 > -, where 5 and ~y
are quotients of two positive odd integers. Our main tool is Lebesgue’s dominated convergence theorem. Examples

illustrating the applicability of the results are also given, and state an open problem.

Key words: Oscillation, nonoscillation, nonlinear, delay argument, second-order neutral differential equations, Lebesgue’s

dominated convergence theorem

1. Introduction

In this article, we consider the neutral differential equation

(i(ﬂt)(;[x(t) —p(t)xv(t))]) ) a0 (el ) =0 for 121, (LD

where ~ is quotient of two positive odd integers, and the functions f;,p,q;,r, 0;, 7 are continuous that satisfy
the conditions stated below:

(A1) 7,0; € C([to, ), [0,00)) satisfy 7(t) <t and o;(t) <t for t > tg, limsoo 7(t) = 00 and lim;_, o 0;(t) =

oo for i1 =1,2,...,m.
(A2) r € C([to, ), (0,00)), ¢ € C([to, ), [0,00)) such that > 1", ¢; # 0 on any interval of the form [T, c0).
(A3) fi € C(R,R) is nondecreasing and uf;(u) >0 for u#0, i=1,2,...,m.

(A4) lim; o R(t) = 00, where R(t) := ftz =7 (n)dn for t > tq.
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(A5) p e C([to,0),[0,00)) satisfies 0 < p(t) < pg < 1 for all ¢ > ty, where py € RT.

The main feature of this article is having conditions that are both necessary and sufficient for the oscillation of
all solutions to (1.1).
In 1978, Brands [10] has proved that for bounded delays, the solutions of

2" (t) + q(t)z(o(t)) =0 for t > to,

where t — M < o(t) < t for some M, are oscillatory if and only if the solutions of z”(t) 4+ ¢(t)z(t) = 0 are
oscillatory. In [11, 13], Chatzarakis et al. have considered a more general second-order half-linear differential

equation of the form
(r(2")*)' (1) + q(t) (z(0(8)))* =0 for t > t, (1.2)

and established new oscillation criteria for (1.2) in both of the cases lim; o, R(t) = 0o and lim;_, o R(t) < co.

Wong [35] has obtained the necessary and sufficient conditions for oscillation of solutions of

d2

@[x(t) —pa(t—71)]+q(t)f(z(t —0)) =0 fort >t

in which the neutral coefficient satisfies p € (0,1) and delays are constants. However, we have seen in [6, 14]

that the authors Baculikovd and Dzurina have studied

jt(r(t)(jt[xm+p<t>x<7(t>>]) )+q<t>(x<o<t>>)“=o for t > 1y (13)

and established sufficient conditions for oscillation of solutions of (1.3) using comparison techniques when
vy=a=1, 0 < pt) < oo and lim;_,- R(t) = co. By the same technique, Baculikovd and DZzurina [7]
have considered (1.3) and obtained sufficient conditions for oscillation of the solutions of (1.3) by considering
the assumptions 0 < p(¢) < oo and lim; o R(t) = oco. In [34], Tripathy et al. have studied (1.3) and
established several sufficient conditions for oscillations of the solutions of (1.3) by considering the assumptions
lim; 00 R(t) = 00 and lim;_,oo R(t) < oo for various ranges of the neutral coefficient p. In [9], Bohner et al.
have obtained sufficient conditions for oscillation of solutions of (1.3) when v = «, lim;, o R(t) < oo and
0 < p(t) < 1. Grace et al. [16] have established sufficient conditions for the oscillation of the solutions of (1.3)
when v = « and by considering the cases lim; o, R(t) < oo and lim; o, R(t) = 0o when 0 < p(¢) < 1. In [19],
Li et al. have established sufficient conditions for the oscillation of the solutions of (1.3), under the assumptions
lim;, o R(t) < oo and p(t) > 0. Karpuz and Santra [18] have obtained several sufficient conditions for the

oscillatory and asymptotic behavior of the solutions of

(i<7"(t)§t[$(t) - P(t)x(T(t))}> +q@®)f(z(o(t)) =0 for t >t

by considering the cases lim;_,~ R(t) < co and lim; o R(t) = oo for different ranges of p.
For more information on oscillation of second-order neutral differential equations, we refer ||

[1-5, 8, 12, 15, 16, 2033, 36] to the reader and the references cited therein. Note that most of the works

have been considered for sufficient conditions, and merely a few works have been concerned with the necessary
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and sufficient conditions. Hence, unlike the above methods, the main feature of this article is to establish
conditions that are both necessary and sufficient for oscillation of all solutions of (1.1).

Neutral differential equations have several applications in the natural sciences and engineering. For
example, they often appear in the study of distributed networks containing lossless transmission lines (see, e.g.,
[17]). In this paper, we restrict our attention to study oscillation and nonoscillation of (1.1), which includes the
class of functional differential equations of neutral type.

By a solution of (1.1), we mean a function = € C([T},c0),R), where T, > to, such that x —p-zo7T €
CY([Ty,00),R) and 7([z —p-xo7])"€ C}([T}, ), R), and satisfies (1.1) on the interval [T}, 00). A solution x
of (1.1) is said to be proper if it is not identically zero eventually, i.e. sup{|jz(n)|: n>T} >0 forall T > T,.
We assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large
zeros on [T, 00); otherwise, it is said to be nonoscillatory. Equation (1.1) itself is said to be oscillatory if all of
its solutions are oscillatory.

When a domain is not specified explicitly for mathematical expressions, they are assumed to hold

eventually, i.e. they are satisfied for all ¢ large enough.

2. Results
Lemma 2.1 Assume (A1)-(A5), and that x is an eventually positive solution of (1.1). Then, only one of the

following two cases hold.

(i) There exist T >ty and § > 0 such that

0<z(t) =) —p{t)x(r(t)) <IR(t) forallt>T (2.1)

and

o ™ 1/
(R(t) - R(T)) ( /t Zqi(mfi(:c(oi(n)))dn) <z(t) <a(t) forallt>T. (2.2)

Proof Let x be an eventually positive solution. Then, by (A1) there exists a ¢; such that z(t) > 0, x(7(t)) > 0
and x(o;(t)) > 0 for all t > ¢; and ¢ = 1,2,...,m. Note that z defined in (2.1) is continuous and satisfies
z(t) < x(t) for t > t1. From (1.1), it follows that

(r()) () = =" ai(t) fi(x(0i(1))) <O for t >ty (2.3)
i=1

Therefore, r(z’)Y is nonincreasing on [t1,00). Next, we show that r(z’)Y is positive on [t1,00). Assume the
contrary that there exists ¢o > ¢; such that r(tg)(z’(tg))7 < 0. Using (A2) and (A3), it follows from (2.3) that
there exists t3 > to such that

r(t)(2' ()" < r(ts) (' (t3))” <0 for all t > t3.

Then,

1/~
Z(t) < (T(t?’)) J(ty) fort >ty
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Integrating from t3 to t, we have

2(t) < 2(ts) + (r(ts)) "2 (t3) (R(E) — R(t3)). (2.4)

y (A4), the right-hand side tends to (—oc), then lim; o 2(t) = —oo. Since p is bounded and z is
unbounded, z cannot be bounded. This allows the existence of an increasing unbounded sequence {{;} such
that ©(&) =sup{z(n): n <&} for k € N. Then x(7(&)) < z(&) and

2(&) = x(&k) — p(&r)a(T(&k)) > (1= p(&k)) (&) > (1 — po)x(&) > 0

which contradicts limg_,o0 2(§) = —00. Therefore, r(2')Y > 0 on [t1,00).

From r(z’)Y > 0 and r > 0 on [t;,00), it follows that 2z’ > 0 on [t;,00). Then, there is t2 > t; such

that only one of the following two cases happens.

Case 1. Let z(t) < 0 for all ¢ > ¢;. Note that by (Al), limsup, ., x(t) = limsup, ., 2(7(¢)). Then,
0> z(t) > x(t) — pox(r(t)) for all ¢ > to, which implies 0 > (1 — pg) limsup,_, . (t). Since (1 —pg) > 0, it
follows that limsup,_, ., () = 0, hence lim;_, o z(¢) = 0.

Case 2. Let z(t) > 0 for all t > t5. Note that xz(t) > z(¢) for all ¢ > ¢, and z is positive and increasing on

[t2,00), so = cannot converge to zero. By nonincreasing nature of r(z')7, we have

r(to 1/y
2Z(t) < ( r((tt))> 2'(tg) for t > to.

Integrating the above inequality over [t2,t), we obtain

2(t) < 2(ta) + (r(t2)) 72 (b2) (R(t) — R(t2)) for t > t.

By (A4), there exists a constant § > 0 such that (2.1) holds.
Since r(2’)? is positive and nonincreasing on [ta, 00), limy_,e 7(t) (2’ (t))ﬁY exists and is nonnegative. Integrating

(1.1) over [t,s), we have
r(s)((s))” = r(t)(Z' ()" +/ qu i(n))dn =0 forall s >t >t
Dropping the positive term r(s) (z’(s))A/ and then letting s — co yields

r(t) (( / Z 4i(n )y for all ¢ > t. (2.5)

Then, we get

1/~
Z(t) > < / Z a:(n )))dn) for all t > to.

Since z(t2) > 0, integrating the above inequality over [ta,t) yields

t 1/y
1
z(t) > /t2 (7'(77)/17 E qi(¢ )))d() dn for all t > ts.
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Taking the inner integration out at its minimum value and using (A4), we arrive at

o ™ 1/~
z(t) > (R(t) — R(t2)) ( /t Zq&é)ﬁ(m(m(@))@) for all t > to,

which yields (2.2).

This completes the proof. O

Remark 2.2 Assume (A1)-(A5), and that x is an eventually positive unbounded solution of (1.1). Then, (i)

of Lemma 2.1 cannot hold.
For the next theorem, we introduce a new additional condition.

(C1) There exists a constant S > 0, which is a quotient of two positive odd integers, with v > (3, such that

fi(w)
uB

is non-increasing on (—o0,0) and (0,00), i =1,2,...,m.

For example, f;(u) :=|u

% sgn(u), where 8 > «a; > 0, satisfies (C1).

Theorem 2.3 Assume (A1)-(A5) and (C1). Every solution of (1.1) is oscillatory or converges to zero, if and
only if

/ ZQ1 fz 5R 0'1( )))d?] = 00 fOT all 6 > 0. (26)

Proof We prove sufficiency by contradiction. Initially, we assume that a solution x is eventually positive,
which does not converge to zero. Then, Case 1 in Lemma 2.1 leads to lim; o 2(t) = 0, which contradicts
the assumption that x does not converge to zero. Next, we show that Case 2 of Lemma 2.1 also leads to a

contradiction. In Case 2, there exists t; such that

a(t) > z(t) > (R(t) — R(t1))w'/ 7 (t) > 0 for all t > t1,

where
w(t) :/ qu (O))dC for t > 1.

Since lim;_,» R(t) = oo, there exists to > t; such that R(t) — R(t1) > s R(t) for t > t5. Then,

2(t) > ZR(B)w'/(t) for all t > ty. (2.7)

N =

Computing the derivative of w, we have
- Z%‘(ﬂfi (z(oi(t))) for all t > ts.
i=1
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Thus, w is nonnegative and nonincreasing. Since z > 0, by (A3), f;ox oo; > 0, and by (A2), it follows that
Y1 qi- fioxoo; #0 on any interval of the form [T, 00), thus w’ cannot be identically zero, and w cannot

be constant on any interval [T, 00). Therefore, w(t) > 0 for ¢ > t;. Computing the derivative, we get

a

dtwl—,ﬁ/fy(t) _ (1 _ ﬁ)w_ﬂ/’y(t)w/(t) for t > to. (2.8)

v

Integrating (2.8) over [ta,t), and using positivity of w, we have

w8 (1) > (1 - f) (— /t:wﬂ/”(n)w’(n)dn>
T -

for ¢ > to. Next, we find a lower bound for the right-hand side of (2.9), independent of the solution z. Since
x >z, by (A3), (C1), (2.1), and (2.7), we have

(=(1)”
filz(t) > fi(=(t >
(2(1)) (2(1))) (Z(t))g

- L

FORWD) o HORD) (REOw @Y
oy Z(éR()W( 2 >

for t > to. Since w is nonincreasing, /v > 0, and o; is a delay, it follows that

fi(0R(o:(1) 4/, fi(6R(a4())) 4/,
fi(z(oi (1)) > Wwﬁ/ (oi(t)) > Wwﬁ/ (t) fort > ts. (2.10)

Going back to (2.9), we have

(1

wlfﬂ/v(tQ) >

/ Zqi )fi(6R(0i(n)))dn for t > to. (2.11)

t2 =1
Since (1—/5/v) > 0, by (2.6) the right-hand side tends to oo as ¢t — oco. This contradicts (2.11) and completes
the proof of sufficiency for eventually positive solutions.

For an eventually negative solution z, we introduce the variables y := —z and g¢;(u) := —f;(—u). Then,
y is an eventually positive solution of (1.1) with g¢; instead of f;. Note that g; satisfies (A3) and (C1) so can
apply the above process for the solution .

Next, we show the necessity part by a contrapositive argument. When (2.6) does not hold we find an
eventually positive solution that does not converge to zero. If (2.6) does not hold for some ¢ > 0, then for every
e > 0, there exists t; > to such that

/ qu )fi(6R(0(¢)))d¢ < e forall t > t;. (2.12)
t
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We can pick v > 0 such that (1—pg)d > «, which yields 6 > «. Now, let (2.12) hold with € := (1—p)7d7—a? >

0. Define the set of continuous functions
M = {z € C([tg,0),[0,00)) : ap(t) < z(t) < dp(t) forall t > 1o},

where

Then, we define an operator ® on M by

0, t1 >t >+to
t oo m 1/~
wmww+/<1(w+/ Z@«mumxm«ﬁ g, >t

(P)(t) ==
t (1)

Note that when z is continuous, ®z is also continuous on [tg,00). If x is a fixed point of @, i.e. Pz = x, then
x is a solution of (1.1).

First, we estimate a lower bound for ®x. By (A3), we have f;oxo0; > 0 and by (A2), we have

t 1 1/~

(®x)(t) >0 —|—/ ((oﬂ + 0)> dn=arp(t) fort>t.
o \7(n)

Now, we estimate an upper bound for ®x. For = € M, by (A2) and (A3), we have fioxo0; < fio(dR)o0;.

Then, by (2.12), we get

<7"<1’7) (Oﬂ Jr/OO ml Qi(C)fi(st(Ui(C)))dC))I/de

n 1=

@mm3mw@+/

< podip(t) + (@7 + )7 (t) = 64 (t)

for ¢ > t1. Therefore, ® maps M into M.
Next, we find a fixed point for ® in M. Let us define a sequence of functions in M by the recurrence
relation
0 n=20
U (t) =< for t > tg.
() {(mn_l)(t), neN =
Note that we have wuy(t) > ug(t) for t > tg. Using that f; is nondecreasing and mathematical induction, we
can show that w,y1(t) > u,(t) for t > ty. Therefore, the sequence {u,} converges pointwise to a function wu.
Using Lebesgue’s dominated convergence theorem, we can show that u is a fixed point of ® in M. This shows
that under assumption (2.12), there is a nonoscillatory solution that does not converge to zero. This completes
the proof. O

Corollary 2.4 Under the assumptions of Theorem 2.3, every unbounded solution of (1.1) is oscillatory if and
only if (2.6) holds.
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Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.3. Hence, the details are
omitted. O

For the next theorem, we introduce two new additional conditions.

(C2) Assume the existence of a differentiable function oy and a positive constant x such that

oi(t) > oo(t) and o((t) > k fort >tygandi=1,2,...,m.

(C3) There exists a constant § > 0, which is a quotient of two positive odd integers, with 8 > v, such that

fi(w)
P

is non-decreasing on (—o0,0) and (0,00), i =1,2,...,m.

For example, f;(u) := |u|* sgn(u), where a; > 8 > 0, satisfies (C3).

Theorem 2.5 Assume (A1)-(A5), (C2), (C3), and let r be differentiable and nondecreasing. Every solution

of (1.1) is oscillatory or converges to zero, if and only if

/:o (7"(177) /:’ ng‘(C)dC) 1/de = oo. (2.13)

Proof We prove sufficiency by contradiction. Initially, assume that = is an eventually positive solution that
does not converge to zero. Using the same argument as in Lemma 2.1, there exists t; > ¢ such that x(o;(t)) > 0,
x(7(t)) > 0, and r(z')7 is positive and nonincreasing. Case 1 of Lemma 2.1 leads to lim;_, x(t) = 0, which
contradicts the assumption that = does not converge to zero.

Case 2 of Lemma 2.1 also leads to a contradiction. In Case 2, z(t) is positive and increasing for t > t;.
It follows from (A5) and (2.1) that z(¢) < x(t) for ¢t > t;. From (A3), z(t) > z(¢1) and (C3), we have

fi(z(1)) s fiz(t)) 5
fi(z(t) > ——5(2(t)” > ————==(2(¢ for all ¢ > 1.
(z(t)) (Z(t))g( (1) (z(tl))ﬁ( (1))

By (A1), there exists a to > t; such that o;(t) > t; for ¢t > t5. Then,

fi(z(oi(t))) = m(z(ai(t))) for all ¢ > t. (2.14)

Using (2.14), 0; > 0¢, which is an increasing function, and that z is increasing, it follows from (2.5) that
2P(oo(t © &
")) > W/ S @) filz(t)dn  for all ¢ > ¢,
Z( toi=1

From r(z')7 being nonincreasing and oo being a delay, we have
r(oo(t)) (2 (00 (1)) > r(t)(<'(t))" for all t > ts.
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We use this in the left-hand side of the above inequality. Then, dividing by 7(o¢(t)) > 0, raising both sides to
the power of 1/, and dividing by 2°/7(oo(t)) > 0, we have

m 1/~
Z'(o0(t)) > ( 1 © () fi(2(t1))d ) for all £ > £o.
(2(o0()"" r(oo<t>><z<t1>>5/t 2 atnfil(t))dn > 1,

Multiplying the left-hand side by o{,(¢)/x > 1, and integrating over [to,t), we get

K

1 [ 2 (00(n)oh(n) L AV T ek v
L oty 2 57 /tz<r<ao<n>>/n ;%“)ﬂ(z“”)‘@ dn forallt=tz (215)

On the left-hand side, since 8 > +, integrating gives us

1 t

2(c0 1-8/~
i= ) )

1

= k(B/y —1) (Z(Uo(tz)))l_ﬁ/y for all t > to.
n=ta

On the right-hand side of (2.15), we use that min;<;<m, fi(2(t1)) > 0 and that r o g9 < r, to conclude that
(2.13) implies the right-hand side approaching oo, as ¢ — oo. This contradiction implies that the solution x

cannot be eventually positive.

For eventually negative solutions, we use the same change of variables as in the proof of Theorem 2.3,
and proceed as above.

To prove the necessity part, we assume that (2.13) does not hold, and obtain an eventually positive
solution that does not converge to zero. If (2.13) does not hold, then for each & > 0 there exists t; > ¢y such
that

0o 1 0o m 1/~
/t (7’(77)/ Zqi(C)dC) dn<e forallt>t.
moi=1

Pick 6, > 0 such that (1 —pg)d > a > 0. For €:= (1 —pg)d —a > 0, we can find ¢; such that

/t h (70(177) /n méqi(o fi(a)dg)mdn <c forallt>t. (2.16)

Let us consider the set of continuous functions
M :={z € C([tg,0),[0,00)) : a < z(t) <4 fort > ty}.
Then, we define the operator
a—l—p(tl)x(T(tl)), tl thto,

a+pt)z(r(t) + /tlt % ( 1/7

> a(Oelele))ic) dn, 2 n.
i=1
Note that if = is continuous, ®x is also continuous at ¢;. This follows by taking the right and left limits in the

() (1) =

n

three possible cases in the definition of ®. Also note that if ®a = z, then x is solution of (1.1).
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First, we estimate a lower bound for ®z. Let © € M. Then x > « and by (A3), we have (®x)(t) > «
for t > t4.
Now, we estimate an upper bound for ®z. Let x € M, then z < and
try q oo ™M 1/
(®2)(t) < o + pod +/ (T(n)/ Zqi(g)ﬁ(a)dg) dn fort >t.
11 n =1

Since oq is a delay and 7 is nondecreasing, we can replace r by r o gp and the above inequality is still valid.
By (2.16) and the definition of €, we have

(P2)(t) <a+ped+e=6 fort>t.

Therefore, ® maps M to M.

To find a fixed point for ® in M, we define a sequence of functions by the recurrence relation

ug(t) =0 fort > tq,
ui(t) = (Pug)(t) =1 for ¢t > ty,

Un41(t) = (Puy,)(t) forn >1, ¢t > t.

Note that we have u; > ug on [t1,00). Using that f is nondecreasing and mathematical induction, we can
prove that u,11 > u, on [t;,00). Therefore, {u,} converges pointwise to a function u in M. Then, u is a

fixed point of ® and a positive solution to (1.1) that does not converge to zero. O

Corollary 2.6 Under the assumptions of Theorem 2.5, every unbounded solution of (1.1) is oscillatory if and
only if (2.13) holds.

Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.5. Hence, the details are
omitted. O

The next theorem requires neither (C1) nor (C3) but considers only bounded solutions.

Theorem 2.7 Under assumptions (A1)—(A5), every bounded solution of (1.1) is oscillatory or converges to
zero if and only if (2.13) holds.

Proof We prove sufficiency by contradiction. Assume z is an eventually positive solution that does not
converge to zero. Then, we proceed as in Lemma 2.1 up to equation (2.4). Since z and p are bounded so z is
bounded. Then, the left-hand side of (2.4) is bounded, while the right-hand side approaches (—o0) as t — 0.

This contradiction implies that 2z’(t) > 0 for ¢ > ¢;. As in Lemma 2.1, we have two possible cases.

Case 1. z(t) < 0 for all ¢ > t;. This leads to a contradiction. As in Case 1 of Lemma 2.1, we have
lim;_, x(t) = 0, which contradicts the assumption that = does not converge to zero.

Case 2. z(t) > 0 for all ¢ > ¢;. This also leads to a contradiction. Since z is positive and increasing,
z(t) > z(t1) for t > t1. Recall that > z so = cannot converge to zero. By (A2), there is a to > ¢; such that
oi(t) > t; and z(0;(t)) > z(t1) for t > ¢ and i = 1,2,...,m. From (A4), fozoo > f(z(t1)) > 0. Then,
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integrating as we did for (2.5), we have
t 1 co m 1/~
z(t) > z(t2) +/ ( qu fz C) dn for t > tq,

r(n) J,

which shows that z(t) — co as t — co. This contradicts the fact that z is bounded.

For eventually negative solutions, we proceed as above to obtain also a contradiction. Therefore, every bounded

solution must be oscillatory or converge to zero.

The necessity part of the proof follows from that of Theorem 2.5. Thus, the proof is complete. O

Corollary 2.8 Under the assumptions of Theorem 2.7, every unbounded solution of (1.1) is oscillatory if and
only if (2.13) holds.

Proof The proof of the corollary directly follows from Remark 2.2 and Theorem 2.7. Hence, the details are
omitted. O

Example 2.9 Consider the neutral differential equation

11/3
(i(et<(i[x(t) — e%ﬁ(t))}) ) + ti . (z(t—2))"" + s (z(t—1))"" =0, t>1. (2.17)

Here, v:=11/3, r(t):=e7 !, 0<p(t):=e < 1/e <1, o1(t) :=t—2, oo(t) :=t —1, R(t fte?’"/ndn =
%(63’5/11 —63/11) for t > 1, fi(u) :=u? and fa(u) == u®? for u € R. With § = 7/3, we see that (C1)

holds, i.e. fi(u)/u® =u=? and fo(u)/u® =u=2/3, both of which are decreasing functions. To check (2.6), we
compute

‘/1 qu fz 6R (oi( )))dﬁ > /1 Z(h fz 6R (oi(n )))dn

> /100 a1(n) f1(0R(o1(n)))dn

© q 11 1/3
_ / s ( 3(n—2)/11 _ 3/11) dn = oo

for all § > 0. So, all the conditions of Theorem 2.3 hold, and therefore, each solution of (2.17) is oscillatory
or converges to zero.

Example 2.10 Consider the neutral differential equation

1/3
i((i[w)—e‘tw(r(t»}) )+t<w<t—2>>”"”+<t+1>(w<t—1))”“’:o, t>1 (218)

Here, v:=1/3, r(t) =1, o1(t) :=t—2, o9(t) :=t—1 for t > 1, fi(u) :=u"? and fo(u) := u'/> for u € R.
With 3 :=5/3, we see that (C3) holds, i.e. fi(u)/u® =u?/? and fo(u)/u® = u® both of which are increasing
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functions. To check (2.13), we compute

/OOO <1) /Oo i e >1Mdn - /000 (r(ln) /noo i qz-<<>dC) 1/7dn

So, all the conditions of Theorem 2.5 hold. Thus, every solution of (2.18) is oscillatory or converges to zero.

3. Final Comments

Based on this work and [6, 7, 9, 14, 16, 18-20, 31, 34] it would be interesting to fill the gap in establishing

necessary and sufficient conditions for the oscillation of the solutions of the second-order nonlinear neutral

differential equation (1.1) under the conditions p < 0 and/or p > 1.

We would like to mention that the papers [1, 23] are concerned with the oscillation of neutral differential

equations in the case where p > 1 and p # 1 eventually, whereas [25] is concerned with the oscillation of neutral

differential equations in the case where p = pg > 0 and py # 1, which suggest a possible/useful technique for

studying the oscillation problem here. Furthermore, new criteria presented in this paper complement and

improve related results obtained in [1, 23, 25].
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